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Preexposure prophylaxis (PrEP) using antiretroviral drugs is effective in reducing the risk of human immunodeficiency virus
type 1 (HIV-1) infection, but adherence to the PrEP regimen is needed. To improve adherence, a long-acting injectable formula-
tion of the nonnucleoside reverse transcriptase (RT) inhibitor rilpivirine (RPV LA) has been developed. However, there are con-
cerns that PrEP may select for drug-resistant mutations during preexisting or breakthrough infections, which could promote the
spread of drug resistance and limit options for antiretroviral therapy. To address this concern, we administered RPV LA to ma-
caques infected with simian immunodeficiency virus containing HIV-1 RT (RT-SHIV). Peak plasma RPV levels were equivalent
to those reported in human trials and waned over time after dosing. RPV LA resulted in a 2-log decrease in plasma viremia, and
the therapeutic effect was maintained for 15 weeks, until plasma drug concentrations dropped below 25 ng/ml. RT mutations
E138G and E138Q were detected in single clones from plasma virus in separate animals only at one time point, and no resistance
mutations were detected in viral RNA isolated from tissues. Wild-type and E138Q RT-SHIV displayed similar RPV susceptibili-
ties in vitro, whereas E138G conferred 2-fold resistance to RPV. Overall, selection of RPV-resistant variants was rare in an RT-
SHIV macaque model despite prolonged exposure to slowly decreasing RPV concentrations following injection of RPV LA.

Despite increasing use of antiretroviral therapy (ART), which
suppresses viral replication and reduces the risk of human

immunodeficiency virus type 1 (HIV-1) transmission, an esti-
mated two million new HIV-1 infections still occur annually
worldwide (1). While research continues to define effective, vac-
cine-elicited protective immune responses, preexposure prophy-
laxis (PrEP) has proven effective in reducing HIV-1 transmission.
Thus far, clinical trials have exhibited a 44 to 75% reduction in
HIV-1 infections in individuals treated with tenofovir (TDF) with
or without emtricitabine (FTC) (2–5). These successes led to FDA
approval of daily oral TDF-FTC PrEP for high-risk populations.

One prominent issue with PrEP is dependence of efficacy on
adherence. Data from clinical trials has shown that patients with
detectable plasma drug levels indicative of adherence have re-
duced risk of HIV-1 infection, while poor PrEP adherence confers
little protection (2, 4, 6–8). Although recent work suggests that
sexual event-driven TDF-FTC administration can be effective in
men (9–11), sporadic PrEP adherence can lower PrEP efficacy and
promote selection of drug-resistant variants. To reduce pill bur-
den, long-acting injectable nanoparticle formulations of the non-
nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine
(RPV) and an experimental integrase inhibitor, cabotegravir, have
been developed (12, 13). Injectable PrEP formulations create a
depot at the injection site and provide drug release for weeks to
months, thus eliminating the need for daily drug administration.
Long-acting injectable medications have been used successfully
to administer antipsychotics, contraceptives, hormone replace-
ments, and cancer treatments (14–17).

Rilpivirine is the most recently approved NNRTI for ART in
combination with other antiretrovirals in patients with plasma
viremia of less than 100,000 copies of HIV-1 RNA/ml (18, 19).
Clinical trials have shown RPV-TDF-FTC to be noninferior to and

more tolerable than efavirenz-based ART (18). During these trials,
patients failing RPV-based ART also tended to select unique
NNRTI-associated resistance mutations in reverse transcriptase
(RT) compared with those on an efavirenz-based regimen (20).
Long-acting rilpivirine (RPV LA) is an injectable nanoparticle for-
mulation and has been shown to be safe and tolerable, with de-
tectable drug concentrations maintained in plasma and tissues
weeks after a single injection (21–24). Multiple clinical trials are
under way to test safety and acceptability of RPV LA as PrEP in
HIV-1-uninfected men and women (13).

