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The role of P2X7 receptors in tissue fibrosis: a brief review
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Abstract Many previous studies have demonstrated that
P2X7 receptors (P2X7Rs) have a pleiotropic function in dif-
ferent pathological conditions and could represent a novel
target for the treatment of a range of diseases. In particular,
recent studies have explored the role of P2X7R in fibrosis, the
pathological outcome of most chronic inflammatory diseases.
The aim of this review is to discuss the biological features of
P2X7R and summarize the current knowledge about the puta-
tive role of the P2X7R in triggering fibrosis in a wide spectrum
of organs such as the lung, kidney, liver, pancreas, and heart.
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Extracellular ATP-mediated purinergic signaling

Purinergic nucleotides and receptors represent a key
autocrine/paracrine system for a range of physiological and

pathological conditions [1]. Adenosine 5′-triphosphate (ATP)
is a major energymolecule contained in all the cells that has an
additional role as an extracellular signaling molecule [2]. It is
generally accepted that cell damage, mechanical stimulation,
hypoxia/ischemia, or pathogen invasion induce ATP release
into the extracellular space where it acts as a danger signal
representing a defense mechanism in the initial inflammatory
phase [3–5]. Once in the extracellular milieu, ATP is rapidly
hydrolyzed by two ecto-nucleotidases [6]: CD39 (nucleoside
triphosphate diphosphohydrolase-1-NTPDase1) converts
ATP to adenosine monophosphate (AMP) and then CD73
(ecto-5’-nucleotidase) converts AMP to adenosine [7]. Al-
though adenosine and its receptors also play a role in the
pathogenesis of fibrosis depending on the tissue [8, 9], in this
review we will be focusing on the current understanding and
advances in the role of P2X7R in the pathogenesis of fibrosis.
ATP signaling is mediated by the family of P2 purinergic
receptors (P2Rs), divided into metabotropic P2Y receptors
and ionotropic P2X receptors [10]. The metabotropic class
are G protein-coupled receptors (GPCRs) that initiate signal
transduction coupled to a second messenger; the ionotropic
class are cationic ligand-operated channels that upon ATP
binding open the pore permeable to Na+, K+, and Ca++ [11,
12]. Currently, eight subtypes of the P2Y family and seven
subtypes of the P2X family have been characterized [13]. P2
receptors are expressed in most cell types; thus, ATP appears
to have a crucial and active role in a variety of cell responses
including cell proliferation, migration, differentiation, neuro-
transmission, cytokines release, apoptosis, and necrosis [14].
Nucleotide signaling participates in crucial physiological and
pathological events including embryonic development, im-
mune system maturation, neurodegeneration, inflammation,
and cancer [15]. P2X7R may act as a sensor of danger, mon-
itoring the release of the alarm signal ATP at inflammation
sites [16].
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P2X7R

The human P2X7R gene is localized on the long arm of human
chromosome 12 (q24.31) and contains 13 exons [17, 18]. The
cDNA encodes a protein sequence of 595 amino acids
consisting of intracellular N- and C-termini, two hydrophobic
transmembrane domains (TM1 and TM2), and an extracellu-
lar loop [19]. The N- and C-termini have residues related to
selectivity and activity of the ion channel and interact with
different membrane proteins including α-actin, receptor-like
tyrosine phosphatase, and heat shock proteins [20]. The C-
terminal tail is much longer for the P2X7R than for all the
other P2XR family members and is involved in the majority
of P2X7R functions [21]. It is essential for pore formation,
receptor stabilization, and signal transduction. Only one α-
helix is predicted in the TM1 domain, and a major propensity
for β-sheet conformation is expected in the TM2 region. The
extracellular loop, with 10 conserved cysteine residues
forming disulfide bridges and glycosylation sites represents
the ATP binding site [22]. The stoichiometry of P2X7R in-
volves a trimeric pore that consists of homomultimers [23].
The P2X7R is predominantly expressed on cells of hemato-
poietic origin such as monocytes [24], dendritic cells, T and B
lymphocytes, eosinophils, mast cells, but also on various
types of glia within the peripheral and central nervous system
including microglia, astrocytes, oligodendrocytes, and
Schwann cells [25, 26]. Moreover, P2X7R protein is
expressed on epithelial cells, osteoblasts, synoviocytes, and
fibroblasts [27–30].

