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Abstract
The existing mismatch between the great demand for 
liver transplants and the number of available donor 
organs highlights the urgent need for alternative 
therapeutic strategies in patients with acute or chronic 
liver failure. The rapidly growing knowledge on stem 
cell biology and the intrinsic repair processes of the 
liver has opened new avenues for using stem cells 
as a cell therapy platform in regenerative medicine 
for hepatic diseases. An impressive number of cell 
types have been investigated as sources of liver 
regeneration: adult and fetal liver hepatocytes, intra
hepatic stem cell populations, annex stem cells, 
adult bone marrow-derived hematopoietic stem cells, 
endothelial progenitor cells, mesenchymal stromal 
cells, embryonic stem cells, and induced pluripotent 
stem cells. All these highly different cell types, used 
either as cell suspensions or, in combination with 
biomaterials as implantable liver tissue constructs, 
have generated great promise for liver regeneration. 
However, fundamental questions still need to be 
addressed and crit ical hurdles to be overcome 
before liver cell therapy emerges. In this review, 
we summarize the state-of-the-art in the field of 
stem cell-based therapies for the liver along with 
existing challenges and future perspectives towards a 
successful liver cell therapy that will ultimately deliver 
its demanding goals.
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Core tip: Liver transplantation is the only effective 
treatment for end-stage liver diseases, but its appli
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cation is limited mainly due to donor shortage. In 
order to fulfil the unmet medical needs in the field, 
alternative, cell-based therapies for the treatment of 
end-stage hepatic diseases are under investigation. 
This review aims to summarize the state of the art on 
stem cell-based approaches towards liver regeneration 
as well as to critically discuss and highlight new 
perspectives and challenges.
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INTRODUCTION
The liver possesses a remarkable capacity to rege­
nerate in response to injury; however, in severe 
cases its regenerative capacity prove insufficient and 
hepatic injury may progress to end-stage disease 
and subsequent liver failure. Orthotopic liver trans
plantation is currently the only effective treatment for 
patients with end-stage liver diseases, including acute 
liver failure and hepatic cirrhosis. Nevertheless, donor 
shortage and waiting list mortality, postoperative 
morbidity and mortality, high costs and long-term side 
effects severely limit its application[1,2]. Hepatocyte 
transplantation has been suggested as an alternative 
approach to liver transplantation because mature 
hepatocytes have been traditionally recognized as the 
major contributors to liver repair and are functionally 
the most robust cell type for liver cell therapy[3,4]. 
Indeed, many preclinical and clinical studies have been 
conducted using this approach to cure metabolic and 
end-stage liver diseases[5]. However, the widespread 
application of hepatocyte transplantation is limited by 
organ unavailability, the negative impact of cell culture 
on hepatocyte viability, function and engraftment[5,6], 
as well as hepatocyte susceptibility to cryopreservation 
damage inducing cell rupture, necrosis, and apoptosis 
after thawing[7,8]. Therefore, alternative therapies 
are needed to supplement organ transplantation 
and bridge the gap between the need for liver trans
plantation and the lack of a timely available cadaveric 
graft.

Adult Liver Stem/Progenitor Cells
When hepatocyte proliferation is impaired, deficient, 
or overwhelmed by severe liver injury, bipotent 
intrahepatic stem cell (SC) populations, known as 
resident liver progenitor cells (LPC) in humans or oval 
cells (OCs) in rodents, emerge and become activated, 
expand, and actively contribute to the regenerative 
process by giving rise to hepatocytes and biliary 
epithelial cells[9-12].

The term “oval” cell is used to describe small, 
rounded proliferating cells with a large nuclear to 
cytoplasmic ratio which reside in the terminal branches 
of the intrahepatic biliary tree, the Canals of Hering, 
considered along with the space of Disse as the 
putative hepatic SC niches. OC/LPC coexpress biliary 
and hepatocytic markers and also hematopoietic 
progenitor cell antigens[13,14].

Regarding the mechanism controlling OC fate 
in response to liver injury both in humans and in 
murine models, it has been proposed that during 
LPC/OC-mediated liver regeneration, an “inductive” 
niche is formed around OCs, constituting the ductular 
inflammatory reaction. This niche is populated by 
recruited macrophages and myofibroblasts and requires 
new synthesis or remodeling of extracellular matrix to 
facilitate appropriate OC/LPC expansion and ultimately 
biliary and hepatocyte regeneration[15]. The role of 
Wnt and Notch signaling in hepatic cell fate has been 
recently recognized through the proliferation and 
differentiation of human LPCs into hepatocytes or 
cholangiocytes respectively, providing potential targets 
for future targeted-therapies[15,16] for the liver.

The precise identification of endogenous liver SCs 
and of the mechanisms that govern their proliferation 
and differentiation into mature hepatocytes in the 
case of severe parenchymal extinction could facilitate 
their in vitro and in vivo maturation to hepatocytes 
and their application in clinical practice. This process 
was histologically identified by the description of 
regenerative nodules, the so called “buds” composed of 
small clusters of hepatocytes admixed with ductules[17]. 
These “buds” were suggested to be composed of new 
hepatocytes derived from SCs located in the small bile 
ducts and the canals of Hering, thus appearing to be 
the structures that contain SC-derived hepatocytes[18]. 
The progressive evolution of buds from stem/pro
genitor cells to integrated mature liver parenchyma 
was described in a recent study using various ana
tomic and immunohistochemical markers including 
epithelial cell adhesion molecule (EpCAM), K19, CD34, 
glutamine synthetase, and Ki-67[19].

Interestingly, hepatic stellate cells (HSTCs), 
considered as liver-resident mesenchymal cells[20], 
have recently been shown to represent a source of 
liver progenitor cells. Indeed, an isolated population 
of retinoid-storing hepatic stellate cells were able to 
contribute to liver regeneration through differentiation. 
HSTCs gave rise to parenchymal and bile duct cells 
and ameliorated the glucuronidation defect in GUNN 
rats, thus providing functional hepatocytes[21].

