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Abstract

Circadian rhythms have a major role in physiology and behavior. Circadian disruption has 

negative consequences for physiological homeostasis at molecular, cellular, organ–system and 

whole-organism levels. The onset of many cerebrovascular insults exhibit circadian temporal 

trends. Impaired sleep-wake cycle, the most robust output rhythms of the circadian system is 

significantly affected by neurodegenerative disorders, may precede them by decades, and may also 

impact their progression. Emerging evidence suggest that circadian disruption may be a risk factor 

for these neurological disorders. In this review, we discuss the implications of circadian rhythms 

in brain disorders, with an emphasis on cerebrovascular and neurodegenerative disorders.
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Introduction

The relevance of circadian rhythms and timekeeping for human health has been increasingly 

recognized not only by sleep medicine but also by many other medical specialties. 24 hour 

diurnal fluctuations in symptom intensity, responsiveness to treatment modalities and 

survival have been well documented. Tremendous advances in the field of circadian biology 

over the past several decades provide an opportunity to systematically investigate 

relationships between diseases, endogenous circadian rhythms, and exogenous influences. 

Many neurological disorders exhibit fluctuating rhythms of symptoms and responsiveness to 

therapies. In this review we outline available literature pertinent to circadian function in 
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common neurological disorders with an emphasis on cerebrovascular and neurodegenerative 

disorders.

Circadian Disruption in Cerebrovascular Disease

Stroke is the third leading cause of death in the United States. Sleep disorders are common 

in stroke victims. Sleep dysfunction has also been repeatedly linked with cardiovascular and 

cerebrovascular insults and implicated in post-stroke recovery. Although well recognized, 

the relationship between sleep, circadian disruption and stroke is not fully understood. Sleep 

and circadian dysfunction may lead to vascular events through direct or indirect 

mechanisms. Sleep loss, sleep disordered breathing and sleep-related movement disorders, 

such as restless legs syndrome (RLS) and periodic limb movements disorder (PLMD), may 

increase the risk of stroke, hypertension and cardiovascular disorders.1 Sleep loss itself 

appears to be an independent risk factor for cerebrovascular events, likely due to alterations 

in the autonomic nervous system and immune homeostasis.2

Emerging evidence suggests important effects that circadian homeostasis has on 

cerebrovascular health. Major cardiovascular parameters such as heart rate (HR), blood 

pressure (BP), and endothelial function, known to impact wide range of cerebrovascular 

disorders, have intrinsic circadian properties. The onset of major cerebrovascular disorders 

frequently exhibits a unique diurnal pattern. Both epidemiological data and animal models’ 

data strongly point to circadian disruption as a risk factor for cerebrovascular disease.

Circadian cardiovascular rhythms

Blood pressure, heart rate and baroreceptor sensitivity demonstrate robust physiological 

oscillations over a 24-hour period.3 Normally BP ”dips” overnight, increases shortly prior to 

awakening, and reaches its maximum during mid-morning hours. Individuals with “non-

dipping” BP pattern have less than 10% decline/rise in systolic BP and/or diastolic BP 

during sleep relative to their mean daytime BP levels. Non-dipping BP rhythm is associated 

with cardiac ventricular hypertrophy, renal pathology, and alterations in the cerebral 

vasculature.4 Individuals lacking the normal circadian rhythm of BP are therefore at 

increased risk for cerebrovascular events, which tend to occur in the early morning hours. 

Factors contributing to cerebrovascular insult, in particular ischemic events, follow a 

circadian pattern.

Circadian variation in stroke onset

Diurnal variation in stroke onset has been reported in numerous studies with higher 

frequency of stroke occurring in the morning.5 Approximately 55% of all ischemic strokes, 

34% of all hemorrhagic strokes, and 50% of all transient ischemic attacks (TIA) occur 

between 06:00 and 12:00 h.6 Mortality from stroke remains high in strokes occurring in the 

morning hours.7 While stroke exhibit this clustering in the morning, some studies reported a 

bimodal distribution of stroke onset in hemorrhagic strokes with the second peak being in 

the afternoon.8–12 The effects of the recombinant tissue plasminogen activator rt_PA 

treatment on outcomes have been independent of time of day stroke onset.13 Majority of 

investigations related to 24h patterns in stroke are centered on the “time of day” when stroke 
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occurred, lacking relevant determinants of exogenous influences such as the rest/activity 

rhythm and other known risk factors.

