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Newly generated dentate granule cells (GCs) are relevant for input discrimination in the adult hippocampus. Yet, their precise contribution to
information processing remains unclear. To address this question, it is essential to develop approaches to precisely label entire cohorts of
adult-born GCs. In this work, we used genetically modified mice to allow conditional expression of tdTomato (Tom) in adult-born GCs and
characterized their development and functional integration. Ascl1CreERT2;CAGfloxStopTom and GlastCreERT2;CAGfloxStopTom mice resulted in indelible
expression of Tom in adult neural stem cells and their lineage upon tamoxifen induction. Whole-cell recordings were performed to measure
intrinsic excitability, firing behavior, and afferent excitatory connectivity. Developing GCs were also staged by the expression of early and late
neuronal markers. The slow development of adult-born GCs characterized here is consistent with previous reports using retroviral approaches
that have revealed that a mature phenotype is typically achieved after 6 – 8 weeks. Our findings demonstrate that Ascl1CreERT2 and GlastCreERT2

mouse lines enable simple and reliable labeling of adult-born GC lineages within restricted time windows. Therefore, these mice greatly facilitate
tagging new neurons and manipulating their activity, required for understanding adult neurogenesis in the context of network remodeling,
learning, and behavior.
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Introduction
Adult hippocampal neurogenesis has been observed in verte-
brates from birds to humans. The subgranular zone (SGZ) of the
dentate gyrus (DG) contains radial glia-like neural stem cells

(Type 1) with self-renewal capacity that generate fast-dividing
Type 2 transit-amplifying progenitors, finally giving rise to neu-
rons that develop and mature during several weeks (Zhao et al.,
2008; Bonaguidi et al., 2012). Newly born granule cells (GCs) are
incorporated into the functional neural networks of the DG, pro-
ducing a significant impact on circuit plasticity (Laplagne et al.,
2006; Toni et al., 2008; Gu et al., 2012; Marín-Burgin et al., 2012;
Chancey et al., 2013; Temprana et al., 2015). Significant progress
has been made in recent years to decipher how adult neurogenesis
contributes to hippocampus-mediated brain functions (Drew et
al., 2013; Piatti et al., 2013; Christian et al., 2014). However, the
precise contribution of adult-born neurons to information pro-
cessing is still unclear.

The field of adult neurogenesis has progressed because of
technical advancements that have allowed the precise identifica-
tion and manipulation of newly generated neurons among bil-
lions of preexisting neurons in the adult central nervous system.
The different approaches include the more classical incorpora-
tion of nucleotide analogs, retrovirus-mediated gene transfer,
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Significance Statement

Our study shows that Ascl1CreERT2 and GlastCreERT2 mice lines can be used to label large cohorts of adult-born dentate granule cells
with excellent time resolution. Neurons labeled in this manner display developmental and functional profiles that are in full
agreement with previous findings using thymidine analogs and retroviral labeling, thus providing an alternative approach to
tackle fundamental questions on circuit remodeling. Because of the massive neuronal targeting and the simplicity of this method,
genetic labeling will contribute to expand research on adult neurogenesis.

The Journal of Neuroscience, November 18, 2015 • 35(46):15379 –15390 • 15379



and, more recently, genetically modified mice with specific driv-
ers expressed in neural progenitor cells (Ming and Song, 2005;
Overstreet-Wadiche et al., 2006; Zhao et al., 2006; Taupin, 2007;
Dhaliwal and Lagace, 2011; Imayoshi et al., 2011; Dieni et al.,
2013). Nevertheless, the need of in vivo studies to elucidate the
role of adult-born GCs in hippocampal functions claims for the
emergence of highly characterized tools that allow accurate iden-
tification and control of the activity of newly born neurons
(Kropff et al., 2015).

Inducible forms of the Cre recombinase (CreERT2) expressed
under Type 1 or Type 2 cell-specific promoters, such as Nestin,
GFAP, or the Achaete-scute complex homolog 1 (Ascl1), have
already been used for the study of adult neurogenesis (Encinas et
al., 2006; Bonaguidi et al., 2012; Dieni et al., 2013). In particular,
the astrocyte-specific glutamate transporter (GLAST) is ex-
pressed in GFAP� astrocytes and neural stem cells (Type 1), and
it has allowed targeting fluorescent reporters to identify postnatal
and adult hippocampal neurogenesis (Mori et al., 2006; Ninkovic
et al., 2007; Colak et al., 2008; Temprana et al., 2015). Similarly
Ascl1, a bHLH transcription factor involved in neuronal differ-
entiation and present in Type 1 and Type 2 cells, has also been
used to characterize and manipulate adult neurogenesis (Kim et
al., 2007, 2011; Andersen et al., 2014; Mich et al., 2014). While
several laboratories have already incorporated these tools for the
study of adult neurogenesis, a detailed morpho-functional char-
acterization as a function of neuronal age has never been done.
Thus, the extent to which new GCs labeled using these methods
provide information that is in agreement with previous results
obtained with classical thymidine analogs and retroviral ap-
proaches remains unknown.