FETAL LIVER STEM CELLS
Fetal liver SCs appear during embryogenesis, after 
the establishment of the hepatic endoderm and when 
the liver bud is growing. Hepatoblasts, resident cells 
in the developing liver bud, express the signature 
marker α-fetoprotein and are considered bipotential, 
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being able to give rise to both mature hepatocytes 
and bile duct epithelial cells (cholangiocytes)[22]. 
Many experimental studies have focused on the 
regenerative capacity of fetal hepatic progenitor cells  
(HPCs) as, in contrast to adult hepatocytes, fetal 
liver SCs can be readily isolated while they are highly 
proliferative, less immunogenic, and more resistant to 
cryopreservation[22-25], and as such, could be of clinical 
benefit in the treatment of liver diseases.

Indeed, their capacity to repopulate the liver upon 
transplantation has been demonstrated in animal 
models[26-28] and clinical trials (Table 1)[29,30]. In a 
clinical study, 25 patients with liver cirrhosis of different 
etiologies, were infused with human fetal liver-
derived SCs. The procedure proved safe and efficient, 
offering a potentially supportive modality to organ 
transplantation in the management of liver diseases[29]. 
In another study, immune-sorted, human fetal biliary 
tree cells were safely administered to two patients with 
advanced liver cirrhosis who were monitored through 
a 12-mo follow-up period. Immunosuppressants were 
not required, and the patients did not experience any 
adverse event or immunological complications. Both 
patients showed biochemical and clinical improvement 
within the first 6 mo and one maintained the benefits 
for 12 mo[30].

The ability of fetal liver SCs to expand clono
genically in vitro, their pluripotency, and the evidence 
that they yield mature liver cells, encourage their 
clinical utility for transplantation and generation of 
bioartificial livers. However, ethical issues and the 
possibility of teratoma/teratocarcinoma formation 
in the recipients, justify their reserved use mainly in 
preclinical or pilot studies.

Extrahepatic stem/progenitor 
cells
Apart from endogenous liver SCs, several populations 
of exogenous stem/progenitor cells have shown 
potential to contribute to the liver healing process and 
are discussed below.

Embryonic stem cells
Human embryonic SCs (ESCs) are pluripotent cells, 
derived from the inner cell mass of blastocyst stage 
embryos, having the ability to self-renew indefinitely 
while maintaining the potential to give rise to all cell 
types in the human body when provided with the 
appropriate differentiation signals[31]. Because of this 
plasticity and the unlimited capacity for self-renewal, 
ESC regenerative therapies have been proposed for 
tissue replacement after injury or disease.

ESCs are able to differentiate efficiently into 
hepatocyte-like cells in vitro, producing cells which 
possess some of the properties of mature hepa­
tocytes[32-34]. ESC-derived hepatocyte-like cells 
contribute to the recovery of injured liver tissue in 

mice, not only by cell replacement but also by delive
ring trophic factors that support endogenous liver 
regeneration[32,35]. In vitro ESC-derived hepatocytes, 
bearing the typical mature hepatocyte morphology and 
expressing hepatocyte-specific genes, colonized liver 
tissue upon transplantation and rescued liver-injured 
mice from death[36].

ESCs provide a valuable tool for studying the 
molecular basis of hepatocyte differentiation and 
form the basis for cell therapies. However, despite 
remarkable progress and the development of sophi
sticated differentiation protocols mimicking the normal 
embryonic development, ESC-derived “hepatocyte-like” 
cells usually fail to fully function as “true” hepatocytes. 
In addition, the risk for immunological rejection of the 
transplanted cells as well as ethical and legal concerns, 
hamper their use as cell replacement therapy[37,38].

Induced pluripotent stem cells
Induced pluripotent SCs (iPSCs) are embryonic-like 
SCs produced in vitro via reprogramming of somatic 
cells through the transient, forced expression, of key 
transcription factors such as OCT4 (O), SOX2 (S), 
KLF4 (K), and c-MYC (M) (so called OSKM cocktail) 
or O, S, NANOG (N) and LIN28 (L) (so called OSNL), 
traditionally by using, permanently integrated, 
retroviral vectors[39,40].

As factor expression is not required beyond the 
end of the reprogramming process and the semi-
random integration of retroviral vectors has been 
associated with insertional mutagenesis[41], several 
investigators have explored techniques for iPSC 
generation using more clinically relevant methodologies 
of reprogramming, such as excisable vector systems[42], 
non-integrating DNA vectors[43], DNA-free methods[44,45], 
and small molecules[46].

iPSCs possess unique characteristics of pluripotency 
that render them extraordinary tools for cell and 
gene therapies, such as (1) unlimited self-renewal 
capacity in vitro, a feature that allows their indefinite 
maintenance in culture as cell lines; and (2) potential 
for directed differentiation to any cell type. In addition 
to their potential for regeneration, iPSCs provide a 
novel platform for in vitro disease-modeling[47] and 
drug-screening[48].

It has been shown that iPSCs can be efficiently 
induced to differentiate into hepatocyte-like cells 
(HLCs)[49-52], whereas transplantation of iPSC-derived 
HLCs reversed lethal fulminant hepatic failure, enhanced 
liver regeneration, and improved the performance 
status of NOD-SCID[52], fumarylacetoacetate hydrolase-
deficient[53], or CCl4-injured[54] mice. In an acute 
hepatic failure model, iPSCs were reprogrammed 
from human dental pulp-derived fibroblasts into iPSCs 
(DP-iPSCs) capable of differentiating into HLCs (iPSC-
HLCs). An injectable carboxymethyl-hexanoyl chitosan 
hydrogel (CHC) with sustained hepatocyte growth 
factor (HGF) release (HGF-CHC) was developed to 
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Ref. Cell Source No. of patients/
administration route

Disease cause No. of cells infused Follow-up 
period

Outcomes

29 Fetal liver-SCs 
(EpCAM+)

25: hepatic artery End-stage liver 
cirrhosis

80 × 106 6 mo Improved liver function and MELD 
score

30 Fetal liver-SCs 
(EpCAM+)

2: hepatic artery Advanced 
cirrhosis

42 × 106 and 60 × 106 12 mo Biochemical and clinical 
improvement

133 BM-MSCs 4: peripheral vein Decompensated 
liver cirrhosis

31.73 × 106 12 mo Well tolerated and safe procedure; 
improved liver function

134 MSCs from iliac crest 8: peripheral or portal 
vein

End-stage liver 
disease

30 × 106-50 × 106 24 wk No adverse effects; improved MELD 
and liver function

135 BM-MSCs stimulated to 
hepatic lineage

20: control
10: intrasplenic
10: intrahepatic

post-HCV end-
stage liver disease 

2 × 107 in a total of 2 × 
108 MNCs

6 mo Improved ascites, MELD and 
CP score; no difference between 

intrahepatic and intrasplenic groups
136 BM-MSCs 105: control

53: treated/hepatic 
artery

post-HBV liver 
failure 

3.4 × 108-3.8 × 108 192 wk No serious side effects or 
complications; improved ALB, TBIL, 

