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Abstract

Ciliated cells that produce a leftward fluid flow have been proposed to mediate left-right 

patterning in many vertebrate embryos. The cilia on these cells combine features of primary 

sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue 

by analyzing the Xenopus and Zebrafish homologs of FoxJ1, a forkhead transcription factor 

necessary for ciliogenesis in multi-ciliate cells of the mouse. We show that the cilia that underlie 

left-right patterning on the Xenopus gastrocoel roof plate (GRP) and Zebrafish Kupffer's vesicle 

(KV) are severely shortened or fail to form in FoxJ1 morphants. We also show that misexpressing 

XFoxJ1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray 

analysis indicates that XFoxJ1 induces the formation of cilia by upregulating the expression of 

motile cilia genes. These results indicate that FoxJ1 is a critical determinant in specifying cilia 

used in left-right patterning.

Introduction

Cilia are microtubule-based organelles that project hair-like from the surface of cells. Cilia 

can be generally subdivided into motile and sensory subtypes that differ markedly in 

structure and function1. Sensory cilia are typically short in length, lack structural features 

such as the central pair and dynein arms but play important roles in detecting chemical, or 

mechanical stimuli as an extension of the cell surface. One hallmark of sensory cilia is that 

they invariably form as a single cilium on non-dividing cells when the paired centrioles 

docks at the cell surface, allowing the mother centriole to form a basal body and initiate 

ciliogenesis, apparently as a default pathway2. By contrast, motile cilia that form on 

epithelial cells within such tissues as the ependyma or the respiratory airways are specialized 

to produce fluid flow1. Cilia of the motile subtype have a 9+2 axonemal structure, use 

dynein arms to produce a whip-like power stroke and likely have other structural features 

required for oriented flow. In addition, each flow-producing cell typically projects hundreds 

of cilia, requiring mechanisms not likely to be initiated in cells with sensory cilia, for 

example those that mediate acentriolar duplication.
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In the mouse, a genetic distinction has been made between cells that form sensory and 

motile cilia based on the analysis of the forkhead protein, FoxJ1, also known as HFH-43. 

Mouse FoxJ1, a transcriptional activator, is expressed in multi-ciliate cells within the 

respiratory tract, oviduct and choroid plexus4-6. In mice null for FoxJ1 by targeted deletion, 

multi-ciliate cells still duplicate their centrioles but fail to properly dock them at the apical 

surface and extend cilia7-9. By contrast, loss of FoxJ1 does not appear to disrupt the 

formation of sensory cilia, such as those present in olfactory epithelium or in the 

kidney10,11. Thus, FoxJ1 is required for cells to form motile but not sensory cilia.

A third subtype of cilia found in the mouse is located on cells at the embryonic node, a 

structure present in the early embryo that underlies the breaking of left-right symmetry12. 

Node cilia beat with a clockwise rotational motion, thereby creating a leftward flow of 

extracellular fluid over the node surface13. Despite their functional resemblance to the multi-

ciliate cells that produce fluid flow, node cells only form a single cilium, a hallmark of 

sensory cilia. Moreover, node cilia in the mouse are thought to lack a central pair, thus 

resembling both motile and sensory cilia in axonemal structure14. FoxJ1 null mice have 

randomized left-right asymmetry, indicating a defect in node cilia, but monociliated cells at 

the embryonic node are still present10,11,15. Thus, it is not clear whether the formation of 

node cilia involve pathways used by motile or sensory cilia and what role FoxJ1 might have 

in their formation.

In Xenopus16 and fish17,18, embryonic structures related to the mouse node have cells with 

monocilia that also produce a leftward flow, namely the gastrocoel roof plate (GRP) and 

Kupffer's vesicle (KV), respectively. We therefore examined the role of FoxJ1 in the 

formation of ciliated cells in these structures, asking whether FoxJ1 function is required for 

these cells to mediate left-right patterning, and if so how. Our results indicate that FoxJ1 is 

both necessary and sufficient to drive the formation of node-like cilia in embryonic 

epithelia, suggesting that this cilia subtype forms in cells using a similar genetic pathway 

used in multi-ciliate cells.

Results

FoxJ1 in left-right patterning

FoxJ1 null mice have left-right patterning defects despite forming node cilia10,11,15. To 

determine whether this holds true for other vertebrate species, we initially examined 

Zebrafish embryos, where monociliated cells within Kupffer's vesicle (KV) produce a 

directional flow required for the establishment of left-right asymmetry17. ZFoxJ1 RNA is 

expressed in KV as early as stage 6ss, and later in the developing pronephric duct where 

motile, multi-ciliate cells form (Supplementary Fig. 1A,B). To determine the function of 

ZFoxJ1 in cells of KV, Zebrafish embryos were injected with a morpholino designed to 

block the translation of ZFoxJ1 RNA (ZFoxJ1MO). ZFoxJ1 morphants develop with severe 

defects in left-right heart jogging, consistent with a defect in KV cilia function 

(Supplementary Fig. 1C-E)17,19. When ZFoxJ1 morphants were stained with the acetylated 

tubulin antibody that stains cilia, KV forms (Fig. 1A,B) but many of the cells lack cilia (Fig.