The aim of this work is to study development and functional
integration of adult-born GCs identified using the GlastCreERT2

and Ascl1CreERT2 mouse lines, providing an assessment for the
specificity of neuronal labeling and the precision of neuronal
birth dating, compared with what has already been learnt from
previous approaches. Both mouse lines were crossed to the
CAGfloxStop-tdTomato conditional reporter line to achieve indelible
expression of tdTomato (Tom) in adult-born GCs after tamox-
ifen (TAM) administration. TAM induction resulted in efficient
labeling of entire cohorts of new GCs in both mice lines, with
some degree of transgene expression also in the progeny of slowly
dividing Type 1 neural stem cells. As expected, Tom� astrocytes
were also observed in GlastCreERT2 mice. Nevertheless, whole-cell
recordings obtained in acute slices from mice at 21 to 56 d post
induction (dpi) revealed that development of intrinsic proper-
ties, firing behavior and afferent excitatory connectivity is very
similar to what has been previously reported. Furthermore, anal-
ysis of expression of doublecortin (DCX) and calbindin (Cb) also
strengthens the distinctive maturation pattern of adult-born
GCs. Overall, our results demonstrate that both GlastCreERT2 and
Ascl1CreERT2 lines are powerful tools to label and manipulate tem-
porally enclosed populations of adult-born GCs.

Materials and Methods
Mice
Ascl1CreERT2 (Ascl1tm1(Cre/ERT2)Jejo/J) mice (Kim et al., 2007), obtained from
The Jackson Laboratory, and CAGfloxStop-tdTomato (Ai14) (B6;129S6-
Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) conditional reporter line (Madisen
et al., 2010), obtained from Hongkui Zeng, were crossed to generate
Ascl1CreERT2; CAGFloxStopTom mice. GlastCreERT2 mice (Mori et al., 2006),
kindly provided by M. Götz, were crossed to CAGfloxStop-tdTomato (Ai14) (B6;
129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J) conditional reporter line
(Madisen et al., 2010), obtained from Hongkui Zeng, to generate

GlastCreERT2;CAGfloxStopTom mice. Mice were maintained in C57Bl/6J
background.

Young adult mice of either sex were used at 6 –7 weeks of age, housed
at 2– 4 mice per cage. Running wheel housing started 2– 4 d before TAM
induction and continued until the day of slice preparation. Running-
wheel housing was selected primarily to reproduce the conditions that we
have previously used for studying retrovirally labeled GCs. TAM was
delivered intraperitoneally at 50 �g/g/d for 2 consecutive days
(GlastCreERT2;CAGfloxStopTom) or 120 �g/g/injection, four injections in 2
consecutive days (Ascl1CreERT2;CAGfloxStopTom) to achieve indelible ex-
pression of Tom in adult-born GCs. Mice were killed at the indicated
times after TAM induction. Right hemispheres were used for acute slice
preparation, and left hemispheres were fixed for further neuronal marker
analysis. Experimental protocols were approved by the Institutional An-
imal Care and Use Committee of the Leloir Institute according to the
Principles for Biomedical Research involving animals of the Council for
International Organizations for Medical Sciences and provisions stated
in the Guide for the Care and Use of Laboratory Animals.

Electrophysiological recordings
Slice preparation. Experiments were performed in 173 neurons from 19
mice for GlastCreERT2;CAGfloxStopTom line and 231 neurons from 27 mice
for Ascl1CreERT2;CAGfloxStopTom line. Mice were anesthetized and decapi-
tated at 21–56 d post TAM induction (dpi), and transverse slices were
prepared as described previously (Marín-Burgin et al., 2012). Brains were
removed into a chilled solution containing the following (in mM): 110
choline-Cl �, 2.5 KCl, 2 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgCl2, 20
dextrose, 1.3 Na �-ascorbate, 0.6 Na �-pyruvate, and 4 kynurenic acid.
The right hippocampus was dissected, and slices of septal pole (400 �m
thick) were cut in a vibratome (Leica VT1200 S) and transferred to a
chamber containing ACSF (in mM) as follows: 125 NaCl, 2.5 KCl, 2
NaH2PO4, 25 NaHCO3, 2 CaCl2, 1.3 MgCl2, 1.3 Na �-ascorbate, 3.1
Na �-pyruvate, and 10 dextrose (315 mOsm). Slices were bubbled with
95% O2/5% CO2 and maintained at 30°C for at least 1 h before experi-
ments started.

Electrophysiology. Whole-cell recordings were performed at room
temperature (23 � 2°C) using microelectrodes (4 – 6 M�) filled with
the following (mM): 150 K-gluconate, 4 MgCl2, 0.1 EGTA, 1 NaCl, 10
HEPES, 4 ATP-Tris, 0.3 GTP-Tris, 10 phosphocreatine, pH 7.3, and
290 mOsm. All recordings were obtained using Axopatch 200B am-
plifier (Molecular Devices), digitized (Digidata 1322A, Molecular De-
vices), and acquired at 10 –20 kHz onto a personal computer using the
pClamp 9 software (Molecular Devices). Developing neurons ex-
pressing Tom were binned in the following age groups: 21–23 dpi (“22
dpi”), 24 –26 dpi (“25 dpi”), 27–29 dpi (“28 dpi”), 30 – 41 dpi (“35
dpi”), and 42–56 dpi (“49 dpi”). Recorded neurons were visually
identified in the granule cell layer by fluorescence (FITC fluorescence
optics; DMLFS, Leica) and/or infrared DIC videomicroscopy.