P2X7R has been viewed as a key mediator of inflammation
and immunity [31–33], and its pro-inflammatory properties
are connected to cytokine release, nitric oxide generation,
and cytotoxicity [34]. P2X7R leads to an amplification of the
downstream production of the pro-inflammatory cytokines
interleukin (IL)-1β and IL-18, and in turn IL-6, IL-8, and
tumor necrosis factor alpha (TNF-α) [35]. Overproduction
of these cytokines is detrimental, particularly in chronic dis-
ease state [35].

Relationship between P2X7R and fibrosis

Inflammation is a complex response generated by an
interacting network of stimulatory and inhibitory signals. Im-
mune cells primed by soluble factors produced by infections
or tissue damage may or may not progress to a full-activated
phenotype, depending on the additional signals which they
receive from neighboring cells [36]. Ferrari et al. [16] describe
P2X7R like a Bsensor of danger^ that monitors the release of
danger signal, ATP, at inflammation sites and drives mononu-
clear phagocytes primed bacterial products into fully activated
inflammatory effectors (IL-1-secreting cells). When cells are
attacked by exogenous pathogens, host cellular receptors

recognize pathogen-associated molecular patterns (PAMPs),
small molecular motifs conserved among microbes. In many
cases, pathogen elimination requires the damage-associated
molecular patterns (DAMPs) that include endogenous intra-
cellular molecules released by activated or necrotic cells [37].
PAMPs such as lipopolysaccharide (LPS) can induce the syn-
thesis of pro-inflammatory cytokines such as pro-interleukin
(IL)-1β [38], and its release occurs after NALP-3
inflammasome complex activation [39]. Extracellular ATP is
a potent DAMPmolecule [40] that exerts its effects by binding
to the P2X7R [4]. P2X7R activation followed by depletion of
cytosolic K+ can drive the assembly of the NALP-3
inflammasome [41, 42]. Once assembled, NALP-3 mediates
caspase-1 activation which is then able to cleave pro-IL-1β to
its mature form. This cytokine probably by autocrine and
paracrine signals upregulates various signaling pathways
resulting in an increase of profibrotic transforming factor-β1
(TGF-β1), a central mediator of the fibrotic response in vari-
ous tissues [43].

Tissue fibrosis resulting from a failure to suppress the nor-
mal wound healing response [44–47] is characterized by an
increase of fibroblast proliferation and accumulation of extra-
cellular matrix (ECM) proteins leading to organ failure [47].
In vitro studies demonstrate that IL-1β can stimulate collagen
expression in a dose-dependent manner [48]. Because IL-1β
can induce its own gene expression, chronic activation of the
inflammasome resulting in the continual cleavage of IL-1β in
a positive feedback mechanism could conceivably maintain a
high level of active TGF-β1 protein resulting in fibrosis [49].
In this context, the possibility is raised that P2X7R may rep-
resent a nodal point able to trigger multiple intracellular path-
ways synergistically activating the collagen biosynthetic ma-
chinery. As such, P2X7R blockade may result in a critical
interference in the main pro-fibrotic pathways thus possibly
representing an attractive target for the pharmacological mod-
ulation of fibrotic diseases.