1 C,D) and the remaining cilia are shortened (Fig.1I). Thus, morpholino knock down of 

ZFoxJ1 function causes defects in left-right patterning (Supplementary Fig. 1E), a two-fold 
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decrease in the number of KV cilia (Fig. 1C,D), and a 3.5-fold decrease in the average 

length of KV cilia (Fig. 1I).

In Xenopus embryos, monociliated cells located on the gastrocoel roof plate (GRP) produce 

a directional flow, thus acting as the equivalent of KV in left-right patterning16. The GRP 

arises from the superficial layer of the dorsal involuting marginal zone (DIMZ), which 

expresses XFoxJ1 transiently as it involutes over the blastopore lip to form the GRP during 

gastrulation (Supplementary Fig. 2A-D) 20. To examine the function of XFoxJ1 in these 

cells, Xenopus embryos were injected at the two-cell stage with morpholinos designed to 

block either the translation (XFoxJ1-MOATG), or splicing (XFoxJ1-MOSPL) of XFoxJ1 

RNA. Morphants were fixed at stage 17 and analyzed by staining with antibodies directed 

against ZO-1 and acetylated tubulin to label cell junctions and cilia, respectively (Fig. 1E-

H)). Injecting embryos with either XFoxJ1 morpholino, or a mixture of both morpholinos, 

but not a control morpholino, reduced the percentage of GRP cells that extend cilia by two-

fold and the length of GRP cilia by four-fold (Fig. 1E-I, Supplementary Fig. 3A-D). In 

addition, both phenotypes were completely rescued by co-injecting a synthetic flag-tagged 

form of XFoxJ1 RNA lacking sequences recognized by either morpholino (Supplementary 

Fig. 3E-G). Thus, the cilia on the Zebrafish KV or on the Xenopus GRP are lost and 

severely shortened when FoxJ1 function is reduced.

FoxJ1 is required for ciliogenesis in Xenopus multi-ciliate cells

The role of FoxJ1 in the formation of node-like cilia appears to differ between Zebrafish/

Xenopus and the mouse. We therefore extended our analysis of XFoxJ1 to multi-ciliate cells 

to determine whether in this context, the function of FoxJ1 is conserved. The multi-ciliate 

cells that form in the Xenopus larval skin after stage 26 closely resemble those found in the 

mouse respiratory tract and express XFoxJ1 (Supplementary Fig. 2E-G), and thus allow one 

to directly compare FoxJ1 function in the formation of motile cilia in different species.

Injecting either XFoxJ1 morpholino, but not a control morpholino, produced a dose-

dependent defect in skin cilia formation: at a lower dose, cilia formed, but were reduced in 

number and often shortened in length while at higher doses, most cilia were lost in the skin 

except for an occasional stumpy cilium (Fig. 2A-B, Supplementary Fig. 4). Ciliated cells can 

be distinguished from other cell types in the skin based on their characteristic morphology 

and spacing pattern21. Based on these criteria, ciliated cells were still present at their normal 

density in embryos injected with XFoxJ1MO even as cilia were completely lost (data not 

shown). In addition, ciliogenesis in multi-ciliate cells was fully restored in XFoxJ1 

morphants by injecting a flagged-tagged XFoxJ1 (Supplementary Fig. 5), indicating that the 

cilia phenotypes in XFoxJ1 morphants were specific. Thus, these results indicate that 

XFoxJ1 plays a conserved role in the ciliogenesis of multi-ciliate cells.

In the mouse, FoxJ1 has been proposed to activate gene expression required to dock basal 

bodies at the apical surface, an obligatory step in the process of ciliogenesis7-9. To 

determine whether this is also true in Xenopus ciliated cells, basal bodies were labeled in the 

FoxJ1 morphants using a centrin2-GFP fusion protein and visualized using confocal 

microscopy (Fig. 2C-D)22. Indeed, the number of basal bodies localized apically per cell 

was reduced in FoxJ1 morphants relative to control morphants by about 30% (167±34 
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versus 112±28, P<.005). Since this assay may overestimate the number of basal bodies 

intimately docked to the apical surface, we examined the location of basal bodies in ciliated 

cells in relation to the actin-rich apical cortex that can be stained with Rhodamine-

Phallodin22,23 (Fig. 2E). In controls, the centrin-labeled basal bodies are embedded in this 

apical actin network, presumably anchoring them for ciliogenesis (Fig. 2E). Strikingly, in 

FoxJ1 morphants, apical actin staining was largely lost, while cortical actin labeling at cell-

cell contacts was unaffected (Fig. 2E), and the centrin2-labeled basal bodies were located 

below the residual apical actin rather than co-mingled as in the controls (Fig. 2E, panel Z). 