In previous work, we have compared mature neurons born in 15-day-
old embryos (which populate the outer granule cell layer), 7-day-old
pups, and adult mice, finding no functional differences among neuronal
groups (Laplagne et al., 2006). Therefore, unlabeled neurons localized in
the outer third of the granule cell layer were selected here as mature
controls. Whole-cell voltage-clamp recordings were performed at a hold-
ing potential (Vh) of �70 mV. Criteria to include cells in the analysis
were visual confirmation of Tom in the pipette tip, attachment of the
labeled soma to the pipette when suction is performed, and absolute leak
current �100 pA at Vh. Series resistance was typically 10 –20 M�, and
experiments were discarded if �25 M�. Membrane capacitance and in-
put resistance were obtained from current traces evoked by a hyperpo-
larizing step (10 mV, 100 ms). In current-clamp recordings, the resting
membrane potential was kept at �70 mV by passing a holding current.
The threshold current for spiking was assessed by successive depolarizing
current steps (10 pA; 500 ms) to drive the membrane potential (Vm) from
resting to 0 mV. Spontaneous excitatory postsynpatic currents (EPSC)
were also recorded at a holding potential of �70 mV.

Data analysis. Analysis of electrophysiological recordings was per-
formed off-line using in-house made MATLAB routines (The Math-
Works). Action potential (AP) threshold was defined as the point at
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which the derivative of the membrane potential dVm/dt was 5 mV/ms
(data not shown). AP amplitude was measured from threshold to posi-
tive peak and after-hyperpolarization (AHP) amplitude, from threshold
to negative peak during repolarization. Current threshold was calculated
as the mean between the current step that elicited the first spike (often �1
spike) and the last stimulus that did not evoke spikes. Time between
consecutive spikes (�Tinterspike) was measured from peak to peak. Unless
otherwise specified, data are presented as mean � SEM.

Immunofluorescence
Immunostaining was done on 60 �m free-floating coronal sections
throughout the brain. Antibodies were applied in TBS with 3% donkey
serum and 0.25% Triton X-100. Immunofluorescence was performed
using the following primary antibodies: calbindin D-28k (Cb, rabbit
polyclonal; 1:1000; Swant), DCX (goat polyclonal; 1:100; Santa Cruz
Biotechnology), NeuN (mouse monoclonal; 1:50; a gift from F. H. Gage),
RFP (rabbit polyclonal; 1:500; Rockland Immunochemicals), and Sox2
(goat polyclonal, 1:500; Santa Cruz Biotechnology). For Cb immunola-
beling, preincubation with methanol (15 min) was included to enhance
penetrability. The following corresponding secondary antibodies were
used: donkey anti-mouse Cy5, donkey anti-rabbit Cy5, donkey anti-
rabbit Cy3, and donkey anti-goat Cy5 (1:250; Jackson ImmunoResearch
Laboratories).

Confocal microscopy
Only sections containing the septal region of the hippocampus (antero-
posterior, �1.22 to �2.3 mm from bregma) according to the mouse
brain atlas (Paxinos and Franklin, 2004) were included. Images were
acquired using Zeiss LSM 510 Meta or Zeiss LSM 710 confocal micro-
scopes (Carl Zeiss). Only Tom � cells located in the granule cell layer
were included in the analysis. Analysis of neuronal marker expression
was restricted to cells with fluorescence intensity levels that enabled clear
identification of their somata. Images were acquired (40	; NA 1.3) from
60-�m-thick sections, taking z-series, including typically 20 –30 optical
slices, airy unit 
 1 at 1 �m intervals. Marker expression analysis was
performed using single optical planes and 3D reconstructions obtained
from z-stacks. For images showing morphology, an anti-RFP antibody
was used.

Numerical model
We propose a deterministic numerical model, in which the generation of
labeled newborn GCs, G(t), is determined as follows:

G�t� � �N � 1�t ⁄Tinflexion � 1, t � Tinflexion

G�t� � N � e�t ⁄�neurogenesis t � Tinflexion

where t is the time after TAM induction (in dpi) and N is the number of
cells born at Tinflexion (the calculation was done with N 
 1000, but the
whole set of results are presented after normalization). The only two free
parameters of this model are Tinflexion and �neurogenesis; they were adjusted
to best fit our data related to expression of neuronal markers. G(t), the
number of newborn GCs generated at t-dpi, is a function that represents
a continuous division of neuronal progenitors, starting at zero the day of
the TAM injection and with an exponential decay after reaching a peak at
Tinflexion (see Fig. 5A). This generation was constrained by the survival
probability Sn, which is associated with cell apoptosis as follows:

S�n� � S0 � �1 � S0� � e�n ⁄�
survival

where n is the cell age. The parameters were fixed in S0 
 0.2 and
�survival 
 4 d, and they were obtained after fitting experimental data
(Brandt et al., 2003). The combination of the generation rate and the
survival probability leads to the total number of newborn GCs as follows:

N�t, n� � G�t � n� � S�n�

In other words, the number of neurons N(t,n) whose age is n at the time
t is the number of neurons born n days before t, modulated by the
survival probability of n-day old neurons (see Fig. 5B). In addition, we
propose that each neuron expresses independently DCX or Cb with a
probability represented by respective sigmoid functions (see Fig. 5C):

DCX�n� � 1 �
1

1 � e

��n�21�

2.5

Cb�n� �
1

1 � e

��n�19�

2.5

where n is expressed in days. The parameters were fixed according to
experimental data (Espósito et al., 2005; Piatti et al., 2011). Finally, the
total number of newborn cells expressing the neuronal marker DCX in a
t-dpi animal was calculated as follows:

DCX expression�t� � �
n
8

n
t

N�t, n� � DCX�n�

The calculation is analogous for Cb. We started the count from 8-day-
old cells because the identification of younger GCs in an experiment is
unlikely. After performing optimization of the free parameters in the
model, we found that the best set to fit our experimental data are
Tinflexion 
 1 d and �neurogenesis 
 5d; thus, we showed the results
under this condition (see Fig. 5D).