Lung fibrosis

Pulmonary fibrosis or interstitial lung disease (ILD) includes
130 to 200 fatal chronic lung disorders, characterized by an
overgrowth of fibroblasts and ECM deposition resulting in
respiratory dysfunction [50]. P2X receptors are expressed in
many lung cell types, e.g., type I alveolar epithelial cells [19,
51], pulmonary endothelia, and resident cells of the immune
system [3, 52]. P2X7R has been involved in immune re-
sponses initiated by extracellular ATP including lung diseases
[53]. Riteau et al. [54] reported extracellular ATP as a danger
signal involved in the establishment of lung inflammation and
fibrosis via P2X7R activation on alveolar macrophages. They
showed an increased concentration of ATP into the broncho-
alveolar lavage fluid (BALF) of patients with idiopathic
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pulmonary fibrosis (IPF) as well as into the bronchoalveolar
space of murine bleomycin (BLM) model of lung injury. In
addition, they evaluated the role of P2X7R using BLM-treated
mice deficient for the receptor reporting a significant reduc-
tion in neutrophil recruitment into the BALF as well as in
markers of tissue fibrosis such as lung collagen content,
matrix-remodeling proteins metalloproteinase-9 (MMP-9),
and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1).
Monção-Ribeiro et al. [55] using a model of silica-induced
lung fibrosis reported attenuated lung inflammation and fibro-
sis as well as pulmonary function impairment in silica-
exposed P2X7 receptor knockout mice. Either P2X7 receptor
knockout or wild-type mice treated with P2X7 receptor inhib-
itor showed reduced lung inflammation and fibrosis induced
by silica. ILD has no effective therapy, and the blockade of the
P2X7R by specific inhibitors in patients with pulmonary fi-
brosis may be a promising approach to improve their life span.

Renal fibrosis

There is a substantial presence of purinoreceptors in different
regions of the nephron, the glomerulus and renal vascular sys-
tem involved in the regulation of renin secretion, glomerular
filtration, and transport of water, ions, nutrients, and toxins
[56–59]. The first expression of P2X7R in renal disease was
described in a rat model of diabetes and hypertension [60].
Moreover, Solini and colleagues [61] demonstrated the impor-
tance of P2X7R activation in TGF-β1 secretion and ECM
production from mesangial cells. In addition, tubulo-interstitial
damage and fibrosis induced after unilateral ureteral obstruction
(UUO) are attenuated in the absence of P2X7R. Indeed, P2X7R
(-/-) knockout UUO mice have a lower population of
myofibroblasts, diminished collagen deposition, and decreased
TGF-β1 expression in the renal interstitium compared to wild-
type UUO mice [62]. These data indicate that myofibroblasts
may be stimulated by P2X7R activation either directly, or indi-
rectly in response to cell injury via IL-1β activation which pro-
motes fibroblast proliferation and collagen production. Consid-
ered as a whole, these results suggest a crucial role of the recep-
tor in renal inflammation and fibrosis. Thus, the potential use of
purinergic antagonists as a tool for novel trials to prevent renal
interstitial fibrosis should be considered in the near future.

Hepatic fibrosis

Liver fibrosis refers to the accumulation of fibrous scar tissue
caused by the excessive accumulation of ECM [63, 64] by
activated hepatic stellate cells (HSCs) [65–67] induced by
fibrogenic cytokines such as TGF-β1 [68]. Studies using
models of hepatic fibrosis in transgenic mice have revealed
IL-1β and TGF-β1 as key players mediating liver

fibrogenesis [69, 70]. Huang and colleagues [71] investigated
the role of P2X7R in a mouse model of liver fibrosis induced
by carbon tetrachloride (CCl4), reporting that P2X7R inhibi-
tion with a competitive antagonist (A438079) prevented col-
lagen deposition and also significantly reduced the expression
of alpha-smooth muscle actin (α-SMA) and TGF-β1. Finally,
in rats affected by common bile duct-ligated (CBDL)-induced
liver cirrhosis, Brilliant blue G (BBG), the most potent P2X7R
antagonist in rats, significantly reduces hepatic pro-
inflammatory cytokines IL-6, TNF-α, platelet-derived growth
factor (PDGF), and IL-1β expression. It also downregulates
TGF-β signaling pathway and ameliorates liver fibrosis [72].
These findings suggest the potential application of P2X7R
inhibition in controlling liver fibrogenesis.