These observations parallel those in the mouse, suggesting that XFoxJ1 plays a conserved 

role in ciliogenesis in multi-ciliate cells, presumably by activating genes required for basal 

body docking and ciliogenesis.

XFoxJ1 expression induces cilia in ectopic location

Previous experiments in which FoxJ1 was mis-expressed in cultured cells or transgenic mice 

indicated that FoxJ1 is not sufficient to induce multi-ciliate cell differentiation, in line with 

the idea that FoxJ1 acts relatively late in these cells to promote ciliogenesis24. We were 

therefore surprised to find that when XFoxJ1 RNA was injected into embryos to rescue the 

morpholino phenotypes, ectopic cilia readily formed in a number of locations. For example, 

when XFoxJ1 RNA was targeted to the marginal zone to rescue cilia formation on the GRP, 

ectopic cilia also formed at the midline more anteriorly, as well as on the lateral, endodermal 

epithelial crest that migrates to cover the GRP at later stages (Supplementary Fig. 6A-B). 

Similarly, when XFoxJ1 RNA was targeted to the ectoderm, cilia ectopically formed on cells 

within the superficial epithelium (Fig. 3A-D). In both locations, the ectopic cilia induced by 

XFoxJ1 were similar in length to those on the GRP (Fig. 3D, Supplementary Figs. 3 and 6B) 

and formed on cells that are not normally ciliated. We also used Wilson explants to visualize 

primary cilia that form on mesenchymal cells within the dorsal mesoderm (Supplementary 

Fig. 7A). Primary cilia on mesodermal cells still form in XFoxJ1 morphants (Supplementary 

Fig. 7C) but are replaced by longer cilia in embryos injected with XFoxJ1 RNA 

(Supplementary Fig. 7B,D). Thus, ectopic expression of XFoxJ1 in embryonic cells derived 

from all three germ layers can induce cilia formation de novo, and/or alter the formation of 

cilia subtype.

FoxJ1 induced cilia are node-like

Based on length, the cilia induced by XFoxJ1 resemble those on the GRP (∼5μm)16, rather 

than primary cilia (∼1μm) or those on multi-ciliate cells (∼11μm). To assess this 

resemblance further, we further analyzed the ectopic cilia induced by FoxJ1, focusing on 

those that arise in a superficial layer of the ectoderm. First, we analyzed the ectopic cilia in 

light of the finding that Notch signaling negatively regulates the differentiation of multi-

ciliate cells25-27 but not the formation of cells with node-like cilia. Thus, expressing an 

activated form of the Notch receptor, ICD, in Xenopus embryos by RNA injection, leads to a 

complete loss of multi-ciliate cells in the skin (Fig. 3E)25, but not the ciliated cells on the 

GRP (Supplementary Fig. 6C-D). In embryos injected with both XFoxJ1 and ICD RNA, 

multi-ciliate cells still failed to form (Fig. 3E) while ectopic cilia resembling those on the 

GRP were still induced (Fig. 3F). The ectopic cilia induced by FoxJ1, like those on the GRP, 

are therefore insensitive to Notch signaling.
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Second, we asked whether the cilia induced by FoxJ1 resemble motile primary cilia by 

characterizing their axonemal structure using transmission electron microscopy (TEM). 

Motile cilia invariably have dynein arms emanating from each of the nine outer microtubule 

doublets, and can be 9+0, 9+2, or even 9+428. When cilia induced by FoxJ1 were analyzed 

by TEM, they contained a central doublet (9+2), and dynein arms (Fig. 3H), indicating that 

these cilia are of the motile subtype and virtually identical in structure to the cilia formed by 

multi-ciliate cells in the skin (Fig. 3G).

Finally, we characterized the beat pattern of ectopic cilia induced by XFoxJ1 using high-

speed microscopy. Some of the FoxJ1-induced cilia produced a clockwise rotational motion 

like GRP cilia (Supplementary Movie 1), others produced a more whip-like motion 

(Supplementary Movie 2), while others produced a hybrid between the two. In addition, the 

beat frequency of the ectopic cilia ranged from 12-37Hz with an average of 23±8 Hz, thus 

corresponding on average to those at the GRP16. The cilium with a whip-like pattern tended 

to be longer and slower, while those with a rotational pattern tended to be shorter and faster. 

The relatively wide variation in beat frequency and beat pattern of ectopic cilia could be due 

to the fact that the level and timing of XFoxJ1 misexpression do not fully mimic the pattern 

of XFoxJ1 expression that normally occur in GRP cells. Together these data suggest that the 

ectopic cilia induced by XFoxJ1 are similar in cilia subtype as those used to generate 

leftward flow.