Results
To characterize GCs generated in the adult hippocampus,
Ascl1CreERT2 and GlastCreERT2 mice carrying the Tom allele were
induced by TAM injection at 6 –7 weeks of age. Neuronal pheno-
type was assessed by the expression of specific neuronal markers,
and neuronal function was monitored by whole-cell patch-clamp
recording performed in Tom� cells in acute brain slices prepared
21–56 d after TAM induction. Both approaches converged in the
existence of distinctive stages of neuronal maturation with simi-
lar profile to that previously observed by retroviral labeling.

Functional characterization of adult-born GCs in
Ascl1CreERT2 mice
In the Ascl1CreERT2 knockin mouse line used here, TAM adminis-
tration elicits Cre-mediated recombination in Type 1 neural
stem cells and Type 2 progenitors in the adult hippocam-
pus (Kim et al., 2011). After slice preparation from
Ascl1CreERT2;CAGfloxStopTom mice, intrinsic properties, spiking,
and excitatory inputs were investigated by electrophysiological
recordings in GCs with indelible expression of Tom, at variable
intervals after TAM induction (Fig. 1A,B). Tom� GCs were
compared with unlabeled mature GCs in the outer granule cell
layer, mostly generated during perinatal development. The fol-
lowing passive membrane properties were monitored: input re-
sistance (Rinput), reflecting the cell size and the density of ion
channels open at resting; membrane capacitance (Cm), propor-
tional to the area of the soma and proximal dendrites; and resting
potential (Vrest), determined by the relative ionic concentrations
and permeabilities.

Neurons recorded at early intervals displayed high Rinput, low
Cm, and depolarized Vrest, properties that are typical of immature
neurons in the developing and adult brain (Fig. 1C–E) (Owens et
al., 1996; Espósito et al., 2005; Overstreet Wadiche et al., 2005; Ye
et al., 2005). Over time, Rinput decreased, Cm increased, and Vrest

became more hyperpolarized, reaching levels characteristic of
mature GCs. The whole set of intrinsic properties under study
progressed in a gradual way along the different groups (Fig. 1C–
E). Furthermore, the mean values for each group are consistent
with those observed using retroviral labeling in adult-born GCs
of related ages (Espósito et al., 2005; Mongiat et al., 2009; Gu et
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al., 2012). No significant differences were observed for any of the
parameters between the “49 dpi” group and mature GCs.

All recorded Tom� cells were identified as neurons by their
capacity to generate APs. Depolarizing current injections evoked
multiple spikes with different properties (number and shape)
among groups (Fig. 2A). When analyzing spike number versus
stimulus strength, the two younger groups (22 and 25 dpi) fired
with high efficacy but quickly reached frequency accommoda-
tion, whereas older GCs displayed almost linear increments in the
number of APs (Fig. 2B). Interestingly, GCs from “28 dpi” and
“35 dpi” groups fired with higher efficacy than older groups for
all stimuli, as a consequence of the combination of elevated Rinput

and advanced degree of maturation of voltage-gated sodium and
potassium currents (Espósito et al., 2005; Mongiat et al., 2009).
The gradual decrease in membrane excitability was also reflected
in the current threshold to elicit the first spike, which increased
gradually with the time after induction (Fig. 2C).

The first spike of each trial remained unchanged over GC age
in regard to amplitude and half-width, whereas AHP amplitude
increased gradually with the time after injection, reflecting the
maturation of potassium channel populations required for repet-
itive firing (Fig. 2D). Time-dependent AP maturation was also
evident by pooling all spikes in a train, revealing age-dependent
increase in AP and AHP amplitudes, with concomitant decrease
in AP half-width (Fig. 2E).

To evaluate circuit integration, voltage-clamp recordings
were performed in Tom� GCs to monitor spontaneous EPSCs
(sEPSCs) (Fig. 3A). sEPSCs were detected in all GCs, although the
level of activity displayed a marked age-dependent increase (Fig.
3B). Interestingly, sEPSC frequency was lower at 49 dpi com-
pared with unlabeled mature GCs, in contrast to what was ob-

served for intrinsic properties and spiking characteristics. This
result suggests a difference in functional connectivity between
mature GCs born in developing versus adult hippocampus that
was previously unreported.

The lower sEPSC frequency in younger GCs with no differ-
ences in amplitude or kinetic parameters suggest presynaptic
rather than postsynaptic differences (Fig. 3C,D). Most likely, the
time-dependent increase in postsynaptic responsiveness arises
from an increment in the number of functional synaptic contacts,
which has also been found at the structural level as increased
number of dendritic spines (Zhao et al., 2006; Toni et al., 2008).
Overall, functional properties in Tom-labeled GCs in the
Ascl1CreERT2;CAGfloxStopTom indicate that time after TAM injection
accurately reflects the mean age of tagged GCs.