Of concern with RPV LA PrEP is the development of drug
resistance if an individual with an undetected HIV-1 infection
receives PrEP or someone on PrEP becomes infected, resulting in
treatment with RPV monotherapy. Additionally, while patients
on a pill-based regimen can cease PrEP and rapidly clear the drug,
injectable medications will require weeks to reach undetectable
concentrations. These situations may increase the selection of
drug-resistant mutations (DRMs), promoting spread of drug re-
sistance and limiting future ART options through cross-resistance
(25). Resistance analyses of breakthrough infections in TDF-FTC
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clinical trials revealed that selection of DRMs was rare in patients
who became infected after receiving PrEP, but DRMs did develop
in the few individuals that were HIV-1� before initiating PrEP
(26–28).

Although the development of DRMs during TDF-FTC PrEP
clinical trials was rare (26–28), there are currently no published
data on the resistance outcome of long-acting PrEP as mono-
therapy. We report here on a pilot study to explore the selection of
drug resistance by RPV LA in RT-SHIV-infected macaques. RT-
SHIVmne is a chimeric simian immunodeficiency virus (SIV) that
contains the HIV-1 reverse transcriptase coding region (29, 30).
SIV is not susceptible to NNRTIs due to sequence differences
within the RT coding region, but NNRTI sensitivity is established
by swapping the SIV and HIV-1 RT coding regions (31, 32). RT-
SHIV macaque models have been used to study HIV-1 ART, drug
resistance, PrEP, and persistence (30, 32–48). In this study, we
treated RT-SHIV-infected macaques with RPV LA and measured
plasma viremia, drug concentrations, and drug-resistant isolates
over 35 weeks. Our data show that viremia was suppressed by RPV
LA monotherapy, which rebounded to pretherapy levels as plasma
drug concentrations waned. However, resistance to RPV in RT-
SHIV was difficult to select both in vitro and in vivo.

MATERIALS AND METHODS
Cell culture and antiretroviral inhibitors. 293T and TZM-bl (49) cell
lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Life
Technologies) supplemented with 10% fetal bovine serum (FBS; Atlanta
Biologicals) and 100 U/ml of penicillin, 100 �g/ml of streptomycin, and
0.292 mg/ml of L-glutamine (P-S-G; Life Technologies). GHOST-R3/
X4/R5 cells (50) were maintained in the same medium as described above
with the addition of 100 �g/ml of Geneticin (Life Technologies), 100
�g/ml of hygromycin (Life Technologies), and 0.5 �g/ml of puromycin
(EMD Millipore). CEMx174 cells were cultured in RPMI 1640 medium
supplemented with 10% FBS and P-S-G. All cell lines were incubated at
37°C with 5% CO2.

RPV was acquired from the NIH AIDS Reagent Program. RPV LA was
donated by Janssen Sciences UC Ireland.

Virus production and titer determination. Plasmids encoding HIV-
1LAI with silent restriction sites within RT (51) and RT-SHIVmne (30) were
used for virus production by transfection into 293T cells with Lipo-
fectamine 2000 (Life Technologies) and stored at �80°C. Mutations were
introduced into the plasmids by site-directed mutagenesis using either the
QuikChange II XL kit (Agilent Technologies) or the Q5 site-directed mu-
tagenesis kit (New England BioLabs). HIV-1 titers were determined on
GHOST cells with modifications from previous work (50), using an LSRII
flow cytometer (BD Biosciences). Titers of RT-SHIV stocks were deter-
mined using TZM-bl indicator cells and �-galactosidase staining as pre-
viously described (29, 52).