PT and MELD score
137 Differentiated BM-MSCs 

vs undifferentiated 
10: control 

15: treated/intravenous 
post-HCV liver 

cirrhosis 
1 × 106/kg body weight 6 mo Improved MELD score, BIL, ALB and 

PC
138 BM-MSCs 20: intrasplenic post-HCV liver 

cirrhosis
10 × 106 6 mo Decreased TBIL, AST, ALT, PT; 

improved ALB, PC, PT, INR
139 BM-MSCs 11: hepatic artery Alcoholic cirrhosis 5 × 107 injected twice 12 mo No significant side effects; 

histological improvement; improved 
CP score

140 UC-MSC 15: control
30: treated/intravenous

post-HBV 
decompensated 
liver cirrhosis

0.5 × 106/kg body 
weight

1 yr No significant side effects; improved 
liver function and MELD score; 

reduced ascites
141 UC-MSC 19: control

24: treated/intravenous
post-HBV acute-
on-chronic liver 

failure 

0.5 × 106/kg body 
weight

72 wk No significant side effects; improved 
liver function and MELD score; 

increased survival
142 UC-MSC 7: peripheral vein Primary biliary 

cirrhosis
0.5 × 106/kg 48 wk No obvious side-effects; decreased 

serum ALP and GGT
143 Autologous MSCs 12: control 

15: treated/peripheral 
vein

Decompensated 
cirrhosis

195 × 103 12 mo No beneficial effect

166 BM-MNCs 9: peripheral vein Liver cirrhosis 5.20 +/- 0.63 × 109 
MNCs

24 wk No major adverse effects; improved 
ALB, CP scores

175 G-CSF mobilization 40: controls
8: treated/subcutaneous

Severe liver 
cirrhosis

G-CSF: 5 μg/kg every 
12 h for 3 d

8 mo No adverse events; improved MELD 
score

176 Autologous
G-CSF mobilized CD34+ 

cells

2: peripheral vein End-stage liver 
disease

G-CSF :10 μg/kg per 
day: 4-5 d/CD34+ cells: 
2.31 × 106/kg and 4 × 

106/kg

30 to 34 
mo

Safe and well tolerated procedure; 
improved CP and MELD scores

177 Autologous
G-CSF-mobilized CD34+ 

cells

3: portal vein
2: hepatic artery

Liver insufficiency CD34+ cells: 1 × 106 to 2 
× 108

60 d No complications or specific side 
effects; improved ALB

178 G-CSF mobilization 11: control
13: treated/

subcutaneous

Alcoholic cirrhosis G-CSF: 10 μg/kg per 
day 2 times daily for 5 

d

12 wk Effective CD34+ cells mobilization; 
increased HGF; induced HPC 

proliferation
179 G-CSF mobilization 24: control

23: treated/
subcutaneous

Acute-on-chronic 
liver failure

G-CSF: 5 μg/kg for 12 
doses

60 d Increased survival; reduced CTP, 
MELD and SOFA scores

180 G-CSF mobilization 23: control
23: treated/

subcutaneous

Severe alcoholic 
hepatitis

G-CSF: 5 μg/kg every 
12 h for 5 d

3 mo Safe and effective HSCs mobilization; 
improved liver function and survival

181 Experimental PA-PE, 
combined with G-CSF

1: subcutaneous Acute-on-chronic 
liver failure

10 μg/kg per day for 5 
d 

2 mo Rapid and long lasting clinical 
improvement; HSCs mobilization 

and a ductular reaction
182 G-CSF mobilization 24: subcutaneous Acute on chronic 

liver failure
G-CSF: 5 and 15 μg/kg 

per day for 6 d
Safety and feasibility of G-CSF 

mobilization; no clinical/biochemical 
improvement

183 G-CSF mobilization 18: subcutaneous Liver cirrhosis increasing doses of 
G-CSF daily for 7 d

3 wk No severe adverse events; no liver 
function significant modification

184 Autologous G-CSF 
mobilized CD34+ cells

1: portal vein Drug-induced 
hepatitis

G-CSF: 15 μg/kg/for 5 
d CD34+ cells: 5 × 106

30 d Improved liver function; wide areas 
of regeneration in liver biopsy
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185 Autologous G-CSF-
mobilized CD34+ SCs

2: hepatic artery
3: portal vein 

Chronic liver 
disease

G-CSF: 526
μg/d: 5 d, CD34+ cells: 

1 × 106-2 × 108

6-18 mo No side effects; improved BIL and 
ALB

186 Autologous G-CSF-
mobilized cultured 

CD34+ SCs

9: hepatic artery Alcoholic liver 
cirrhosis

520 μg/d: 5 d/mean 
TNCC:229.7 × 106

12 wk No side effects; improved BIL, ALT, 
AST, CP score and ascites

187 PBMCs from G-CSF 
mobilized PB

20: control 20: treated Decompensated 
liver cirrhosis

5-10 μg/kg per day for 
4 d. PBMC: 107-108/kg

6 mo No major adverse effects; improved 
liver function

G-CSF: Granulocyte-colony-stimulating factor; TBIL: Total bilirubin; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; CP: Child-Pugh; 
BM: Bone marrow; UC: Umbilical cord; HSC: Hematopoietic stem cell; HGF: Hepatocyte growth factor; EpCAM: epithelial cell adhesion molecule; MSCs: 
mesenchymal stromal cells; HCV: hepatitis C virus; PT: Prothrombin time; ALB; Albumin; PC: Platelet count; INR: International normalized ratio; PA-PE: 
Experimental plasmapheresis with plasma-exchange; MELD: Model for End-stage Liver Diseases; ALP: Alkaline phosphatase; GGT: g-glutamyl transferase; 
UC-MSC: Umbilical cord blood-mesenchymal stromal cells; BM-MSCs: Bone marrow-mesenchymal stromal cells.

improve iPSC-HLC engraftment. Intrahepatic delivery 
of HGF-CHC-iPSC-HLCs rescued liver function and the 
recipients through high anti-oxidant and anti-apoptotic 
activity that shrinked hepatic necrotic areas[55]. 
Engineered donor grafts derived from iPSCs, including 
re-cellularized biomatrix[56], and liver buds produced 
from iPSCs[57] may someday provide “autologous” 
organs for liver transplantation, thus highlighting their 
enormous potential for treating liver failure.