High levels of FoxJ1 misexpression induces bi-ciliated cells

In embryos injected with higher levels of XFoxJ1 RNA, a significant fraction of cells 

formed two ectopic cilia rather than a monocilium (Fig. 4B,E). To induce two cilia, XFoxJ1 

must promote centriole duplication or split the centriole pair so that both mother and 

daughter centrioles mature as basal bodies and initiate ciliogenesis. To examine this 

phenotype further, we visualized centrioles in XFoxJ1 RNA injected embryos using an 

antibody directed against γ-tubulin. In an uninjected epithelial cell, centriole-pairs labeled 

with the γ-tubulin antibody tend to be located in a basolateral position (Fig. 4A). By 

contrast, in XFoxJ1 RNA injected embryos, these structures relocalized to a central apical 

position where one or two ectopic cilium formed (Fig. 4B). In some cases, these structures 

remained paired and the cell formed only one cilia. In about 50% of the cells, however, the 

centrioles were split (Fig. 4F), resulting in some cases in two cilia per cell. Together these 

results indicate that ectopic expression of XFoxJ1 not only induces apical docking of 

centrioles as basal bodies, but also has a profound effect on basal body formation in ways 

that allow a cell to form two cilia.

We next asked whether the bi-ciliated cells induced by XFoxJ1 are normally present on the 

GRP (Fig. 4C,D). Indeed, in uninjected embryos, 14% of the cells on the GRP project two 

cilia based on acetylated tubulin staining (Fig. 4C, E). Based on γ-tubulin staining, 

approximately 40% of cells in the GRP contained two well-separated centrioles (Fig. 4D, F). 

Thus, bi-ciliate cells normally arise within the GRP presumably in response to higher levels 

of FoxJ1 expression.
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FoxJ1 activates gene expression encoding components of motile cilia

Based on the proposed function of FoxJ1 in multi-ciliate cells in the mouse, one model is 

that FoxJ1 induces node-like cilia by simply promoting the apical docking of centrioles 

where they form basal bodies and initiate ciliogenesis. An alternative model, however, is 

that FoxJ1 upregulates genes that are not only required for basal body docking, but also 

those required for cilia motility. To distinguish between these two models, we used 

Affymetrix microarrays to survey the genes that are induced ectopically by XFoxJ1 when it 

induces ectopic cilia formation.

To perform this analysis we exploited that fact that XFoxJ1 can still induce the formation of 

ectopic cilia while the formation of multi-ciliate cells is blocked by expressing an activated 

form of the Notch receptor (ICD) (Fig. 3E)25. We therefore prepared RNA from cultured 

ectoderm that expresses both ICD and XFoxJ1, as well as RNA from ectoderm injected with 

just ICD RNA. The expression levels of RNAs were then compared between these two 

samples, initially focusing on those that were elevated by at least 10-fold by XFoxJ1 in an 

ICD background (Table 1 Supplementary Data).

Of the approximately 100 genes upregulated 10-fold by XFoxJ1, a third encode the Xenopus 

homologs of proteins found in a ciliome database assembled using a survey of 

bioinformatics, genomics and proteomics studies29, including many proteins found in 

axonemal structures exclusive to motile cilia. For example, XFoxJ1 induced genes whose 

products comprise the dynein arms, including heavy chain subunits (DNAH9 and DNAH8), 

an intermediate chain subunit (DNAI1) a WD40 repeat protein potentially involved in 

dynein arm assembly, isoforms of adenylate kinase, (AK5 and AK7), a dynein light chain 

(Tctex-1), and a dynein associated protein (roadblock) related to LC7 in Chlamydomonas. 

XFoxJ1 also induced at least one component of the central pair complex, Spag6, and various 

radial spoke proteins, including RSHL2, RSHL3, and radial spoke protein 44. XFoxJ1 

induced the expression of four tektin isoforms, including one that is required for the function 

of motile cilia in the mouse. Thus, when FoxJ1 induces the formation of node-like cilia, it 

apparently does so by inducing the expression of genes required for cilia motility

Validation of FoxJ1 induced gene expression

To validate the results from the microarray analysis, we examined the expression of several 

genes on the FoxJ1 upregulated list, focusing on three likely to be critical for cilia motility 

based on mouse mutants, namely PF16, Tektin-t and LR-dynein30-32. When examined by 

whole mount, in situ hybridization, all three genes are expressed in the multi-ciliate cells in 

the skin, are lost when multi-ciliate cells are eliminated by expressing ICD, or when 

ciliogenesis is blocked in the multi-ciliate cells by injecting the XFoxJ1MO (Data not shown, 

Supplementary Fig. 8). Thus, all three genes are expressed in multi-ciliate cells in a FoxJ1-

dependent manner. All three genes are expressed in the GRP (Fig. 5A-C), and are markedly 

upregulated ectopically in embryos misexpressing FoxJ1 (Fig. 5A-C, Supplementary Figs. 

7E-G, and 8). To confirm these observations quantitatively real-time PCR was used to 

measure RNA levels of PF16, Tektin-t and LR-dynein when the embryonic epithelium is 

explanted on fibronectin-coated glass (Fig. 5D). In explants injected with ICD RNA alone, 

the expression levels of these three cilia genes dropped approximately 8-fold relative to 
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control, inline with the idea that these genes are expressed in multi-ciliate cells. Moreover, 

in explants that express both FoxJ1 and ICD, the levels of RNA encoding these three cilia 

proteins increased approximately 5-10 fold over the levels found in control larval skin and 

50 fold or more relative to ICD injected samples. Thus, these results indicate that when 

XFoxJ1 induces node-like cilia in ectopic locations, it upregulates the expression of genes 

involved in cilia motility.