Expression of neuronal markers in adult-born GCs in
Ascl1CreERT2 mice
In addition to the electrophysiological characterization, the de-
gree of neuronal maturity was also determined by expression of
the early and late neuronal markers DCX and Cb (Piatti et al.,
2011). In the same mice in which the right hippocampus was used
for functional experiments, the contralateral hemisphere was
fixed to assess phenotypic analysis of Tom-labeled cells using
those neuronal markers. In regard to morphological progression,
initially (3 dpi) Tom� cells displayed typical radial glia-like mor-
phology (Bonaguidi et al., 2011). With age, typical neuronal fea-
tures became apparent, with increased complexity in the
dendritic tree (Fig. 4A). The number of Tom� cells increased
substantially during the first few days after TAM administration,
consistent with the expected amplification of Type 2 cells. Nota-
bly, fluorescence intensity of Tom� cells also increased as a func-

Figure 1. Intrinsic membrane properties of developing GCs generated in adult Ascl1CreERT2 mice. A, Confocal image of a 60-�m-thick hippocampal section depicting adult-born GCs (red) at 49 d
after TAM injection (dpi). NeuN immunofluorescence (blue) allows visualizing the GCL and CA1, CA2, and CA3 pyramidal layers. Dendrites extend through the molecular layer (ML), and mossy fibers
project across the hilus (H) to CA3, via the stratum lucidum. Scale bar, 100 �m. B, Tom indelible expression was induced by TAM administration, and mice were killed at different times post injection
to perform electrophysiological recordings in acute slices. C–E, Resting potential (C), input resistance (D), and membrane capacitance (E) were measured in Tom � adult-born neurons and unlabeled
mature GCs. Sample sizes (presented as neurons/mice) were 35/6 (22 dpi), 44/5 (25 dpi), 44/6 (28 dpi), 35/5 (35 dpi), 33/5 (49 dpi), and 40/23 (mature). ***p � 0.001 compared with mature GCs.
**p � 0.01 compared with mature GCs. *p � 0.05 compared with mature GCs. ns, Not significant. Red lines indicate mean � SEM. Statistical comparisons were done using Kruskal-Wallis test
followed by a post hoc Dunn’s test.
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tion of age (Fig. 4B). At later time points, mixed populations of
labeled cells bearing high and low Tom intensities were observed,
which might result from the continuous generation of GCs from
slowly dividing neural stem cells. To determine the proportion of
Type 1/Type 2 cells versus neurons, we monitored the expression
of Sox2 (present in neural stem cells and transient amplifying
progenitors) and the neuronal marker NeuN during the early

time after induction (Fig. 4C). Interestingly, Sox2 and NeuN lev-
els basically mirrored each other, rendering substantial decrease
of the neural stem/progenitor cell population and a rapid in-
crease in neuronal production (�50% neurogenesis by 8 d).

Neuronal maturation became evident at later time points.
The proportion of Tom � cells expressing DCX decreased with
GC age and, at the same time, Cb expression increased as a

Figure 2. Spiking properties of adult-born GCs in Ascl1CreERT2 mice. A, Representative whole-cell current-clamp recordings in GCs at different ages. Spiking was elicited by depolarizing current
steps of increasing amplitude (500 ms, 0 –130 pA, 10 pA steps). Panels represent example traces at the indicated current steps. Calibration: left, 100 mV; right, 20 mV; 100 ms. B, Repetitive firing
quantified as the number of spikes elicited by increasing current steps. C, Current threshold to elicit the first spike for the experiments shown in B. D, E, AP amplitude, AHP amplitude, and AP
half-width were measured for the first spike (D) and all identified spikes (E). ***p � 0.001 compared with mature GCs. **p � 0.01 compared with mature GCs. *p � 0.05 compared with mature
GCs. ns, Not significant. Sample sizes (presented as neurons/mice) were 34/6 (22 dpi), 39/5 (25 dpi), 42/6 (28 dpi), 35/5 (35 dpi), 31/5 (49 dpi), and 40/23 (mature). Red lines indicate mean � SEM.
Statistical comparisons were done using Kruskal-Wallis test followed by a post hoc Dunn’s test.
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result of the time-dependent maturation of neuronal pheno-
type, in agreement with the electrophysiological data (Fig.
4D). For instance, Cb expression reached saturation at 35 dpi,
whereas DCX was completely absent by 49 dpi. These data are
also highly consistent with previous findings on neuronal mat-
uration primarily obtained with thymidine analogs and retro-
viral labeling (Kempermann et al., 2003; Espósito et al., 2005;
Overstreet Wadiche et al., 2005; Piatti et al., 2006; Zhao et al.,
2008; Piatti et al., 2011).

Because TAM induction labels mixed populations of fast
(Type 2) and slowly dividing cells (Type 1), we developed a math-
ematical model to describe the dynamics of Tom� GCs after
TAM injection in Ascl1CreERT2;CAGfloxStopTom mice. We proposed
that the generation of neurons peak at 1 d after TAM induction
and decay swiftly (exponential decay time of 5 d). The combina-
tion of the generation rate and a survival probability function
resulted in a given time course for the number of newborn cells
(Fig. 5A,B). In addition, the expression of neuronal markers was