Pathophysiological factors that may explain diurnal pattern of stroke onset include early 

morning raise in BP (“morning surge”), increased platelet aggregation and prothrombotic 

factors as well as blunting of endothelial function in the morning hours. The peak level of 

circadian sympathetic activity also occurs in the morning, which along with the 

simultaneous increased activity of the renin-angiotensin-aldosterone activity influences the 

morning increase in BP and HR. Further, the propensity for REM sleep increase in early 

morning hours. This stage of sleep is associated with reduced coronary blood flow and 

increased occurrence of coronary spasm, which contributes to heightened sympathetic 

activity and rises in BP and HR. Additionally, primary sleep disorders, such as sleep 

disordered breathing, are yet another culprit, through repetitive intermittent overnight 

hypoxemia and sympathetic activation. The majority of available studies failed to 

demonstrate significant demographic and clinical differences between wake-up strokes and 

those occurring while awake.5 Available studies have numerous methodological limitations, 

and better controlled prospective investigations are needed to distinguish between stoke 

present on awakening and those while awake. This is important as these differences may 

have potential implications for treatment.

Other circadian rhythms implicated in the pathophysiology of cerebrovascular disease 

include rhythms of plasma viscosity, blood flow volume, hematocrit, peripheral resistance, 

and platelets. Platelets numbers and aggregation both have rhythmicity, with peak number of 

platelets being in the afternoon. Platelet aggregation response to various stimuli tends to 

peak during the late night or early morning hours. Several factors within the coagulation 

pathways have its own circadian rhythms. For example, the peak activity of Factor II 

remains in close correlation with the peak incidence of thromboembolic events.

Aside from circadian rhythms, cerebrovascular events are also linked with periodicities 

longer than circadian. For example, fibrinolysis has circaseptan (approximately 7-day) 

rhythm with the lowest amplitude of the rhythm on Monday and the peak between Tuesday 

and Thursday. This pattern mirrors that of thromoembolic events during the week. Similarly, 

circannual variations in cardiovascular parameters may impact the pathophysiology of 

vascular events.14 Numerous studies reported 7-day, and annual patters in stroke onset. It is 

important to emphasize that many exogenous stressors impact the occurrence of 

cerebrovascular events, likely through a complex interactions with endogenous circadian 

rhythms. These factors may include emotional stress, napping, physical activity, medication 

schedules etc.

Clock genes and cardiovascular function

Circadian transcription rhythms have been demonstrated in 4–6% of protein coding genes in 

mouse heart and aorta.15–17 Similar oscillations persist in endothelial and vascular smooth 

muscle cells as well as in human cardiomyocites.18–20 Recent investigations suggest a role 

of the nuclear receptor PPARγ in BP rhythm regulation, likely through its interactions with 

Bmal1, a major circadian clock gene. Cry1/2 genes have also been implicated in the 

development of hypertension.21,22 Deletion of a core clock gene, Bmal 1 in heart and 
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endothelium results in arrhythmias and loss of diurnal blood pressure oscillation.23,24 

Internal desynchronization between the central circadian pacemaker and local cardiovascular 

clocks has been shown to affect cardiac structure and the expression of cardiac clock 

genes.25 This internal desynchronization may arise from disruption of physiological sleep-

wake cycles. The relationship between molecular regulation of circadian rhythms and the 

cardiovascular disease is likely bidirectional as cardiac hypertrophy and aortic constriction 

attenuate expression of several core clock genes throughout cardiovascular system26,27 

Recent investigations have suggested differential susceptibility to neuronal damage from an 

ischemic insult is dependent on the time of day when the insult occurs.28 Although the 

mechanisms that underlie this susceptibility to ischemic damage remains unknown, the role 

of ERK, a MAPK (mitogen-activated protein kinase) molecule and its neuroprotection 

against glutamate toxicity on SCN neurons has been recently implicated.29 Further 

investigations directed to understanding how circadian biology affects cerebrovascular and 

cardiovascular disorders on cellular and molecular levels and vice versa are much needed.