Discussion

Specification of cilia subtype is a critical aspect of cell type differentiation but the 

developmental mechanisms involved remain poorly understood. Many cell types form 

primary sensory cilia, and the formation of this cilia subtype can be triggered when certain 

centriole-associated proteins are downregulated2. The implication is that most cells 

constitutively produce the proteins required for sensory cilia formation, and will do so once 

centriole function is no longer required during the cell cycle. Conversely, the formation of 

motile cilia during the differentiation of multi-ciliate cells is likely to involve a more 

elaborate genetic program, part of which has been shown in the mouse to involve FoxJ1. 

Here we provide evidence that the formation of node-like cilia on cells not only requires 

FoxJ1 but that FoxJ1 is sufficient to induce this pathway of cilia subtype differentiation in 

many embryonic cell types. Our results reveal an unexpected central role of FoxJ1 in 

activating gene expression required for the formation of motile node-like cilia, a role likely 

relevant to its function in the differentiation of multi-ciliate cells.

In the mouse, a null mutation in FoxJ1 establishes its role in the differentiation of multi-

ciliate cells 3. Ciliated cells still form and undergo centriole duplication, but fail to dock 

centrioles as basal bodies at the apical surface9. The multi-ciliate cells in the Xenopus skin 

are indistinguishable from those affected in the FoxJ1 mutant mouse. Indeed, when XFoxJ1 

activity is inhibited in Xenopus embryos using morpholinos, the ciliated cells in the skin are 

still present, centriole duplication occurs, but basal body docking is disrupted and 

ciliogenesis fails. These phenotypes indicate that FoxJ1 plays a conserved role in the 

differentiation of multi-ciliate cells, by promoting a relatively late step in ciliogenesis.

The left-right axis is randomized in FoxJ1 mouse mutants, suggesting defects in node cilia, 

but monociliated cells at the node are still present. This observation raises a paradox since 

one would expect that FoxJ1 would be required for basal body docking both in multi-ciliate 

and node cells. By contrast to the mouse, when FoxJ1 is inhibited in Zebrafish and Xenopus 

embryos using morpholinos, ciliated cells and cilia length are markedly reduced in KV and 

GRP, respectively. In addition, ectopic expression of XFoxJ1 in Xenopus induces ectopic 

cilia, with properties similar to GRP cilia, to form in several locations. Finally, XFoxJ1 

induces the formation of node-like cilia by activating a large number of genes that are 

associated with motile cilia. These results strongly indicate that FoxJ1 specifies the 

formation of node-like cilia, suggesting that this cilia subtype arises using the same genetic 

program that drives ciliogenesis in multi-ciliate cells.

What might account for the fact that cilia are lost in the Xenopus GRP and Zebrafish KV in 

FoxJ1 morphants while cells at the embryonic node in FoxJ1 null mice are still ciliated 

Stubbs et al. Page 7

Nat Genet. Author manuscript; available in PMC 2015 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



despite left-right axis randomization15? One explanation is that in Xenopus/Zebrafish the 

formation of node-like cilia is more dependent on FoxJ1 while in mouse redundant factors 

may come into play. However, another explanation is based on the observation that mouse 

node contains two populations of monociliated cells33, one of which is centrally located, lrd 

positive, and extends a motile cilium while the other is more peripheral, lrd negative, and 

extends a sensory cilium. Thus, all node cells can conceivably form sensory cilia, thus 

masking the loss of the motile cilia subtype in FoxJ1 mutants. By contrast, sensory cilia 

appear to be less prevalent in either the Zebrafish KV or the frog GRP, perhaps making the 

loss of the motile node-like cilia more obvious. In this view, FoxJ1 plays a conserved role in 

specifying the motile, node-like cilia in vertebrates, while the prevalence of sensory cilia 

among cells that mediate left-right patterning is more variable.

How might FoxJ1 specify node-cilia differentiation? As predicted by the null-phenotype in 

multi-ciliate cells, one downstream consequence of FoxJ1 misexpression is the apical 

docking of basal bodies. Additionally, FoxJ1 promotes the formation of bi-ciliate cells, 

suggesting that it activates genes whose products split the centriole pair and promote the 

maturation of the daughter centriole into a basal body. Finally, FoxJ1 activates the 

expression of a relatively large panel of genes that encode components exclusive to motile 

cilia, including dynein arms, central pair, and radial spokes. Thus, FoxJ1 appears to be 

sufficient to activate the gene expression required to convert a non-ciliated cell into one with 

the flow producing properties required for left-right patterning.