In addition to acquired liver diseases, HLC differ
entiation from iPSCs isolated from patient somatic 
tissues could provide patient-specific hepatocyte 
sources for treatment of inherited liver diseases, 
combining ex vivo gene correction and cell transplan
tation[58].

iPSCs have renewed hopes for regenerative 
medicine because they could deliver personalized 
therapies, and their production from somatic, patient-
specific cells, without the use of embryonic tissues 
or oocytes, may overcome ethical concerns and the 
risk of rejection. Despite these hopes for iPSCs, the 
issues that still need to be addressed before moving 
this exciting new technology from proof of concept to 
the clinic are: (1) the optimal reprograming method, 
using clinically relevant methodologies; (2) the avoi
dance of teratoma formation and tumorigenicity; (3) 
the development of novel and rapid differentiation 
protocols for the generation of mature cell types from 
iPSCs by cost-efficient manufacturing procedures; and 
(4) the long-term safety, tolerability, and efficacy of 
the iPSC-based treatments.

Annex stem cells
Annex SCs derived from umbilical cord, umbilical 
cord blood, placenta, and amniotic fluid (AF) are an 
easily accessible source of pluripotent SCs capable of 
giving rise to hematopoietic, epithelial, endothelial, 
and neural cells both in vitro and in vivo[59], thus 
constituting an attractive target for cell-based therapy. 
Human umbilical cord blood SCs, when infused 
into NOD-SCID mice with induced liver damage, 
can differentiate into HLCs in the absence of fusion 
events[60], boost regeneration and reduce mortality[61]. 
In vitro expanded and differentiated umbilical cord 

SCs exhibited hepatocyte-like morphology, expressed 
upregulated levels of markers of hepatic lineage, 
and were capable of in vivo liver repopulation and 
expression of hepatic markers upon transplantation 
into mice[62,63].

Placenta-derived multipotent cells have also been 
shown to differentiate into multilineage cells including 
HLCs. These cells not only expressed characteristics 
of human liver cells, but also demonstrated several 
functions of typical hepatocytes[64,65].

Extrahepatic Adult Bone Marrow 
Stem Cells
As already mentioned, liver regeneration is mainly an 
endogenous process, driven by mature hepatocytes[3,4] 
and resident intrahepatic SC populations[9,10]. Bone 
marrow (BM) is the largest reservoir of pluripotent SCs 
in adults and traditionally considered as giving rise 
to only hematopoietic cell lineages. This concept was 
challenged by reports demonstrating that BM-derived 
SCs (hematopoietic, mesenchymal and endothelial 
cells) can generate a variety of adult cell types that 
express non-hematopoietic cell markers and contribute 
to the liver healing process after tissue injury[66-72].

endothelial progenitor cells
endothelial progenitor cells (EPCs) may contribute 
to the repair and regeneration of the damaged 
liver mainly by promoting the secretion of factors 
supportive of the host’s endogenous repair mecha
nisms. EPC transplantation halted established liver 
fibrosis in rats by suppressing activated hepatic stellate 
cells, increasing matrix metalloproteinase activity, 
and regulating hepatocyte proliferation[73]. BM-derived 
liver sinusoidal EPCs recruited to the injured rat liver, 
promoted hepatocyte proliferation and contributed 
to organ recovery[74]. Antifibrogenic and regenerative 
effects of engrafted EPCs, in transplanted rats, were 
mediated by increased expression of endogenous and 
exogenous growth factors, such as HGF, transforming 
growth factor (TGF)-α, epidermal growth factor, and 
vascular endothelial growth factor which triggered the 
generation of a new vascular network and promoted 
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hepatocyte proliferation, ultimately resulting in liver 
regeneration[75-77].

Mesenchymal stromal cells
Bone marrow stroma contains a subset of mesodermal 
progenitor cells, named mesenchymal stromal cells 
(MSCs) which are fibroblast-like, plastic-adherent, 
multipotent cells rapidly expanding in vitro under 
standard culture conditions. MSCs are most frequently 
isolated from bone marrow (BM-MSCs)[78], but can also 
be obtained from a variety of tissues including umbilical 
cord blood (UC-MSCs)[79], trabecular bone[80], synovial 
membrane[81], adipose tissue (AT-MSCs)[82], placenta[83], 
AF-MSCs[84], fetal lung (FL-MSCs), and blood[85]. 
MSCs have the capacity to differentiate into tissues of 
mesodermal origin (bone, cartilage, fat) but also to 
give rise to cells from unrelated embryonic layers such 
as nerve cells and hepatocytes. In addition, they have 
low immunogenicity and possess immunomodulatory 
properties which allow them to evade the host immune 
surveillance[86]. Because of these features, MSCs have 
been proposed as a cell therapy source with increased 
therapeutic potential for a wide range of diseases[87-91], 
including acute and chronic liver diseases. Studies 
conducted both in rodents[92-94] and humans[95-100] have 
shown that MSCs derived from BM, AT, AF, dental pulp, 
UC, and FL under specific culture conditions, are able 
to transdifferentiate in vitro into HLCs which express 
genes and fulfill some metabolic functions typical of 
hepatocytes.

BM-MSCs, the first and the best characterized 
source reported to contain MSCs, AT-MSCs, an abun
dant and easily accessible source of MSCs, and UC-
MSCs, obtainable by the least invasive method, have 
been tested comparatively in terms of morphology, 
enrichment in MSCs following isolation and expansion, 
colony formation, multilineage differentiation capacity, 
and immune phenotype. While there were no distinct 
morphological or immune phenotypic features among 
the three sources of MSCs, AT provided a 100% 
success rate in MSC isolation and the highest colony 
frequency, while UC-derived MSCs had the highest 
rates of proliferation in culture, suggesting UC and AT 
as attractive alternatives to BM for obtaining MSCs[101].