Pancreatic fibrosis

Burnstock and Novak reported the implications of purinergic
signaling in chronic pancreatitis (CP) [73]. CP is characterized
by inflammatory cell infiltration, progressive organ atrophy,
and disorganized collagen deposition [74]. Fibrogenesis is
also associated with activation of pancreatic stellate cells
(PSCs). It has been reported that PDGF and TGF-β1 play
key roles in PSC-mediated pancreatic fibrogenesis through
autocrine and paracrine loops [75–77]. In the early stage of
pancreatic damage, quiescent PSCs undergo a transformation
into α-SMA expressing myofibroblast-like cells, which then
produce extracellular matrix leading to proliferation and col-
lagen production [78]. In 2012, Haanes et al. [79] showed that
PSCs express P2X7R mRNA and protein. They also showed
that both basal and exogenously applied ATP stimulated pro-
liferation of PSCs via P2X7R [79]. They have suggested that
when pancreatic inflammation occurs, the high ATP concen-
tration is used by PSCs to induce IL-1β release, which acti-
vates and attracts other PSCs and immune cells. Kunzli et al.
[80] showed P2X7R upregulation in pancreatic tissue samples
isolated from patients affected by CP with respect to control
samples. Moreover, in a study to understand the impact of
CD39 gene deletion using a mouse model of the disease, they
noted P2X7R upregulation [80, 81]. Thus, P2X7R might be
linked with pancreatic remodeling and fibrogenesis.

Cardiac fibrosis

Most cardiac diseases are associated with fibrosis in the heart
[82]. The development of cardiac fibrosis is similar to fibrosis
in other organs such as the liver, lung, and kidney [83]. Car-
diac fibroblasts (CFs) and related myofibroblasts are the prin-
cipal producers of ECM in response to several growth factors,
e.g., TGF-β1, PDGF, and cytokines, e.g., TNF-α, IL-1β, and
IL-6 [84, 85]. In the mouse model of acute myocardial
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infarction (AMI), Mezzaroma et al. [86] described increased
caspase-1 activity and aggregation of three components of the
inflammasome—apoptosis speck-like protein containing a
caspase-recruitment domain (ASC), cryopyrin, and caspase-
1. They demonstrated that the inhibition of cryopyrin or
P2X7R, with siRNA in vivo in mice, is sufficient to blunt
caspase-1 activation during AMI. In addition, they showed
that the prevention of inflammasome assembly using a phar-
macological P2X7R inhibitor, pyridoxalphosphate-6′-
azopheny-2′, 4′-disulphonate (PPADS), reduces cell death
and adverse cardiac remodeling. The direct implication of
the P2X7R and the upregulation of the NLRP3 inflammasome
in CF have been shown in a recent study conducted in mice
following myocardial ischaemia-reperfusion (I/R) injury [87]
in which silencing P2X7R in vivo with siRNA has revealed a
reduction of the infarct size after myocardial infarction. In
keeping with these findings, in vitro data show that myocar-
dial fibroblasts release IL-1β and IL-18 when primed with
LPS and subsequently exposed to the danger signal ATP, a
molecule that is released in relation to tissue damage during
myocardial infarction [87].

Concluding remarks and future prospective

Taken together, these studies offer novel insights into the po-
tential importance of P2X7R in the fibrotic process of several
organs such as the lung, kidney, liver, pancreas, and heart.
P2X7R-deficient mice exhibited markedly reduced lung in-
flammation with reduced fibrosis [54, 55]. P2X7R promotes
macrophage infiltration and collagen deposition contributing
to the inflammation and fibrosis of unilateral ureteral obstruc-
tion in mice [62]. In accordance, results suggested that P2X7R
activity was present in animal models of liver injury and fi-
brosis, and contributed to fibrogenesis [71, 72]. Finally, it has
been demonstrated that P2X7R may be a potential target for
the treatment of pancreatic [79, 80] and cardiac fibrosis [86,
87]. Although the precise mechanism underlying the involve-
ment of P2X7R in fibrosis remains unclear and requires further
investigation, the receptor seems to be a nodal point in
fibrogenesis as an integral component of a pro-inflammatory
mechanism. Thus, the potential role of P2X7R antagonists as a
tool for novel trials to prevent fibrosis should be considered in
the near future.
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