The ability of FoxJ1 to induce ectopic cilia formation is not universal, and even at the 

highest concentrations tested not all cells were ciliated. This observation may explain why 

ectopic FoxJ1 does not noticeably reduce cell division, presumably because other factors 

determine whether cells form cilia in response of FoxJ1. One potential regulatory factor is 

the centriole-associated protein CP110, which has been proposed to regulate the formation 

of primary sensory cilia2. Indeed, when XCP110 is overexpressed in Xenopus embryos, it 

inhibits ciliogenesis both in multi-ciliate cells as well as those induced by ectopic FoxJ1, 

suggesting that it may also regulate motile cilia formation (J. Stubbs, unpublished 

observation).

Based on these results, we propose a model for how different cilia subtypes are specified in 

development (Fig. 6). In this model, FoxJ1 is sufficient to activate gene expression required 

for the formation of motile cilia, which are genetically distinct from primary cilia. 

Expression of FoxJ1 can specify node-like cilia as well as a distinct bi-ciliate cell whose 

function and prevalence warrants further investigation. Finally, we propose that FoxJ1 is 

also required to activate the motile cilia pathway in multi-ciliate cells, where additional 

unknown factors are required to promote the early steps of differentiation, including the 

ones that drive the process of centriole duplication. In sum, while sensory cilia have been 

proposed to form via a default pathway, those used to produce fluid flow during left-right 

patterning and in multi-ciliate cells require a genetic program driven by FoxJ1. It will be of 

interest to determine whether the cilia that form using a FoxJ1-dependent pathway share 

other properties, including how their orientation is determined for directed flow34.
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Materials and Methods

Xenopus laevis fertilizations, microinjections and embryo culture

Xenopus embryos were obtained by in vitro fertilization using standard protocols35. 

Embryos were injected at the two-cell stage with capped, synthetic mRNAs (1-5 ng) that 

encode centrin2 fused to GFP (centrin2-GFP)22, membrane-localized mRFP as a control or 

lineage tracer21, or the intracellular domain of Notch (ICD)36. XFoxJ1 RNAs encoded the 

full-length protein, or a protein where a flag-tag was added to the amino terminus, changing 

the start of translation. Morpholinos (Genetools) directed against XFoxJ1 RNA targeted the 

initiation codon (XFoxJ1-MOATG), or the first splice acceptor site at the junction between 

intron1 and exon2 (XFoxJ1-MOSPL) (Supplementary Table 2)37,38. Efficacy of the splicing 

morpholino was assayed using RT-PCR (Supplementary Fig. 9). Unless indicated otherwise, 

embryos were injected with 30ng of the XFoxJ1-MOATG, 75ng of the XFoxJ1-MOSPL, the 

same dose of the two XFoxJ1 morpholinos mixed together, or 75ng of the control 

morpholino.

In-situ Hybridization and Immunofluorescence

Whole mount, in situ hybridizations were performed as described39. Embryos were fixed for 

immunohistochemistry in 4% paraformaldehyde in Phosphate Buffered Saline (PBS) for 1 

hour on ice (Xenopus) or overnight at 4°C (Zebrafish), followed by dehydration in 100% 

ethanol. Dorsal explants were placed underneath a glass coverslip just prior to fixation, in 

order to flatten out the curvature of the GRP and to press the cilia against the cell surface for 

measurement. Xenopus tissues were rehydrated, washed with PBS/0.1% TritonX-100 (PBT), 

and blocked with PBT containing 10% heat-inactivated normal goat serum (PBT/HIGS) for 

at least one hour. Zebrafish embryos were rehydrated in PBS/0.1% Tween-20 (PTW), and 

blocked in PTW + 5% HIGS + 2% Bovine Serum Albumin (BSA). Embryos were incubated 

with primary antibody in blocking solution overnight as follows: Rabbit anti-ZO-1 (Zymed 

1:200), mouse monoclonal anti-acetylated tubulin (Sigma, 1:200-1:1000), monoclonal anti-

gamma tubulin (Sigma, 1:1000), rabbit anti-GFP (Molecular Probes, 1:1000), or rabbit anti-

dsRed (Clontech 1:1000). After washing, embryos were incubated overnight in Cy2, Cy3, or 

Cy5 labeled Goat anti-IgG of the appropriate species (all used at 1:500, Jackson 

ImmunoResearch), washed in PBT or PTW and then mounted in PVA/DABCO. Mounted 

embryos were imaged on a BioRad Radiance 2100 confocal mounted to a Zeiss inverted 

microscope using a 40× or 63× objective.

RNA Isolation and Microarray

Animal caps were explanted onto coverslips coated with fibronectin as described40. Total 

RNA was isolated using the proteinase K method from explanted ectoderm at the equivalent 

of stage 22-24 of development. Total RNA from explanted ectoderm was used to generate 

labeled complimentary RNA (cRNA) that was hybridized to Xenopus laevis lGenome Array 

chips (Affymetrix #900491). Microarray data were obtained from three independent 

experiments in which embryos were injected with ICD RNA alone, and two independent 

experiments in which embryos were injected with both ICD and FoxJ1 RNA. These data 

sets were analyzed using Bullfrog analysis software 41 using a pair-wise comparison, with 

the minimum fold change set at 3. Data presented in Supplementary Table 1 show all genes 
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with an average change of 10-fold or greater. Annotation of the dataset was then performed 

using Unigene identifiers.