Figure 3. Excitatory input connectivity of adult-born GCs in Ascl1CreERT2 mice. A, Representative traces of sEPSC recorded at �70 mV in GCs at different ages. Top, Time-compressed traces allow
the visualization of sEPSC frequency. Bottom, Expanded presentations show individual events. Calibration: top, 10 pA, 10 s; bottom, 2 pA, 100 ms. B, Frequency of sEPSC events, measured during
120 s. ***p � 0.001 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s test). **p � 0.01 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s
test). *p � 0.05 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s test). C, sEPSC amplitude presented as mean value for each cell (Ci), and cumulative frequency for each
cell age (Cii). Inset in Cii depicts amplitude histogram. Errors bars in Cii were omitted for clarity. Cumulative frequencies presented no differences with mature GCs by Kolmogorov–Smirnov test
(minimum p �0.24). D, Kinetic analysis of sEPSCs: rise time (20%–90%), decay time (90%–30%), and half-width. No significant differences were found for any of the parameters by Kruskal–Wallis
test (amplitude, p 
 0.06; rise time, p 
 0.32; decay time, p 
 0.10; width, p 
 0.04). Sample sizes (presented as neurons/mice) were 29/6 (22 dpi), 34/5 (25 dpi), 34/6 (28 dpi), 17/3 (35 dpi),
31/5 (49 dpi), and 38/22 (mature). Red lines indicate mean � SEM.
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Figure 4. Morphology and neuronal markers for developing GCs generated in adult Ascl1CreERT2 mice. A, Confocal images of Tom � cells in the dentate gyrus of Ascl1CreERT2;CAGfloxStopTom mice at
different times after TAM induction. NeuN immunolabeling was performed to allow the identification of the GCL. Note the rise in the number of labeled cells from 3 to 14 dpi, characteristic of cell
proliferation. White dashed lines were added to facilitate visualization of dendrites among densely packed tagged neurons. Imaging conditions were selected to render similar fluorescence intensity
in all age groups. B, Examples of 22 and 35 dpi GCs obtained with identical imaging settings reveal a time-dependent increase in fluorescence intensity. Note the mixed population of high
and low Tom intensities at 35 dpi. C, Representative images of single optical sections, and quantification of Sox2 (left) and NeuN (right) levels. Sample sizes: �50 Tom � cells, with 2 mice
for each time point (1 mouse for 28 dpi). D, Left, Representative images display single optical sections of DCX (top) and Cb (bottom) expression in Tom � GCs at different times after
induction. Inset, Higher magnification of Tom � cells, to assess colocalization with DCX or Cb. Right, Quantification of DCX (top) and Cb (bottom) levels. Sample sizes: � 90 Tom � GCs,
with 2 or 3 mice for each time point. Error bars indicate mean � SEM. All scale bars represent 20 �m.
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computed by means of respective probability function for each
cell to present independently DCX or Cb (Fig. 5C). In this way,
the model rendered time-enclosed groups of new GCs, predicting
expression levels of DCX and Cb with good correspondence to
the experimental observations (Fig. 5D). The model indicates
that 
50% of Tom� cells correspond to an age within 5 d of
TAM induction, whereas the remaining cells are younger (Fig.
5B, right).

We conclude that Ascl1CreERT2 mice allow reliable birth dating
of newly generated GCs. Our results suggest that Tom� GCs
derive from lineages of Type 1 neural stem cells and Type 2 transit
amplifying progenitors. Thus, a largely enriched cohort of GCs
generated at the time of TAM injection (the wavefront of tagged
cells, most likely derived from Type 2 cells) is followed by
younger cohorts of GCs born at later times (most likely derived
from slowly dividing Type 1 cells).

Phenotypic characterization of adult-born GCs in
GlastCreERT2 mice
The glutamate transporter GLAST is localized on the cell mem-
brane of mature astrocytes, and it is also expressed in neural stem
cells in the adult brain. For the latter reason, GLAST has been
used as a marker for the study of adult neurogenesis (Bonaguidi
et al., 2012; DeCarolis et al., 2013). TAM injection in GlastCreERT2;
CAGfloxStopTom mice induced Tom expression in astrocytes and
adult-born GCs (Fig. 6A). Labeled neurons, located in the inner
GCL, displayed typical dendritic arborization of GCs. Indeed,
whole-cell recordings rendered mean values for intrinsic proper-
ties (Rinput, Cm, and Vrest) that were very similar to those obtained
for Ascl1CreERT2 mice (Fig. 6C–E; Table 1) and, thus, consistent

with reported data in the literature for adult-born GCs of related
age. Interestingly, the variance of Rinput values (a reliable param-
eter that best reflects different stages of neuronal maturation) was
barely larger than the dispersion observed for Ascl1CreERT2 mice
(Table 1).

Current-clamp recordings in Tom� GCs were used to char-
acterize spiking properties of new GCs in GlastCreERT2 mice (Fig.
7A). We analyzed the number of APs elicited by increasing cur-
rent injection and stimulus threshold, as well as spike amplitude,
half-width, and AHP amplitude in the first spike and all spikes
together (Fig. 7B–E). Consistent with the passive properties, spik-
ing characteristics also resembled Ascl1CreERT2 data. For instance,
all groups displayed an increasing number of APs in response to
progressive stimulus intensity, GCs of “28 dpi” group fired with
higher efficacy than other groups, and the current threshold in-
creased in a gradual way with the time after induction. In addi-
tion, both AP and AHP amplitudes increased and AP width
decreased in a gradual manner with GC age. As mentioned be-
fore, this progression in spike shape suggested AP maturation.
Thus, both passive and active membrane properties seemed to
develop gradually, and the exhibited results are consistent with
the reported data in the literature for adult-born GCs of related
age.