Circadian Rhythms in Aging and Neurodegeneration

Aging is associated with changes in the circadian system. Age-related changes in the 

circadian rhythmicity result in a reduced amplitude and period length of circadian rhythms, 

an increased intra-daily variability, and a decreased inter-daily stability of a rhythm.30–36 

The timing of the rhythm is disturbed as well, leading to changes in the time relationship of 

rhythms to each other, known as internal desynchronization. This loss of coordination has 

negative consequences on rest-activity cycles and other physiological and behavioral 

functions.37 Numerous studies in humans have demonstrated reduced amplitudes of 

melatonin rhythms, and phase advance of body temperature and melatonin with 

ageing.32,38–40 The circadian profile of cortisol in the elderly demonstrates higher plasma 

levels at night, which results in an elevated 24-hour mean cortisol level and a reduction in 

the rhythm amplitude.40,41 These changes in circadian rythmicity of cortisol secretion have 

been associated with cognitive impairments, and increased propensity for awakenings with 

ageing.42–45 Not all studies, however, demonstrate age related decline in the amplitude of 

the circadian markers.46–48 This may be due to several shortcomings, including a small 

sample size, subject selection criteria, complex medication regimens, and absence of well 

controlled experimental conditions (i.e., constant routine). Clearly the human data are 

inadequate and further studies are warranted.

Disrupted rest/activity cycles are common in neurodegenerative disorders. 

Pathophysiological mechanisms that underlie disruption of circadian rhythmicity in 

Alzheimer’s disease (AD) have been well established. Circadian biology of other 

neurodegenerative conditions such as Parkinson’s (PD) and Huntington disease (HD) has 

not been systematically studied. In the following paragraphs we summarize current 

understanding of the function of circadian system in common neurodegenerative disorders, 

AD, PD and HD.

Videnovic and Zee Page 4

Sleep Med Clin. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Circadian rhythms in Parkinson’s disease

Parkinson’s disease is the second most common neurodegenerative disorder after 

Alzheimer’s disease. Estimated prevalence of PD is over 1 million in the United States.49,50 

The prevalence of PD will likely double over the next few decades.50 Motor hallmarks of 

PD, tremor, bradykinesia and rigidity, result from progressive loss of dopaminergic neurons 

and its projections with the nigro-striatal system. Neuronal cell loss and alteration of 

neurotransmission outside the basal ganglia loop contribute to development of non-motor 

manifestations of PD. These include disrupted sleep/wake cycles, autonomic dysfunction, 

cognitive decline and alterations in mood. Both motor and non-motor manifestations of PD 

demonstrate strong diurnal oscillations. These clinical observations coupled with current 

understanding of progression of the neurodegenerative process of PD raise the question is 

PD affected by chronobiology?

Diurnal rhythms of clinical features in PD

Examples of profound diurnal fluctuations in PD are oscillations in daily motor 

activity51–54, autonomic function55–60, rest-activity behaviors, visual performance, as well 

as fluctuating responsiveness to dopaminergic treatments for PD. It is plausible to suggest 

that these fluctuations may be reflective of modifications in circadian system in PD.

Actigraphy studies in PD patients demonstrate lower peak activity levels and lower 

amplitude of the rest-activity cycle compared to healthy older adults.53,54,61 Increased levels 

of physical activity and shorter periods of immobility during the night, result in an almost 

flat diurnal pattern of motor activity in PD.62,63 Fragmented pattern of activity with 

transitions from high to low activity periods leads to less predictable rest-activity rhythm in 

PD.61 The circadian pattern of motor symptoms in PD is characterized by worsening of 

motor functioning in the afternoon and evening, present in both stable and patients with 

motor fluctuations.51,64 This daily pattern occurs without relationship to the timing of 

dopaminergic medications, and may be related to circadian regulation of dopaminergic 

systems. Furthermore, responsiveness of PD motor symptoms to dopaminergic treatments 

declines throughout the day, despite the absence of significant changes in levodopa 

pharmacokinetics.51,65 Non-motor manifestations of PD, such as neuropsychiatric symptoms 

of PD, seem to be independently associated with reduced inter-daily stability of the rest-

activity cycle.61

Autonomic dysfunction is an important and common component of PD. Alterations in the 

circadian regulation of the autonomic system in have been reported in PD. Blood pressure 

monitoring in PD demonstrates reversal of circadian rhythm of blood pressure, increased 

diurnal blood pressure variability, postprandial hypotension, and a high nocturnal blood 

pressure load.57,66–68 This is associated with a decrease of daily sympathetic activity with a 

loss of the circadian heart rate variability and a disappearance of the symphatetic morning 

peak.56 Although these abnormalities are more prominent in advanced PD, suppressed 24-

hour heart rate variability remains present in untreated patients with early PD as well69 The 

prognostic significance and pathophysiological mechanisms leading to suppressed circadian 