Animals. Two juvenile pigtailed macaques (Macaca nemestrina) were
housed at the University of Pittsburgh in accordance with American As-
sociation of Accreditation of Laboratory Animal Care standards. All pro-
cedures were performed according to protocols approved by the Institu-
tional Animal Care and Use Committee. The animals were negative for
serum antibodies to HIV type 2, SIV, type D retrovirus, and simian T-
lymphotropic virus type 1 at study initiation. Animals were infected in-
travenously with 1 � 105 infectious units (IU) of RT-SHIVmne. At 6 and 8
weeks postinfection, animals were treated with 200 mg/kg of RPV LA by
intramuscular (i.m.) injection near the scapula. This dosing regimen was
determined by prior pharmacokinetic analysis that showed that a single
50-mg/kg dose of RPV LA did not result in plasma drug concentrations
above 16 ng/ml within 24 h of administration, consistent with our previ-
ous observations of rapid metabolism of NNRTIs in pigtailed macaques
(data not shown). Blood was drawn under anesthesia weekly or bi-

monthly. Animals were euthanized at 35 weeks postinfection, and multi-
ple tissues, including axillary lymph nodes (LN) and ileum, were imme-
diately flash frozen and stored in liquid nitrogen.

T cell counts and viral RNA isolation. Plasma was separated from
EDTA-treated whole blood by centrifugation at 400 � g for 10 min and
stored at �80°C until processed. Viral RNA (vRNA) was isolated from
plasma as previously described (53). Briefly, plasma was mixed with Tris-
buffered saline (Sigma) and pelleted by centrifugation at 21,000 � g for 1
h. Virus was then suspended in 3 M guanidinium chloride, 50 mM Tris-
HCl (pH 7.6), 1 mM CaCl2, and 1 mg/ml of proteinase K and incubated at
42°C for 1 h, followed by addition of 5.7 M guanidine thiocyanate, 50 mM
Tris-HCl (pH 7.6), 1 mM EDTA, and 600 �g/ml of glycogen and a 5-min
incubation at room temperature. RNA was washed with isopropanol and
ethanol and samples were suspended in 10 mM Tris-HCl (pH 8.0). Tissue
vRNA isolation was performed as previously described (54).

Peripheral blood mononuclear cells (PBMCs) were isolated from sam-
ples using lymphocyte separation medium (Corning) and treated with
ACK lysis buffer (Life Technologies) to remove red blood cells. PBMCs
were stained with NHP T lymphocyte cocktail (BD Biosciences) with an-
tibodies against CD3, CD4, and CD8. CD3� CD4� and CD3� CD8� cell
populations were measured by flow cytometry. Isotype cocktail C (BD
Biosciences) was used for isotype controls.

RPV plasma and tissue levels. Rilpivirine was extracted from monkey
plasma using protein precipitation followed by liquid chromatograph-
tandem mass spectrometry (LC-MS/MS) analysis. Calibration standards
and quality control (QC) samples were prepared in monkey plasma
(EDTA) on the day of analysis. Fifty microliters of each plasma sample was
mixed with 50 �l of a 50:50 methanol-water mixture containing ampre-
navir-d4 as the internal standard. Then, 300 �l of methanol was added to
each sample. Following vortex and centrifugation steps, the resulting su-
pernatant was transferred to a 96-well plate for LC-MS/MS analysis. Tis-
sues were homogenized in 1 ml of 70:30 acetonitrile–1 mM ammonium
phosphate (pH 7.4) with a Precellys hard tissue grinding kit tube (Cayman
Chemical), followed by a similar plasma preparation procedure. Tissue
weights ranged from 84.2 to 95.4 mg. Analyte concentrations from tissue
homogenates were normalized to tissue weight. A tissue density of 1 g/ml
was used to convert concentrations into nanograms per milliliter. A Shi-
madzu high-performance liquid chromatography system was used for
separation, and an AB SCIEX API 5000 mass spectrometer (AB SCIEX)
equipped with a turbo spray interface was used as the detector. The sam-
ples were analyzed with a set of calibration standards and QC samples,
with a dynamic range of 0.5 to 2,000 ng/ml. The precision and accuracy of
the calibration standards and QC samples were within the acceptable
range of 15%.