MSCs and acute liver failure
The therapeutic effect of MSCs in models of acute liver 
failure has been elucidated in various studies. MSCs 
derived from BM, placenta, and AT showed potential 
for differentiation into hepatocytes in vitro and in vivo, 
ameliorated liver damage, reduced mortality, and 
exerted immunoregulation by suppressing intrahepatic 
natural killer T cells and inhibiting inflammatory 
signaling, in animal models of induced acute liver 
failure[102-106].

When AT-, UC blood-, and human BM-derived 
MSCs, either as undifferentiated MSCs or as MSC-
derived HLCs (DHLCs), were compared for their 

capacity to reverse acute fulminant hepatitis in an 
animal model, it was demonstrated that undiffer
entiated MSCs and DHLCs from AT and BM sources 
equivalently regenerated the damaged liver, suggesting 
that hematopoietic pre-differentiation of MSCs may 
not be necessary for liver repopulation. In addition, 
because of the abundance and accessibility of AT-
MSCs as well as their consistent hepatocyte expression 
profile upon differentiation, AT may be an excellent SC 
source for liver-regenerative procedures[107].

The conversion of MSCs into HLCs has been 
repeatedly demonstrated[108,109], and effort has been 
made to characterize hBMSC-derived hepatocytes in 
vitro and in vivo. Towards this end, tissue inhibitor of 
metalloproteinases 4 and follistatin expression have 
been associated with transdifferentiation events and 
suggested as two potential novel biomarkers for the 
characterization of hBMSC-derived hepatocytes[110]. 
However, accumulating evidence supports the notion 
that the therapeutic effects of MSCs in acute liver 
injury are mediated to a large degree via paracrine 
mechanisms releasing trophic and immunomodulatory 
factors, rather than true transdifferentiating events. 
This is reinforced from experiments with MSC-con
ditioned medium where soluble factors contained in 
MSC-conditioned medium (interleukin-6, VEGF, HGF, 
and insulin-like growth factor binding proteins) seem 
responsible for reduced hepatocyte apoptosis[111], 
downregulation of proinflammatory cytokines, increased 
hepatocyte proliferation[112] and decreased mononuclear 
cell infiltration in the liver[113]. Indeed, secreted mole
cules in culture supernatant from both hFL-MSCs and 
hepatocyte progenitor-like cells derived from hFL-
MSCs had a therapeutic effect in a CCl4-induced acute 
liver injury model[114]. In addittion, transplantation of 
different origin MSCs rescued acute liver failure and 
repopulated mouse liver through paracrine effects that 
reduced the inflammatory response, inhibited apoptosis 
in the liver, and stimulated endogenous regeneration 
mechanisms[115,116].

MSC-based therapy for liver cirrhosis
The beneficial effect of MSCs in liver cirrhosis has 
been extensively demonstrated both in animal and 
clinical studies. Infused BM-MSCs have been shown to 
engraft into host liver and ameliorate fibrosis in a time-
dependent manner by decreasing α-smooth muscle 
actin expression, reducing collagen deposition, and 
improving recovery of damaged hepatocytes in animal 
models of experimental liver fibrosis[117-119]. Recently, 
AT-MSCs have attracted much interest as liver repo
pulating cells in different models of cirrhosis. AT-
MSCs, transplanted intraportally, rather than through 
the tail vein, inhibited the proliferation and activation 
of hepatic stellate cells in vitro and ameliorated 
liver fibrosis in CCl4-treated rats by improving the 
microcirculation of the fibrotic liver[120,121]. In a murine 
steatohepatitis cirrhosis model, injected AT-MSCs 
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resided in the liver and expressed albumin, ultimately 
restoring albumin expression in hepatic parenchymal 
cells. Gene expression profiling of AT-MSCs revealed 
that the amelioration of hepatic fibrosis in this model 
correlated with induction of anti-inflammatory and 
regeneration/repair pathways as well as suppression of 
pathogenic helper T-cell activation[122].

In contrast to the similar hepatic integration 
between undifferentiated AT-MSCs and AT-MSCs pre-
differentiated to HLCs shown in acute liver injury 
models[107], other liver injury models suggest that pre-
differentiation of AT-MSCs to HLCs may facilitate liver 
engraftment. In a xenogenic transplantation model of 
liver regeneration, long-term engraftment of human 
AT-MSC-derived HLCs was demonstrated and was 
significantly improved when in vitro pre-differentiated 
AT-MSCs, instead of undifferentiated MSCs were used, 
reaching repopulation rates of more than 10% along 
with functional hepatic regeneration[123].

Fibroblast growth factor (FGF)-pretreatment of 
AT-MSCs facilitated their transdifferentiation towards 
hepatic lineage in vitro, and the infused FGF-pretreated 
AT-MSCs reduced hepatic fibrosis in mice[124]. In 
chronic liver injury models, FGF-treated AT-MSCs led 
to enhanced hepatocyte proliferation and induction 
of hepatic stellate cell apoptosis through activation of 
JNK-p53 signaling in hepatic stellate cells[125], while BM-
MSCs pretreated with hepatocyte growth factor (HGF) 
and FGF4 or with injured liver tissue showed increased 
homing and hepatic differentiation ability providing 
therapeutic benefit in injured mice[126,127].

It seems that MSCs exert their therapeutic effects 
predominantly by releasing trophic and immuno
modulatory factors rather than trans-differentiating 
into parenchymal hepatocytes. MSCs modulate the 
function of activated stellate cells via paracrine secretion 
of IL-10, HGF and Nerve Growth Factor, providing a 
plausible explanation for the protective role of MSCs in 
liver inflammation and fibrosis[128-130]. Additionally, MSCs 
may alleviate hepatic cirrhosis through the expression 
of matrix metalloproteinases (MMP-9, MMP-13), 
enzymes capable of degrading the extracellular matrix, 
thus exerting a direct antifibrotic effect in the injured 
liver[131,132].