Quantitative RT-PCR

Total RNA was isolated at stage 22-24 from animal caps that had been explanted from stage 

10 embryos onto fibronectin-coated coverslips as described above. cDNA templates were 

generated from 3μg of RNA using SuperScript III Reverse Transcriptase (Invitrogen). 

Quantitative RT-PCR reactions were performed using the ABI Prism 7900HT Thermal 

Cycler, using primers for cilia genes or for ornithine decarboxylase (ODC) as a 

normalization control (Supplementary Table 2). Data was analyzed using Applied 

Biosystems Sequence Detection System (SDS) software.

RT-PCR Analysis of Splicing Morpholino

Total RNA was harvested as for quantitative RT-PCR. PCR reactions were performed using 

a forward primer spanning the exon1-intron1 boundary (Splicing MO-F) and a reverse 

primer corresponding to the stop codon in the mRNA transcript (Splicing MO-R).

Wilson's Explants

Mesoderm cells were imaged by generating Wilson's explants in 100% Danilchik's in 

saline42 followed by fixation and immunostaining as listed above. Briefly, at stage 12, the 

endoderm and GRP were peeled away from the ventral side of a dorsal explant, thereby 

exposing the underlying mesoderm. Explants were kept in explant medium and held flat 

under a coverslip from stage 12 until stage 17/18 when they were fixed.

Zebrafish Strains

We used mlc2a:eGFP zebrafish strains for all experiments43. Whole mount in-situ 

hybridizations were carried out as described44. Zebrafish FoxJ1 (ZFoxJ1) antisense probes 

were generated from cDNA cloned using PCR from 2 day post fertilization (2dpf) total 

RNA. We designed an antisense morpholino targeted against the start codon ZFoxJ1MO and 

a non-specific morpholino, ZControl (GeneTools, Supplementary Table 2). Embryos were 

injected with 3-5pg of morpholino. Heart jogging was assessed at 30-34hpf, by visualizing 

GFP expression in the heart.

High-speed microscopy

Albino Xenopus embryos were injected at the two-cell stage with FoxJ1 and ICD RNA, 

targeting each blastomere twice on the animal pole. The ectoderm was explanted on the 

fibronectin-coated glass as above at stage 10, and cultured to the equivalent of stage 22 of 

development. Ectopic cilia were visualized under bright field illumination, and captured on 

an Olympus BX51 microscope using a 100× submersible objective and a Vision Research 

Phantom 7.2 (CMOS) camera at 20,000 fps.

Transmission Electron Microscopy

Embryos were fixed overnight at 4°C in 2% Glutaraldehyde, postfixed in OsO4, stained 

with uranyl acetate, then embedded in EPON epoxy resin. Thin sections (60nm) were cut 
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and mounted on copper slot grids coated with parlodion, stained with uranyl acetate /lead 

citrate and imaged on a Philips CM100 electron microscope. Extensive use was made of the 

goniometer in conjunction with the rotation-tilt specimen holder and the orientation of the 

grids was adjusted up to ± 60 degree tilt to optimize as far as possible the cross sectional 

profile of the cilia. Images were documented using Kodak SO163 EM film that were 

scanned at 600 lpi using a Fuji FineScan 2750×l and converted to tif format.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Knock down of FoxJ1 activity inhibits ciliogenesis in the Zebrafish KV and Xenopus GRP.

(A-B) KV (arrowhead) morphology was visualized in Zebrafish embryos using light field 

microscopy in control (A) ZFoxJ1 morphants (B). (C-D) Cilia in KV were visualized by 

staining with the acetylated tubulin antibody (green) and confocal microscopy in control (C) 

and ZFoxJ1 morphants (D). Average number of cilia per KV (n=12) is indicated (N±S.D.) 

(E-H) Dorsal explants were generated from stage 17 Xenopus embryos injected with a 

mixture of XFoxJ1-MOATG and XFoxJ1-MOSPL (G,H) or with a control morpholino (E,F) 

and stained with ZO-1 (red) and acetylated tubulin (green) antibodies, to label cell junctions 

and cilia, respectively. The percentage of GRP cells (n=100-120 cells from 6 embryos) that 

extend cilia is indicated (%ciliated ±S.D.) Scale bars=20μm in all panels. (I) Cilia length 

(n=100-120 cilia from 6 embryos) was measured on the GRP of Xenopus embryos injected 

with a control-MO (control), with XFoxJ1-MOatg (atg), with XFoxJ1-MOSPL (spl), or with a 

mixture of both XFoxJ1-MOs (both). Cilia length in the KV of Zebrafish embryos (n=20 

cilia from each of 6 embryos) injected with the ZFoxJ1-MO (atg) or with the control-MO 

(control). Error bars=S.D.
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Figure 2. 
XFoxJ1 morpholinos inhibits ciliogenesis in Xenopus skin cells.