Viral RNA quantitation. Viral RNA was measured by generation of
cDNA from vRNA isolated from plasma or tissues by the SuperScript III
first-strand synthesis kit (Life Technologies) with the SIVgag-R primer (5=-C
ACTAGGTGTCTCTGCACTATCTGTTTTG-3=). Quantitative PCR was
performed on cDNA using SsoFast probes SuperMix (Bio-Rad), SIVgag-F
(5=-GTCTGCGTCATCTGGTGCATTC-3=) and SIVgag-R primers, and
the SIVgag-probe (5=-FAM-CTTCCTCAGTGTGTTTCACTTTCTCTTCT-
GCG-3= 6-carboxytetramethylrhodamine [TAMRA]). CCR5 primers and
probe were previously described (54). Reaction conditions were 1 cycle of
95°C for 2 min followed by 45 cycles of 95°C for 15 s and 60°C for 1 min.

Viral RNA sequencing. The RT coding region was amplified from
viral cDNA from plasma or tissues using nested PCR. The first round of
PCR was performed with the Platinum Taq DNA polymerase high-fidelity
kit (Life Technologies), using primers ZA01 (5=-CTAGATCTGAATTTG
CCTGCCC-3=) and ZA02 (5=-TGTAACAGGAATAGAGTTAGGTCC-
3=) with the following reaction conditions: 94°C for 2 min; 40 cycles of
94°C for 15 s, 49°C for 30 s, and 68°C for 2 min; and 1 cycle of 68°C for 5
min. DNA was purified using the ExoSAP-IT PCR cleanup kit (Af-
fymetrix) per the manufacturer’s instructions. The second round of PCR
amplification was performed with the Platinum PCR Supermix kit (Life
Technologies), using primers RT19 (5=-GCAAAAGGATTAAAGGGACA
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A-3) and RT22 (5=-GGGTAATCCAAATTTGAATACCAATCCT-3=)
with the following reaction conditions: 94°C for 2 min; 26 cycles of 94°C
for 15 s, 63°C for 30 s with �0.5°C increments per cycle, and 72°C for 2
min; 15 cycles of 94°C for 15 s, 50°C for 30 s, and 72°C for 2 min; and 1
cycle of 72°C for 5 min. The PCR product was then cleaned using the
Wizard SV gel and PCR cleanup system (Promega) and cloned into TOPO
vectors using the pCR 2.1-TOPO TA cloning kit (Life Technologies) per
the manufacturer’s instructions. Bacterial colonies were screened for full-
length RT sequence by PCR. RT-containing TOPO vectors were isolated
from overnight bacterial cultures using the QiaPrep Spin Miniprep kit
(Qiagen). Sequences were analyzed using DNASTAR (Lasergene).

RT-SHIV in vitro resistance selection. CEMx174 cells were infected
with wild-type (WT) RT-SHIV at a multiplicity of infection (MOI) of 0.05
in medium and incubated at 37°C for 2 h. Cells and virus were then
resuspended in medium containing 0.1 nM RPV. Cultures were passaged
every 2 to 3 days in new medium. If cytopathic effects were apparent,
vRNA was isolated from culture supernatant using the RNeasy minikit
(Qiagen) and sequenced as described above. If the RT sequence from
vRNA isolated from the supernatant was WT, then 50 �l of culture super-
natant was used to infect fresh CEMx174 cells and the RPV concentration
was doubled to begin a new round of selection.

Drug susceptibility assay. Drug susceptibility assays were performed
as previously described, with minor modifications (29). TZM-bl cells were
seeded at 5 � 103 cells in 96-well cell culture-treated white plates
(PerkinElmer). The following day, virus and serial drug dilutions were
prepared in phenol red-free DMEM (Life Technologies) supplemented
with P-S-G and 10% FBS or different amounts of human or macaque
serum. Medium containing virus (MOI of 0.05) and drug dilutions in a
total volume of 0.2 ml was added to each well in triplicate. Wells with virus
and no drug were used as 100% infection controls. Plates were incubated
at 37°C for 48 h. Luciferase activity was measured using Britelite Plus
reagent (PerkinElmer) on a Luminoskan Ascent microplate luminometer
(Thermo Scientific). Relative luciferase units (RLU) were converted to
percent infection by dividing the RLU of each drug dilution by the RLU of
the 100% infection control. Wells containing cells with no virus and no
drug were used to normalize for background luciferase output. The effec-
tive concentration to inhibit 50% of virus replication (EC50) was calcu-
lated using PRISM 6 (GraphPad). Specifically, EC50 was calculated by log
transforming drug concentrations and using a four-parameter variable
slope nonlinear regression for curve fitting analysis.