HR variability in PD remain to be determined. While observed abnormalities may certainly 

arise from the peripheral autonomic ganglia, the influence of central networks such as the 

Videnovic and Zee Page 5

Sleep Med Clin. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hypothalamus, which remains affected by neurodegenerative process of PD, may be 

significant.70–72 Impairments of several sensory systems, such as olfaction and visual 

functions, are also reported in PD. Similarly to motor performance, circadian fluctuations of 

visual performance, measured by contrast sensitivity, have been reported in PD.73

Impaired sleep and alertness are among the most common non-motor manifestations of PD, 

and affect up to 90% of PD patients.74–76. Sleep maintenance insomnia is the most common 

sleep disorders in this population. Other sleep disorders include sleep disordered breathing, 

parasomnias, and periodic limb movements disorder. Although sleep disturbances in PD 

worsen with progression of the disease, objective measures of sleep quality demonstrate 

alterations in sleep-wake cycles in de novo PD patients.77 The etiology of sleep/wake 

disturbances in PD encompass influence of motor symptoms on sleep and alertness, adverse 

effects of antiparkinsonian medications and primary neurodegeneration of central sleep 

regulatory areas.78–84, the role of circadian dysfunction has just recently started to be a focus 

of clinical studies in PD.

Markers of circadian system in PD

Several studies examined markers of circadian system in the PD population. Initial studies 

that focused on the secretion of melatonin reported phase advance of melatonin 

rhythm.85,86,87 Plasma cortisol rhythms in these studies did not differ between the PD group 

and controls. In another study of 12 PD patients, 24-hour mean cortisol production rate was 

significantly higher and the mean secretory cortisol curve was flatter, leading to significantly 

reduced diurnal variation in the PD group relative to controls.88 These studies did not 

control for exogenous factors that are known to influence endogenous circadian rhythms 

such as light exposure, timing of meals, ambient temperature and physical activity, and co-

existent depression. Recent circadian investigations eliminated these methodological 

limitations. Using salivary dim light melatonin onset (DLMO) in 29 PD patients and 27 

healthy controls, Bolitho et al. demonstrated a prolongation of the phase angle of melatonin 

rhythm in the medicated PD patients compared to the un-medicated PD group and 

controls.89 Two other recent studies did not show alterations in the circadian phase of 

melatonin secretion.90,91 Both studies, however reported decreased amplitudes of melatonin 

secretion. Further, compared with PD patients without excessive daytime sleepiness, patients 

with excessive sleepiness had significantly lower amplitudes and 24-hour melatonin area 

under the curve (AUC).

Temperature, perhaps the most valid marker of endogenous circadian system, was also 

examined in the PD population. While 24-hour rhythms of core body temperature remain 

similar in PD relative to healthy controls92, basal body temperature is significantly lower in 

parkinsonian patients.93 PD patients with coexistent depression have altered circadian 

rhythms of rectal temperature and lower amplitudes of core body temperature.94.

Data on molecular circadian clock mechanisms in PD patients are scarce. Time-related 

variations in the expression of circadian clock genes have been recently reported in patients 

with PD.95 Expression levels of the clock gene Bmal1 but not those of Per1 are dampened in 

total leukocytes of PD patients and correlate positively with PD severity.95 Another study 
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conducted in a cohort of PD patients with early disease reported flattened expression rhythm 

of a major core clock gene, Bmal1.

Circadian rhythms in Huntington’s Disease

Huntington’s disease (HD) is a neurodegenerative movement disorder caused by an 

abnormal trinucleotide CAG expansion in the huntingtin (HTT) gene. HD affects 

approximately 14–16 individuals per 100,000.96 This progressive disorder is characterized 

by abnormal involuntary movements, cognitive decline and behavioral/psychiatric 

dysfunction. Aside from these cardinal manifestations of the disease, impaired sleep and 

alertness are also common in the HD population.