Several clinical trials (Table 1) have investigated 
the therapeutic potential of MSCs derived from BM 
or UC blood in liver cirrhosis, providing however, 
conflicting results. In two pilot, phase Ⅰ and Ⅰ-Ⅱ, 
studies, autologous BM-MSCs were injected into 
peripheral or portal vein of a small number of patients 
with end-stage liver disease. Liver function and 
clinical features were improved while the procedure 
was safe and well tolerated[133,134]. Safety and short-
term efficacy of autologous BM-MSCs stimulated 
towards hepatic lineage and injected via intrasplenic 
or intrahepatic route was evidenced in two groups 
of 20 patients with post-HCV end-stage liver cell 
failure. Patients significantly improved their Child and 

MELD score, fatigue scale and performance status 
over the control group who received conventional 
supportive treatment[135]. In 53 patients with post-
HBV liver failure, autologous transplantation of BM-
MSCs through the hepatic artery provided short-term 
efficacy in respect to several clinical and biochemical 
parameters, but long-term outcomes were not 
markedly improved[136]. Similarly, in a phase Ⅱ trial 
with autologous transplantation of BM-derived, 
undifferentiated and differentiated, MSCs in 15 post-
HCV cirrhotic patients, follow up at 3 and 6 mo 
postinfusion, revealed partial improvement of liver 
function tests and decline of elevated bilirubin and 
MELD score[137]. Another study in post-HCV cirrhotic 
patients, suggested the safety, feasibility, and efficacy 
of intrasplenically administered autologous BM-MSCs 
in improving liver function[138]. Eleven patients with 
alcoholic cirrhosis safely received autologous BM-
MSCs through the hepatic artery in a phase Ⅱ clinical 
trial; histological and clinical (by Child-Pugh score) 
improvement was observed in 54.5% and 90.9% 
of patients respectively, while the levels of TGF-b1, 
type 1 collagen, and a-smooth muscle actin were 
significantly decreased[139]. Similarly, UC-MSC infusion 
was well tolerated in patients with decompensated 
cirrhosis, acute in chronic liver failure and in patients 
with primary biliary cirrhosis, resulting in significant 
improvement of liver function and increased survival 
rates[140-142].

In contrast to the above mentioned studies, a 
randomized, placebo-controlled trial using peripheral 
administration of autologous MSCs to cirrhotic patients, 
failed to show a beneficial effect of MSCs in cirrhotic 
patients. Indeed, 3 of 15 patients who received MSCs 
died in the first 5 mo following cell administration 
while the absolute changes in Child and MELD scores, 
serum albumin, INR, serum transaminases and liver 
volumes did not differ significantly between the MSC 
and placebo group at 12 mo-follow-up, indicating that 
further studies with higher number of patients are 
warranted to clarify the true impact of systematic or 
liver-directed MSC infusion in cirrhosis[143].

Considerations on the clinical application of MSCs
The unique properties of MSCs including easy access 
and expansion, engraftment capacity, paracrine 
secretion, trans-differentiation and immunomodulation 
render them ideally suited for cell therapies. Impor
tantly, compared to embryonic SCs, MSCs do not raise 
ethical issues and presumably have a safer profile in 
terms of tumorigenesis. Up to date, a considerable 
amount of preclinical and clinical evidence is currently 
available as regards the promise of MSCs as a rela
tively safe and effective approach in improving liver 
disease. However, several issues still need to be 
addressed before MSCs-based liver therapy passes to 
the clinical practice and these are discussed below.

There is a lack of uniformity in the design of 
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clinical trials, characterized by different MSC sources, 
doses and routes of administration, all of which may 
influence the outcome of MSC infusion on the basis 
also of the underlying disease; MSCs engrafted into 
injured or regenerating livers only after intrahepatic 
but not intrasplenic injection[144] whereas intravenously 
injected BM-MSCs migrated and engrafted into normal 
and injured liver parenchyma, under conditions of 
chronic but not acute injury[145]. On the contrary, the 
systematic administration of MSCs in a randomized 
trial with cirrhotic patients failed to provide efficacy 
over placebo[143].

In terms of safety, and despite the absence of 
severe adverse events in the clinical trials conducted 
thus far, a pro-fibrogenic potential of MSCs and 
unwanted differentiation into myofibroblasts has 
been described in several studies[144-146]. To avoid this 
unwanted differentiation, some groups have suggested 
that BM-MSCs should be induced to differentiate into 
HLCs before their infusion[123] Alternatively, others 
have proposed the microencapsulation of MSCs 
in alginate-polyethylene glycol microspheres as a 
means to prevent scar formation through the artificial 
interruption of the cell-to-cell interactions but still the 
enablement of release of soluble molecules[147].

Although MSCs are at low risk of malignant 
transformation, concern exists on their potential to 
promote tumor growth in vivo[148-150]. Thus, screening 
of MSCs for a gene expression signature before 
administration, could serve as a safety measure[151]. 
In vitro, the spontaneous transformation of MSCs 
resulting in tumorigenesis was a rather rare event 
and occurred only after extended (beyond five 
weeks) culture. On the contrary, because of their 
immunomodulatory properties, MSCs may exert an 
antitumor effect by modulating the inflammatory 
environment that characterizes many tumors and by 
inhibiting signaling pathways associated with tumor 
growth and cell division[152-156].

Hematopoietic stem cells
Bone marrow has been considered as a source of 
liver-repopulating cells that contributes to the liver 
healing process after tissue injury, thus challenging 
the dogma of BM as giving rise to only hematopoietic 
cell lineages. It has been reported that BM-derived 
SCs can differentiate into a variety of adult cell types 
that express non-hematopoietic cell markers[69-72], 
including hepatocytes[157]. The group of Grompe first 
suggested that functional hepatocytes may arise from 
hematopoietic SCs (HSCs)[66], and in the early 2000s, 
several groups demonstrated that SCs originating in 
the BM or circulating outside the liver participated in 
liver regeneration, not only in experimental animal 
models[67] but also in human liver[157,158]. Numerous 
studies followed, highlighting the contribution of HSCs 
in ameliorating liver damage.