RESULTS
RPV LA treatment of RT-SHIV-infected macaques. To assess the
potential for selection of drug-resistant virus in vivo during RPV

LA treatment, two pigtailed macaques were infected with RT-
SHIV at week 0. Both animals showed peak viremia between 1 �
106 and 1 � 107 copies of vRNA/ml, which declined to a set point
of 5 � 105 to 9 � 105 vRNA copies/ml (Fig. 1). Based on pharma-
cokinetic results (data not shown), animals were treated with two
200-mg/kg i.m. doses of RPV LA at weeks 6 and 8 postinfection.
Posttreatment, there was an immediate �2-log decline in plasma
viremia, which was maintained at approximately 1.35 � 104

vRNA copies/ml until 21 weeks postinfection. Viral loads slowly
rebounded thereafter to pretherapy set point values (Fig. 1). There
was a transient decrease in the percentage of CD4� T cells in both
animals after infection, followed by a steady posttreatment in-
crease for the remainder of the study (data not shown). The only
adverse events attributed to RPV LA treatment were redness and
swelling at the injection sites.

Although a standard protective level of RPV has not been de-
fined, the in vitro EC50 of RPV is 0.1 to 0.7 nM (55, 56), and our
dosing strategy was designed to achieve plasma RPV concentra-
tions equivalent to that reported for humans: 50 ng/ml (136 nM)
(22, 56). Maximum plasma RPV concentrations of 86.5 ng/ml and
40 ng/ml (214.7 nM and 99.3 nM) were detected at week 10
postinfection in animals M170 and M171, respectively (Fig. 1).
Plasma RPV concentrations were greater than 15 ng/ml (40.9 nM)
in both animals up to 29 weeks after the first RPV LA injection.
Virus rebound appeared to be associated with declining drug con-
centrations, although there was not a significant correlation be-
tween plasma RPV concentrations and viral loads by linear regres-
sion (R2 � 0.15). RPV concentrations in the axillary LN and ileum
were 4- to 421-fold higher than in plasma at the time of necropsy
(week 35 postinfection) (Table 1). As tissue homogenate concen-

FIG 1 Plasma RT-SHIV levels in two macaques treated with RPV LA monotherapy. Animals were infected at week 0 and received two i.m. doses of RPV LA at
6 and 8 weeks postinfection (designated by arrows under the x axis). Plasma viremia (blue lines) and RPV concentrations (red lines) were measured. The dashed
lines indicate the limit of detection of the qRT-PCR assay (50 RNA copies/ml).

TABLE 1 RPV concentrations in plasma and tissues of animals at 35
weeks postinfection

Site

RPV concn (ng/ml)

Animal M170 Animal M171

Plasma 18 18
Axillary LN 155 7,590
Ileum 136 80
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trations are averaged across a heterogeneous matrix, these data do
not differentiate between extracellular or intracellular drug expo-
sure or intracellular drug exposure between cell types. Therefore,
the averaged concentration could significantly overrepresent the
concentration of drug in mononuclear cells. Since it is difficult to
isolate mononuclear cells from tissue without extracellular leach-
ing of drug during the isolation process, intracellular drug con-
centrations in tissues, and the resulting pharmacodynamic effect,
are an area of continued study.