Up to 90% of patients with HD endorse sleep problems.97 In a cohort of 292 HD patients, 

87% endorsed sleep problems, especially early morning awakening.98 Despite these high 

numbers of HD patients affected by poor sleep, there is relatively small number of studies 

dedicated to sleep in HD. Available literature points to insomnia and excessive daytime 

somnolence. Few polysomnography studies reported reduced REM and slow wave sleep, 

prolonged sleep onset latency, sleep fragmentation, reduced sleep efficiency, and reduced 

total sleep time. Parasominas and sleep related movement disorders are rarely present in HD. 

Increased sleep spindle density in HD has also been reported.99,100 It appears that HD 

patient may not recognize sleep problems as their reports on sleep instruments do not differ 

much from healthy controls.

Markers of circadian system in HD

Circadian rhythms in HD have not been systematically studied until recently. This is in part 

due to challenges related to the implementation of circadian protocols within the HD 

population effected by motor, cognitive and behavioral deficits as well as by lack of 

recognition of sleep and circadian dysregulation in this disorder. Circadian disruption in HD 

has a neuroanatomical correlates, as postmortem studies documented reduced expression of 

vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP), characteristic peptides 

in the SCN.101 Actigraphy studies in HD patients reveal decreased level of daytime activity 

and increased overnight activity, leading to abnormal night-day activity ratios. Delayed 

sleep phase and increased REM latency have been reported in HD patients.102 Phase delay 

seems to be present in both premanifest HD mutation carriers and HD patients.97 Later 

wakeup times correlate with more prominent depressive symptoms, lower functional scores 

and cognitive performance. Changes in melatonin secretion were also reported.102 Dim light 

melatonin onset is quite variable in HD patients compared with controls. Moreover, 

concentrations of melatonin in serum are significantly decreased in HD patients, with 

manifest patients showing more significant reductions compared with premanifest HD 

mutation carriers.103 Alterations in cortisol and adrenocorticotropic hormone have been 

found in HD.

Circadian homeostasis in animal models of HD

Very informative observations on circadian function in HD have emerged in recent years 

from animal models of the disease. The most commonly used HD model in circadian studies 
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has been transgenic R6/2 mice model. R6/2 mice exhibit profound disruptions of rest-

activity cycles that worsen with disease progression.104 This is coupled with abnormal 

expression of circadian core clock genes in the SCN and several other brain regions. Of 

interest is preserved molecular regulation of the SCN during in vitro experiments, which 

suggests a dysfunction within the circadian circuitry, rather than in the SCN itself.105 

Exciting emerging evidence from a transgenic sheep model of HD support the hypothesis 

that social factors/networks may influence circadian rest/activity cycles and behaviors in 

HD; circadian behavior seems to normalize when HD-sheep are kept with the normal sheep 

flock as opposed to the housing with HD flock only, in which circumstances circadian 

disruption persists.106 Internal desynchrony between central and peripheral circadian 

rhythms may be relevant to HD, as peripheral liver clocks in R6/2 mice seem to be 

uncoupled from the SCN control.107 This desynchrony may have negative impact on the 

metabolic state and energy homeostasis which in turn may impact the biology of HD. 

Changes in circadian function have also been reported in several other animal HD models 

such as HD rat, drosophila HD model, R6/1 HD mice and BAC mouse model of HD.108–110

Circadian rhythms in Alzheimer’s disease

Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia and 

affects one in nine people aged ≥65 years.111 This disease belongs to tauopathies and its 

pathological hallmark is the accumulation of amyloid-β (Aβ) and tau proteins. Sleep and 

circadian disruption are very common in AD, affecting up to 40% of patients with mild to 

moderate dementia.112 Disruption of the rest-activity cycles may be predictive of cognitive 

impairment / dementia. A large epidemiological study demonstrated increased risk of 

developing AD in the setting of fragmented sleep and others reported associations between 

impaired cognition and poor sleep quality, low sleep efficiency, and frequent daytime 

napping.113–116

Circadian disruption in AD - pathophysiology

Circadian dysregulation has a major impact on quality of life and represents a major reason 

for the institutionalization among the AD population.117 Pathophysiological mechanisms 

which underlie disruption of circadian rhythmicity in AD have been well established. 