Hepatic injury caused by surgical liver resection or 

cirrhosis in humans, triggered BM CD34+ or CD133+/
c-kit+/bcrp-1+ cell trafficking towards the liver and 
putatively the differentiation of various populations 
of hematopoietic progenitor cells into HLCs[159-161]. 
BM cell transplantation or infusion of macrophages 
in a mouse model of liver fibrosis indicated that 
the migrated to the liver cells, reduced liver fibrosis 
and significantly improved survival rate compared 
with control injured mice[162,163], while BM-derived 
hepatocytes were identified in lethally irradiated 
mice transplanted with HSCs[164]. In patients with 
malignant liver lesions, a combination of portal vein 
embolization (PVE) and administration of CD133+ 
BMSCs substantially increased hepatic regeneration 
compared with PVE alone[165], while cirrhotic patients 
safely underwent autologous BM cell infusion and 
improved their Child-Pugh score and albumin levels 
(Table 1)[166].

G-CSF mobilization as a source of large numbers of 
putatively liver-repopulating cells
HSCs can easily be forced to leave the BM and 
circulate into the peripheral blood from where they 
can be apheresed and subsequently enriched by their 
surface expression of CD34 or/and CD133. Mobilization 
of BM-resident HSCs occurs at a low magnitude under 
specific stimuli such as tissue injury[159,167] or in high 
amounts after pharmacological priming with cytostatic 
drugs, chemokines, or hematopoietic cytokines[168,169]. 
Granulocyte-colony stimulating factor (G-CSF) is a 
hematopoietic growth factor and the most widely 
used mobilizing agent[170]. G-CSF, as a means of 
forced circulation of large numbers of HSCs, has been 
extensively investigated for its hepatic regenerative 
effect, both in animal models of liver injury[171-174] 
as well as in clinical trials[175-177]. In general, two 
approaches have been explored for liver population 
with mobilized HSCs, both in animal models and clinical 
trials; G-CSF-mobilization alone or G-CSF-mobilization 
followed by infusion of autologous mobilized HSCs.

As seen with BM transplantation in liver injury 
models and despite the higher numbers of HSCs 
potentially accessing the liver by G-CSF mobilization, 
the true contribution of mobilized HSCs to liver 
repopulation is low. We and others[171,173] have shown 
that G-CSF mobilization of BM chimeras in induced 
acute and chronic liver injury models results in liver 
regeneration and improves survival, but the vast 
majority of cells repopulating the liver originate in 
situ. In a comparative study of all currently available 
mobilizing agents (G-CSF, Plerixafor, Plerifaxor 
+ G-CSF) with regard to their liver repopulating 
potential, we have shown that all mobilizing modalities 
ameliorate liver fibrosis, by acting differentially during 
the healing process. In all cases, liver recovery was 
not ultimately mediated by the HSCs but either from 
a paracrine or “bystander” signaling effect of the 
mobilized HSCs that triggered endogenous repair 
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mechanisms and stimulated tissue progenitor cells 
and/or a direct “trophic” effect of the mobilizing agents 
in the liver. These effects, however, are difficult to be 
experimentally dissected to definitively address this 
question[174].

Clinical studies that evaluated G-CSF mobilization 
in patients with advanced liver disease provided 
conflicting results (Table 1). In trials in end-stage 
liver cirrhosis or alcoholic steatohepatitis patients, 
G-CSF was well tolerated[175,178], and the mobilized 
HSCs were shown to coexpress epithelial and SC 
markers[175] and to induce HPCs to proliferate within 
7 d of administration[178]. In acute-on-chronic liver 
failure (ACLF) patients, mobilization of HSCs with 
G-CSF promoted hepatic regeneration, and more than 
doubled the percentage of ACLF patients who survived 
for 2 mo; it also significantly reduced CTP, MELD, 
and SOFA scores and prevented the development 
of sepsis, hepatorenal syndrome, and hepatic ence
phalopathy[179]. Similarly, a recent randomized open 
study showed that the administration of G-CSF was 
safe and improved liver function as well as survival 
in patients with severe alcoholic hepatitis[180]. In an 
interesting case report, experimental plasmapheresis 
with plasma-exchange (PA-PE), as a process to 
eliminate circulating toxic factors, was combined 
with G-CSF in a patient with ACLF[181]. This regimen 
induced mobilization of HSCs and a rapid and long 
lasting clinical improvement associated with a ductular 
reaction, in which HPCs expressing G-CSF receptor 
(G-CSFR) were observed. PA-PE might have mo
dulated the liver microenvironment thus providing a 
conducive milieu to G-CSF-mediated amplification of 
endogenous HPCs that promoted liver regeneration. 
Given that G-CSFR was expressed by HPCs, G-CSF 
might also be directly involved in modifying the 
HPC niche exerting a “hepatotrophic effect”[181]. In 
contrast, other clinical studies reported on the safety 
and tolerability of G-CSF mobilization but could not 
demonstrate significant clinical improvement, despite 
effective mobilization[182,183].

The relatively easy access to large quantities of 
HSCs by mobilization followed by cytapheresis, renders 
them ideally suited as liver repopulating cells. Thus, 
several groups have investigated G-CSF mobilization 
followed by infusion of autologous mobilized HSCs, an 
approach that forces a maximum SC dose to circulate 
at a given time, thus increasing the number of SCs 
that potentially home to the liver and initiate the 
recovery process.

We previously assessed the safety and efficacy of 
boost iv infusions of mobilized peripheral blood SCs 
(mPBSCs) in two patients with end-stage alcoholic 
liver cirrhosis. The patients tolerated well three 
mobilization rounds and infusions of mPBSCs that 
resulted in lasting amelioration in the clinical course 
of a previously decompensated disease, during a 
30 mo follow-up[176]. In another study, a significant 

biochemical and histopathological improvement was 
achieved in a patient with drug-induced acute liver 
failure after intraportal administration of mobilized 
CD34+ BMSCs[184].