Plasma RT-SHIV drug resistance detection. To identify selec-
tion of RPV-resistant variants, we sequenced the RT coding region
of plasma virus at week 6 prior to therapy and at weeks 9, 13, 21,
and 25 postinfection. At all time points, the full-length consensus
RT sequence matched the starting RT sequence, indicating a lack
of detectable mutations that constituted more than 20% of the
virus population (data not shown). However, partial and full
clonal RT regions were sequenced and revealed many minor viral
variants in the plasma (Table 2). Based on Poisson distribution,
the probability of detecting variants present at 5% frequency in a
virus population with 90% certainty requires analysis of at least 45
clones. Hence, 45 clones were sequenced at 6, 9, 13, and 25 weeks
postinfection. The majority of clonal sequences was either WT or
had mutations in RT amino acids 1 to 250 that are not associated
with known drug resistance. E138G was identified in a single clone
at both weeks 9 and 13 in animal M170 but was not detectable
later. E138Q was identified in a single clone at week 25 in animal

M171. T69A and K65R are NRTI-associated resistance mutations
that were also identified, but they were also detected at frequencies
as low as E138G/Q.

To determine if E138G or E138Q conferred RPV resistance in
RT-SHIV, the mutations were made in both HIV-1 and RT-SHIV
and were tested for susceptibility to RPV compared to that of WT
viruses in vitro. WT HIV-1 and RT-SHIV displayed similar RPV
susceptibilities, with EC50s of 0.67 	 0.08 and 0.35 	 0.06 nM
(Table 3). E138G conferred a slight increase in EC50 compared to
WT virus in both HIV-1 and RT-SHIV backbones: EC50s of
0.94 	 0.03 and 0.76 	 0.12 nM (1.4- and 2.2-fold changes),
respectively. Conversely, E138Q conferred a 4.3-fold EC50 in-
crease above WT HIV-1 (2.85 	 0.08 nM) and no difference from
WT RT-SHIV (0.30 	 0.05 nM). These EC50s for WT, E138G, and
E138Q HIV-1 were similar to values previously reported (55, 57).

Tissue RT-SHIV drug resistance detection. Because no con-
sistent RT mutations were identified in plasma virus from either
animal, vRNA isolated from axillary LN and ileum obtained at 35
weeks postinfection was clonally sequenced. Axillary LN were
chosen because they were the lymphoid tissues closest to the in-
jection site. Tissues of the gastrointestinal tract were also sampled
because they are known to harbor large numbers of infected cells,
particularly in the terminal ileum (58). High levels of RT-SHIV
RNA copies were measured by quantitative reverse transcription-
PCR (qRT-PCR) in both the axillary LN and ileum taken at nec-
ropsy from both animals (Table 4). While measurements were not
taken prior to drug exposure or during peak plasma drug concen-
trations, the results suggest that significant viral transcription oc-
curs in the LN and ileum despite high RPV levels at those sites
(Table 1).

No known DRMs were detected in 20 clones from either tissue

TABLE 3 RPV susceptibilities of HIV-1 and RT-SHIV with select
mutations identified in plasma and tissue vRNA

Virus
Mutation(s) in RT
sequence EC50 (nM)a

Fold change from
WT virusb

HIV-1 WT 0.67 	 0.08 1.0
E138G 0.94 	 0.03 1.4
E138Q 2.85 	 0.08 4.3
A33V 0.42 	 0.07 0.6
Y181H 0.17 	 0.02 0.3
A33V, Y181H 0.13 	 0.01 0.2

RT-SHIV WT 0.35 	 0.06 1.0
E138G 0.76 	 0.12 2.2
E138Q 0.30 	 0.05 0.8

a Values are means and standard deviations from 3 independent experiments, each
performed in triplicate.
b Fold change is calculated as the ratio of the mean EC50 of mutant to WT virus.