Functional study was complemented by phenotypic marker
analysis (Fig. 8). The proportion of Tom� cells expressing DCX
decreased with time after induction and, at the same time, the ex-
pression of Cb increased. In general, values are comparable with
reported data, although both DCX and Cb expression revealed a
slightly delayed maturation compared with that observed by retro-
viral labeling technique and also in Ascl1CreERT2 mice. This finding is

Figure 5. Computational simulation of adult neurogenesis in Ascl1CreERT2 mice. Neurogenesis results from the combination of a generation rate of newborn GCs (A, left; G(t)) and their survival
probability (A, right; S(n)). Generation was represented by an exponential function starting at 1 dpi (Tinflexion) with a decay time of 5 d (�neurogenesis). Tinflexion and �neurogenesis were the only
free parameters in the model. Survival probability was calculated based on experimental data (Brandt et al., 2003). The generation rate depends on the time after TAM induction, whereas the survival
probability is a function of cell age. The number of newborn cells N(t, n) whose age is n at the time t was calculated as N(t, n) 
 G(t � n) 	 S(n). The population of GCs at different times after TAM
induction has a substantial contribution of neurons whose age is close to the time after induction (B). To compute the expression of neuronal markers, we assumed that each labeled cell
independently expresses DCX or Cb with a probability represented by respective sigmoid functions (C), according to previous experimental data (Espósito et al., 2005; Piatti et al., 2011). The model
predicts expression levels of DCX (D, left, violet line) and Cb (D, right, red line) tightly close to experimental data (green bars, extracted from Fig. 4). For details on the model, see also Materials and
Methods.
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consistent with the labeling of a higher proportion of Type 1 cells
compared with Ascl1CreERT2-mediated labeling, which is more biased
toward Type 2 cells (Kim et al., 2011; Bonaguidi et al., 2012). It is
important to note that a small cohort of GCs expressing Tom were
detected in sections obtained from GlastCreERT2;CAGfloxStopTom mice
that did not receive TAM (nor had any contact with induced mice),
indicating that CreER-dependent recombination is slightly leaky in
this line. Nevertheless, the proportion of labeled cells was minor
(�6%; 8.6 � 6.8 cells/slice in noninduced mice vs 144 � 22 cells/
slice in induced mice), and thus did not alter substantially the ob-
tained results. In contrast, Tom� cells were never observed in brain
sections from Ascl1CreERT2;CAGfloxStopTom mice that did not receive
TAM induction.

Overall, these data show that the population of GCs express-
ing Tom is largely enriched in newly generated GCs born around
the time of TAM injection, highlighting both mouse lines as use-
ful tools for studying adult neurogenesis.

Discussion
We performed functional and phenotypic characterization of
adult-born GCs in Ascl1CreERT2;CAGfloxStopTom and GlastCreERT2;
CAGfloxStopTom mice. The obtained results indicate that both lines
allow reliable birth dating of newly generated GCs. The population
of GCs expressing Tom is largely enriched in adult-born GCs gener-
ated around the time of TAM injection, with more accurate age-
tagging in Ascl1CreERT2 than in GlastCreERT2 mice, with the latter
displaying a slightly delayed maturation curve for new GCs. There-
fore, these genetically modified mice are highly useful tools to label
newly generated GCs in experimental conditions that require selec-
tive age-tagging.

Adult neurogenesis faces now an inflection point in which in
vivo experiments are beginning to validate evidence obtained
in the field over the last 20 years on the role of adult-born GCs in
information processing (Drew et al., 2013; Kropff et al., 2015).

Figure 6. Intrinsic properties of adult-born GCs in GlastCreERT2 mice. A, Confocal image of a 60-�m-thick hippocampal section depicting adult-born GCs (red) at 49 dpi. NeuN immunofluorescence
(blue) allows visualizing the GCL, CA1, CA2, and CA3 pyramidal layers. Dendrites extend through the molecular layer (ML), and mossy fibers project across the hilus (H) to CA3, via the stratum lucidum.
There are scattered Tom � astrocytes throughout the section. Scale bar, 100 �m. B, Tom indelible expression was induced by TAM administration, and animals were killed at different ages to
perform electrophysiological recordings in acute slices. C–E, Resting potential (C), input resistance (D), and capacitance (E) were measured in fluorescent adult-born neurons and unlabeled mature
GCs. Sample sizes (presented as neurons/mice) were 38/5 (22 dpi), 37/6 (25 dpi), 37/4 (28 dpi), 33/4 (49 dpi), and 28/19 (mature). ***p � 0.001 compared with mature GCs (Kruskal–Wallis test
followed by a post hoc Dunn’s test). **p � 0.01 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s test). *p � 0.05 compared with mature GCs (Kruskal–Wallis test
followed by a post hoc Dunn’s test). ns, Not significant. Red lines indicate mean � SEM.

Table 1. Membrane resistance in adult-born GCs labeled using different approachesa

Age (dpi)

Input resistance

Ascl1CreERT2 mice GlastCreERT2 mice

Retroviral labeling

(Mongiat et al., 2009) (Gu et al., 2012)

Mean � SD (M�) Dispersion (%) Mean � SD (M�) Dispersion (%) Mean (M�) Mean (M�)

22 990 � 470 48 1040 � 640 62 950 890
25 840 � 400 47 790 � 450 57 — —
28 560 � 200 36 660 � 250 38 450 530
49 380 � 100 26 380 � 120 32 240 270
Mature 324 � 95 29 310 � 110 35 220 —
aInput resistance (mean � SD) measured in Ascl1CreERT2 mice and GlastCreERT2 mice for different groups. Reported data use retroviral labeling. Dispersion was calculated as SD/mean value (%).
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Thymidine analogs, such as BrdU, CldU, and EdU, have long
been used to label adult-born GCs (Ming and Song, 2005). Al-
though this technique has the advantage of labeling large num-
bers of neurons, it does not allow monitoring cells in slice
preparations or in vivo. Retroviral labeling has been widely used
for the study of adult-born GC properties in electrophysiological
slices, and it is the preferred tool for labeling enclosed cohorts

of newborn GCs (Ming and Song, 2005). However, the retro-
viral approach has the disadvantage of labeling few neurons
per animal, and those neurons are restricted to areas neigh-
boring the injection sites. Knock-in lines in which reporter
fluorophores are under the control of key promoters (e.g.,
Nestin GFP; DCX GFP) have successfully been used, but labeling
is transient and, usually, fluorescent signals are weak (Hadjan-