A phase Ⅰ study was performed to determine the 
safety and tolerability of G-CSF administration, followed 
by collection and intraportal or intrahepatic reinfusion 
of circulating CD34+ cells into patients with liver failure. 
An improvement of the hepatic function without 
significant side effects in short and long term follow-up 
was observed in more than 50% of the subjects[177,185]. 
In another trial, following G-CSF mobilization and 
leukapheresis, the autologous CD34+ cells were 
expanded in vitro and injected into the hepatic artery 
of nine patients with alcoholic liver cirrhosis (ALC). 
The clinical and biochemical improvement in the 
study group was encouraging while it proved safe 
to mobilize, expand, and reinfuse autologous CD34+ 
cells in ALC patients[186]. In one of the largest trials, 40 
patients with decompensated, hepatitis B virus-related 
liver cirrhosis were randomized to receive G-CSF alone 
or in combination with leukapheresis and reinfusion 
of peripheral blood monocytes (PBMC). A significant 
biochemical and clinical improvement was observed 
in both groups, but the subjects receiving G-CSF plus 
PBMC infusion experienced greater and longer-lasting 
clinical benefits during the follow-up period[187].

Considerations on the use of HSCs as liver-repopulating 
cells
The concept of BM-derived liver regeneration has 
been strongly questioned. Despite an improvement in 
several parameters of liver function, both in preclinical 
and clinical studies, it has become clear that, in the 
absence of selective pressure, the true contribution of 
BM to liver regeneration is extremely low in effectively 
supporting per se liver recovery[188-190]. The current 
belief is that the clinical benefit observed in the injured 
liver after HSC therapy is produced by the activation 
of endogenous progenitor cells through paracrine 
signaling interaction between donor and host cells 
providing cytokines and growth factors[190-192], rather 
than by transdifferentiation of BMSCs into parenchymal 
liver cells[158] or cell fusion with resident target cells in 
the host tissue[193,194].

Overall, from the various published studies on the 
use of HSCs as a cell therapy source for liver diseases, 
it seems that mobilization of HSCs, apheresis, and 
re-infusion is safe, while improving quality of life and 
disease parameters. As such, this approach may help 
to “bridge” patients to liver transplantation or reverse 
a decompensated cirrhosis to a compensated stage. 
In addition, the use of autologous mobilized HSCs as a 
cell source for liver regeneration is not associated with 
ethical concerns and can provide easy access to, and 
high yields of, SCs without the risk of rejection or need 
for immunosuppression. However, efficacy still needs 
to be confirmed, and the route of delivery, the amount 
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of infused cells, and the timing of infusions need to be 
clarified, standardized, and validated in well-designed 
large clinical trials.

Liver tissue engineering
Liver tissue engineering endeavours to provide novel 
tools for end-stage liver diseases which will, ideally, 
replace organ transplantation. Therapeutic approaches 
towards this goal include implantable hepatic tissue 
engineered constructs and bioartificial liver (BAL) 
devices.

Implantable engineered cellular tissues provide 
an alternative method of cell delivery and are gaining 
ground in the field of regenerative medicine. They are 
generated mainly by immobilizing or encapsulating 
cells using biomaterial scaffolds. Biomaterial scaffolds 
provide 3-dimensional (3D) structures resembling the 
extracellular matrix environment in vivo, and have 
been used in association with an appropriate induction 
medium to promote BM-derived MSC differentiation 
into HLCs[195]. Apart from alginate scaffolds[195], derived 
from natural polysaccharide-based biomaterials, 3D 
nanofibrous scaffolds of synthetic polymer-based 
biomaterials, allowing easy control of the quality 
and reproducibility of the product, have been used 
to investigate the hepatic differentiation potential of 
human BM-MSCs. The nanofibrous scaffolds enhanced 
SC differentiation into functional HLCs expressing 
liver specific markers compared with 2D culture 
systems[196].

Similarly, the topographic properties of ultraweb 
nanofibers enhanced the differentiation of MSCs to 
HLCs which maintained functionality in long-term 
cultures. Differentiated HLCs homed to and engrafted 
into the injured liver of fibrotic mice, enhanced serum 
albumin, and rescued recipients from liver failure[197]. 
In another study, collagen-coated poly 3D scaffolds, 
supplemented with hepatocyte differentiation medium, 
provided a suitable environment for differentiation 
of BM-MSCs into mature hepatocytes over the control, 
monolayer culture system[198]. Recently, poly 3-hydroxy
butyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate 
scaffolds, made up by biodegradable polyester 
produced by bacteria, provided higher viability and 
attachment of human UC Wharton’s jelly-MSCs than 
other polymers tested, ultimately promoting the 
recovery of the injured liver after transplantation in 
mice[199].

BAL devices contain functional hepatocytes that 
supply important molecules to support hepatic function 
and to remove circulating toxins. This technology, 
however, is limited by the complexity of liver function 
and the shortage of human livers to provide adequate 
numbers of hepatocytes. Thus, ex vivo differentiated 
hepatocytes from alternative sources have been 
investigated. A BAL device seeded with ESC-derived 
hepatocytes or primary hepatocytes which was 
subcutaneously implanted in 90% hepatectomized 

mice, improved liver function and prolonged survival 
over control mice, while ESC-derived hepatocytes in 
BAL developed characteristics nearly identical to those 
of primary hepatocytes[200].

Very recently, 3D printing technologies, by fabri
cating complex 3D tissue engineering scaffolds and 
providing patient-specific tissue models showed 
promise in revolutionizing liver regenerative medicine 
towards customized transplantation approaches[201].

For all the above technologies however, challenges 
still remain and dictate an in depth, understanding 
of the specific molecular, mechanisms and signaling 
pathways in the hepatic microenvironment that 
affect hepatic cell lineages and regulate efficient 
differentiation of SCs[202].

CONCLUSION
SC-based liver regeneration is an exciting and dynamic 
area of research showing remarkable advancement 
in liver medicine, both in basic science and in the 
translational field. The clinical translation for liver cell 
therapies however, from only a promise for cure to a 
treatment reality for end stage liver diseases, requires 
deeper understanding of SC and liver biology, and the 
remaining unsolved aspects to be addressed.

Up to date there has been a lack of uniformity in 
preclinical and clinical studies, as regards the type 
and the extent of injury of the liver parenchyma, 
the source and dose of SCs, the therapeutic timing 
and route of administration of SCs, and the primary 
endpoints. In addition, positive results in animal 
models have not always been translated to successful 
clinical trials, as clear evidence of therapeutic benefit 
has usually been lacking from clinical trials. As such, 
carefully designed clinical trials will help to elucidate 
the most appropriate SC therapy for different liver 
diseases by considering the background and severity 
of the target disease as well as the putative functional 
roles of different SCs and the intended biological 
action by their infusion.
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