TABLE 2 Mutations identified in RT of plasma RT-SHIV RNA

Animal

Mutations in RT-SHIV RTa (no. of clones)

Wk 6b Wk 9 Wk 13 Wk 21 Wk 25

M170 WT (14) WT (25) WT (19) WT (4) WT (24)
Non-DRM (31) Non-DRM (19)c Non-DRM (25) Non-DRM (6) Non-DRM (19)

R125G, E138G (1) S68G, E138G (1) K65R (1)

M171 WT (22) WT (26) WT (24) WT (5) WT (21)
Non-DRM (23) Non-DRM (19) Non-DRM (20) Non-DRM (5) Non-DRM (19)

T69A (1) E138Q, P157-, L213F, V244C (1)
a Results represent a mixture of full-length and partial (amino acids 1 to 250) RT sequences. WT, wild type; non-DRM, mutations not associated with drug resistance; -, codon
deletion; underline, known RPV-associated resistance mutations.
b Prior to RPV-LA administration (6 and 8 weeks postinfection).
c One sequence at this time point for this animal contained A33V.

TABLE 4 RNA copies of RT-SHIV gag and macaque CD4 measured
from tissue RNA

Animal Tissuea

No. of copiesb

gag/CD4
ratiogag CD4

M170 Axillary LN 28 	 0.5 327 	 10 0.09
Ileum 334 	 36 126,237 	 58,548 0.003

M171 Axillary LN 10 	 0.8 29 	 2 0.3
Ileum 7,863 	 367 54,343 	 493 0.1

a Tissues taken at 35 weeks postinfection.
b Means 	 standard deviations (�106), measured by qRT-PCR in duplicate.
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from both animals (Table 5). However, the A33V mutation was
identified in 45% of ileum clones from both animals and 80% of
axillary LN clones from animal M170. This mutation also was
identified in a single clone in the plasma for M170 at week 9 (Table
2). Y181H was present and linked to A33V in two clones from the
ileum of animal M171. While Y181H has not previously been
reported in association with NNRTI resistance, Y181C, Y181I,
and Y181V mutations display RPV resistance (55). Interestingly,
we detected G112D in a single clone obtained from one axillary
LN from animal M171. This mutation confers 2-fold resistance to
RPV and was selected by an RPV analog in vitro (K. Melody and Z.
Ambrose, unpublished data).

Due to the high frequency of the A33V mutation in the viruses
isolated from tissues and the association of RPV resistance with
mutations at position 181, the amino acid substitutions A33V and
Y181H were made separately and together in HIV-1 and tested for
RPV sensitivity. A33V HIV-1 did not confer RPV resistance, while
Y181H alone or with A33V conferred hypersusceptibility to RPV
compared to WT HIV-1: 0.3- and 0.2-fold, respectively (Table 3).

Effects of human and macaque plasma on RPV inhibition of
HIV-1 and RT-SHIV. As RPV inhibition of HIV-1 was greatly
decreased by the presence of high human serum proteins in vitro
(55), the effect of macaque serum on RT-SHIV inhibition by RPV
was investigated in cell culture. Similar to previously published
results in which 50% human serum increased the EC50 of RPV
against HIV-1 18.5-fold (55), 25% human serum reduced RPV

inhibition of HIV-1 in vitro in our study 12-fold (Table 6). Simi-
larly, addition of macaque serum increased the EC50 of RPV
against RT-SHIV compared to the values with medium with FBS
(Table 6). The results suggest that macaque serum proteins do not
impact RPV activity against RT-SHIV more than human serum
proteins.

Selection of RPV resistance in RT-SHIV was also difficult to
achieve in CEMx174 cells using the same virus stock as used to
infect the macaques. RT-SHIV-infected cells were exposed to in-
creasing concentrations of RPV for 350 days (0.1 to 409.6 nM),
and vRNA isolated from supernatants from all time points had
WT sequence in the RT coding region (data not shown). This is in
contrast to selection of Y181C or K103N in RT-SHIV in CEMx174
cells by nevirapine (NVP) or efavirenz (EFV), respectively (29).