(A-D) Xenopus embryos injected with both XFoxJ1 morpholinos, or a control morpholino 

were stained at stage 26 with ZO-1 (red) and anti-acetylated tubulin (green) to label cell 

borders and cilia, respectively (A,B), or were injected with RNAs encoding a membrane-

localized RFP (red) and a GFP-centrin2 fusion protein (green), to label cell membranes and 

basal bodies, respectively (C,D). (E) Control or FoxJ1 morphants as above were co-injected 

with RNA encoding a GFP-centrin2 fusion protein (green), fixed at stage 26 and stained 

with rhodamine-phallodin (red) to label the apical actin network. Bottom panels show a 2μm 

Z-scan through the apical domain. Scale bars represent 20μm in A-B and 10μm in C-E.
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Figure 3. 
XFoxJ1 RNA misexpression in surface epithelial cells induces ectopic cilia formation.

(A-F) Shown is a confocal image of the superficial epithelium in Xenopus embryos at the 

indicated stage, stained with antibodies to ZO-1 (Red) and acetylated-tubulin (green) to label 

cell borders and cilia, respectively. Embryos were injected at the two-cell stage with RFP 

RNA alone (A,C) with FoxJ1 and RFP RNA (B,D), with ICD and RFP RNA (E) or with 

FoxJ1, ICD and RFP RNA (F). Average cilia length in microns is indicated in B and D 

(n=15-20 cilia from 3 embryos). Scale bars are 20μm. (G,H) Transmission electron 

micrographs of a cilium in a multi-ciliate cell (G) or of an ectopic cilium (H) induced by 

FoxJ1 RNA in an ICD background (as in panel F). Arrows indicate the central pair and 

arrowheads indicate outer dynein arms. Scale bars are 100nm.
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Figure 4. Bi-ciliate cells on the GRP and induced ectopically by XFoxJ1
(A-B) Shown is a confocal image of the skin at stage 26 of embryos injected with RFP RNA 

(A) or with both FoxJ1 and RFP RNA (B), and stained with an antibody to γ-tubulin 

(green). Arrows denote centriole number and position. (C-D) Confocal image of the 

uninjected GRP at stage 17, either (C) stained with antibodies to ZO-1 (Red) and acetylated-

tubulin (green) or (D) with antibodies to ZO-1 (Red) and γ-tubulin (green). Arrows indicate 

cilia number (C) or centriole position (D). Scale bars = 10μm. (E-F) Quantification of cilia 

number (E) and split centrioles (F) in the uninjected GRP at stage 17 (St.17 GRP, n=100 

cilia or centriole pairs from each of 4 embryos), or in the outer epithelial cells (OCs) of stage 

26 embryos that were injected with FoxJ1 RNA (St26/OCs/FoxJ1) or with just RFP RNA as 

a control (St26/OCs). For stage 26 n=200 cilia or centriole pairs from each of 4 embryos. 

Error bars represent S.D.
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Figure 5. 
Validation of gene expression regulated by FoxJ1.

(A-C) Shown is the roof of the gastrocoel in stage 17 embryos after staining for the 

expression of Tektin-t (A,A′), PF16 (B,B′) and L-R dynein (C,C′) RNA using whole-mount, 

in situ hybridization. Expression (Red-Blue stain) in the posterior GRP is marked with an 

arrow. Top panels show staining in uninjected embryos while lower panels shows that in 

embryos injected twice in one blastomere at the two-cell stage with XFoxJ1 RNA. Injected 

side is oriented to the right. (D) Embryos were injected at the two-cell stage with the 

indicated RNAs or with XFoxJ1 or control morpholinos. At stage 10, the ectoderm was 

isolated, cultured on fibronectin-coated glass to stage 22, and then extracted for total RNA. 

The levels of Tektin-t, PF16 (Spag6), or L-R dynein RNA was measured in each sample 

using quantitative PCR, and normalized relative to a ubiquitously expressed control RNA, 

ODC. Values for each experimental condition is an average of three measurements, and are 

expressed on a logarithmic plot as a ratio to the average value obtained with a control. 

Uninjected controls were used for the RNA injected samples and a control morpholino 

sample was used as a control for FoxJ1 morpholino injection.
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Figure 6. 
Model for cilia subtype specification.

Epithelial cells (EC) extend non-motile primary cilia via a default pathway2. In response to 

low levels of FoxJ1 epithelial cells extend a motile monocilia that can mediate flow required 

for left-right patterning. With increased levels of FoxJ1, ECs can be induced to form bi-

ciliate cells. FoxJ1 also regulates the expression of genes required for the formation of 

motile cilia in multiciliated cells, whose differentiation requires additional unknown 

factor(s).
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