Figure 7. Spiking properties of adult-born GCs in GlastCreERT2 mice. A, Representative whole-cell current-clamp recordings in GCs at different ages, as indicated. Spiking was elicited by
depolarizing current steps of increasing amplitude (500 ms, 0 –130 pA, 10 pA steps). Panels represent example traces at the indicated current steps. Calibration: left, 100 mV; right, 20 mV; 100 ms.
B, Repetitive firing quantified as the number of spikes elicited by increasing current steps. C, Current threshold to elicit the first spike for the experiments shown in B. D, E, AP amplitude, AHP
amplitude, and AP half-width were measured for the first spike (D) and all identified spikes (E). ***p � 0.001 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s test).
**p � 0.01 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s test). *p � 0.05 compared with mature GCs (Kruskal–Wallis test followed by a post hoc Dunn’s test). ns,
Not significant. Sample sizes (presented as neurons/mice) were 36/5 (22 dpi), 37/6 (25 dpi), 35/4 (28 dpi), 32/4 (49 dpi), and 27/16 (mature). Red lines indicate mean � SEM.
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tonakis et al., 2003; Ming and Song, 2005). Inducible forms of
the Cre recombinase (CreERT2) allow controlling the onset of
labeling through TAM administration with high and stan-
dardized levels of reporter expression (Madisen et al., 2010).
Here we characterized adult-born GCs in two genetically
modified mice lines, Ascl1CreERT2 and GlastCreERT2, already be-
ing used to study adult neurogenesis.

Ascl1 is expressed in dividing progenitor cells and promotes
their proliferation, specification, and differentiation into neu-
rons in the adult hippocampus (Bertrand et al., 2002; Castro et
al., 2011; Bonaguidi et al., 2012; Andersen et al., 2014). In
Ascl1CreERT2 mice, administration of TAM induces Cre-mediated
recombination in transient-amplifying and neural stem cells.
Here we showed that TAM induction in Ascl1CreERT2 mice labeled
a cohort of GCs within the DG that displayed the typical temporal
progression of electrophysiological and phenotypic properties of
adult-born GCs. The presence of radial glia-like Tom� cells dur-
ing a few days after TAM administration is consistent with the
expression of Ascl1 in Type 1 neural stem cells (Kim et al., 2011;
Andersen et al., 2014). However, this population of cells was
largely decreased 10 d after TAM injection, suggesting that la-
beled radial glia-like cells labeled have already been committed to
enter fast divisions followed by neuronal differentiation (Kim et
al., 2011; Andersen et al., 2014). We presented a simple mathe-
matical model, whose main parameters were fitted by previous
experimental data (Brandt et al., 2003; Espósito et al., 2005; Piatti
et al., 2011), describing neuronal generation in Ascl1CreERT2 mu-
rine line. This model predicted very well the phenotypic data
presented here, and it will be a valuable tool to design and inter-
pret future experiments with this and other mouse lines after
minor modifications. In addition, adjusting TAM induction
from a single low dose to multiple injections at large doses in
Ascl1CreERT2 mice may render a substantially expanded dynamic
range for the number of Tom� cells, from single isolated cells
(Bonaguidi et al., 2011) to thousands of neurons (data not
shown). This tool will also allow detecting substantial numbers of
new neurons even in mice with low rates of neuronal production,
such as in aging conditions.

The glutamate aspartate transporter GLAST is highly ex-
pressed in astrocytes and radial glia-like stem cells, even in the
quiescent state. TAM administration in GlastCreERT2 mice labeled
astrocytes in the whole brain and adult-born neurons in the DG
(Mori et al., 2006). TAM-induced Tom� GCs within the DG
were easily identified by morphology and, thus, distinguished
from astrocytes. Electrophysiological analysis of Tom� GCs in
GlastCreERT2 mice indicated that functional characteristics were
comparable with those in the Ascl1CreERT2 line and retroviral la-
beling (Table 1), resembling the typical maturation progress of
adult-born neurons. The slightly larger dispersion observed in
input resistance values for GlastCreERT2 line compared with
Ascl1CreERT2 line reflects the lineage tracing from slowly dividing
neural stem cells rather than Type 2 progenitors, similarly to what
has been reported for the NestinCreERT2 line (Dieni et al., 2013).
Consistent with this notion, DCX and Cb analysis revealed a
slight shift toward more immature states.

It is important to underline that, as a consequence of GLAST
expression, GlastCreERT2 mice allow labeling of large populations
of new GCs with low TAM doses. In contrast, because Ascl1 is
expressed within a more restricted time window in neuronal dif-
ferentiation, Ascl1CreERT2 mice require more intensive induction
schemes but eventually allow single-cell fate mapping and
sharper resolution in regard to neuronal age.

Well-characterized tools allow the design of reliable exper-
iments and accurate interpretation of the data. Combined
with appropriate optogenetic and chemogenetic approaches,
Ascl1CreERT2 and GlastCreERT2 mice will continue to contribute
in the clarification of the role of adult neurogenesis in hip-
pocampal function, particularly, under in vivo conditions.
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C, Sommer L, Götz M (2008) Adult neurogenesis requires Smad4-
mediated bone morphogenic protein signaling in stem cells. J Neurosci
28:434 – 446. CrossRef Medline

DeCarolis NA, Mechanic M, Petrik D, Carlton A, Ables JL, Malhotra S,
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