Neuronal cell loss within the SCN and loss of pineal gland function are the main 

contributors to disrupted circadian rhythm in the AD population.118,119 Atrophy of the SCN 

is associated with reduced numbers of neurons with melatonin receptors and presence of the 

neurofibrillary tangles.119,120 Further, neurons that express peptide-defining SCN 

compartments such as intestinal polypeptide and neurotensin are also depleted in AD.121,122 

These neurochemical and neuropathological changes within the SCN become more 

prominent with the progression of AD. Lack of zeitgebers necessary for the entrainment of 

the circadian system and co-existance of primary sleep disorders such as sleep disordered 

breathing are additional cause of circadian and sleep disruption in PD.

Markers of circadian system in AD

While the changes in circadian markers in AD mimic those observed in aging, the 

magnitude of these changes is enhanced in AD. Circadian rhythm of temperature shows 
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phase delayed and dampened amplitude. The age related decline of melatonin is more 

pronounced in AD relative to healthy peers.123,39 CSF melatonin levels are reduced in 

preclinical stages, and they continue to decrease with the progression of AD.118,124,125 

Alterations in amplitude and timing of cortisol and core body temperature are altered in AD 

as well.126,127 There is a positive correlation between circadian rhythm disturbances and the 

degree of dementia in AD.104,128,129 The amplitude of the rest-activity cycle is low in AD 

patient and circadian phase becomes progressively delayed throughout the course of the 

disease.130 Further, sleep duration is reduced, fragmented and daytime becomes interspersed 

with frequent napping. Sleep interruption and naps during the daytime alter rest-activity 

rhythms leading to a reversal of the normal pattern of rest-activity, well documented in 

actigraphy studies conducted in the AD population.129,131 Most prominent disruptions in the 

rest-activity cycles are evident in institutionalized patients with AD.

Sleep and circadian function – AD: bi-directional relationship?

The role of AD-specific neurodegeneration in the genesis of circadian disruption has been 

well supported in animal and human studies. Emerging literature, however, points to likely 

bi-directional relationship between AD and circadian dysregulation.132 Studies that 

employed animal models of AD including transgenic APP/PS1 mouse model and the PLB1 

triple knock-in model have shed additional light onto these associations.133–135 The sleep-

wake states influence amyloid dynamics, and there is well-establish Aβ rhythmicity in 

CSF.133,136 Sleep deprivation promotes Aβ deposition into insoluble amyloid plaques, and 

therefore likely has a negative impact on cognitive decline.137 Further, poor sleep quality 

and specifically, reduced slow wave sleep results in neuronal hyperexcitability during sleep, 

which is yet another mechanism that promotes greater release of Aβ.138 Similarly, sleep 

deprivation leads to increased Aβ levels in healthy individuals and to markedly increased Aβ 

accumulation in AD.139 Cognitively intact individuals who have evidence of amyloid 

plaques have worse quality of sleep, sleep efficiency and overnight awakenings compared 

with healthy controls.140

Several circadian-based interventions have been attempted to improve sleep-wake cycles 

and circadian function in AD. Melatonin seems not be effective at restoring rest-activity 

cycles in AD, as measured by actigraphy.135,141 Light therapy may be effective in restoring 

circadian rest-activity behaviors but also in improving sleep quality in the AD 

population.142–144

Conclusions

Numerous studies have demonstrated the importance of healthy circadian rhythmicity in 

maintaining neurological homeostasis. Future research on chronobiology of neurologic 

diseases will involve greater understanding of the role that circadian phenomena play at the 

cellular and molecular level in the pathogenesis of brain disorders. This will form the 

foundation for the development of new circadian-based interventions to improve clinical 

management of brain disorders. For example, with increasing understanding of the 

importance of circadian rhythmicity for brain health, one important direction will be to focus 

on the importance of chronopharmacology in neurological disorders. Already considered in 
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other medical disciplines, time of day needs to be accounted for when considering side 

effects but also efficacy of pharmacological therapies for neurological disorders. Circadian 

system has therefore become a novel diagnostics and therapeutic target for neurological 

disorders.
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Key Points

- Numerous brain diseases demonstrate a clear rhythmicity of symptoms and 

its outcomes appear to be influenced by the time of day.

- Circadian rhythm dysfunction is common in neurodegenerative disorders 

such and Alzheimer’s, Parkinson’s and Huntington’s diseases.

- Circadian disruption may be a significant risk factor for cerebrovascular and 

neurodegenerative disorders.

- The circadian system may be a novel diagnosis and therapeutic target for 

neurologic diseases.
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