DISCUSSION

Although global HIV-1 incidence is decreasing in large part due to
rollout of ART, an effective vaccine or cure is not yet available. In
lieu of a vaccine, FDA-approved PrEP comprised of two NRTIs
can reduce infections in high-risk populations (2–5, 7). However,
the most significant barrier to PrEP efficacy is patient adherence,
as 
90% protection is observed in patients with consistently de-
tectable plasma drug concentrations, whereas no protection is
seen in participants showing undetectable drug concentrations (2,
4, 6, 8, 59, 60). To improve adherence, long-acting injectable
nanoparticle formulations of RPV have been developed and are
currently being evaluated in clinical trials (13). However, inappro-
priate use of PrEP by suboptimal dosing or in individuals who are
HIV-1� may lead to development of drug resistance. The devel-
opment of DRMs during PrEP could limit future therapy options,
as was the case in single-dose NVP trials to prevent mother-to-
child transmission of HIV-1 (61).

As there are no currently published data on the effect of RPV
LA on HIV-1 resistance selection, we designed a pilot study to
explore whether RPV LA monotherapy could select for drug re-
sistance in a preexisting RT-SHIV infection in macaques. Al-
though untreated macaques were not included as a comparison
control, the peaks and set points of plasma viremia in the two
animals in this study were similar to those in our previous study
(30). While RPV LA dosing of and metabolism in macaques were
different than those in humans, its administration in this study led
to plasma RPV concentrations detected in the animals that were
comparable to concentrations reported for humans who received
600-mg RPV LA doses (22, 24). RPV LA treatment displayed a
therapeutic effect with approximate 2-log decreases in plasma

TABLE 5 Mutations identified in RT of RT-SHIV RNA isolated from
tissues

Animal Tissuea

Mutation(s) in RT-SHIV RTb

(no. of clones)

M170 Axillary LN WT (1)
A33V (10)
M16I, A33V (2)
A33V, I135T (2)
A33V, V179A (1)
A33V, I195V, R206G (1)
Q85R, H96R (1)
P217S (1)
K220E (1)

Ileum WT (8)
A33V (10)
A33V, D218G (1)
A33V, V245A (1)

M171 Axillary LN WT (12)
N54S (1)
D76G (1)
E79G (1)
G112D (1)
G155R (1)
S163G, G196E (1)
H208R, D250G (1)
G242. (1)

Ileum WT (14)
A33V, Q145R (2)
A33V, K173R (1)
A33V, Y181H (2)
A33V, T200A (1)

a Tissues taken at 35 weeks postinfection.
b Sequences represent amino acids 1 to 250 of RT. WT, wild type; ., stop codon.

TABLE 6 Effects of human and macaque serum on RPV EC50

Virus Serum EC50 (nM)a Fold changeb

HIV-1 10% FBS 0.54 	 0.05 1
5% human 1.34 	 0.10 3
10% human 2.45 	 0.44 5
25% human 6.72 	 0.39 12

RT-SHIV 10% FBS 0.42 	 0.08 1
5% macaque 0.45 	 0.21 1
10% macaque 1.16 	 0.15 3
25% macaque 3.17 	 1.37 8

a Means 	 standard deviations from triplicates from one experiment.
b Compared to assay performed with 10% FBS.
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viremia 1 week after treatment that was sustained for roughly 15
weeks after the first injection, and viremia increased as plasma
RPV concentrations dropped below 25 ng/ml (68 nM). Axillary
LN and ileum RPV concentrations were at least 4.5-fold greater
than plasma concentrations 29 weeks after the first injection,
which is consistent with a previous report showing that RPV LA
achieves higher concentrations in lymph nodes than in plasma
(21). While tissues were not assessed at earlier time points for
vRNA and drug concentrations, it is likely that tissue RPV con-
centrations were higher at earlier time points, and it is clear that
drug concentrations were not sufficient to completely suppress
virus replication in tissues or blood, as evidenced by high RT-
SHIV RNA levels.

Despite waning RPV plasma concentrations and lack of com-
plete virus suppression, which may be seen in noncompliant in-
dividuals and suggesting suboptimal in vivo drug inhibition, per-
sistent DRMs were not selected in the plasma or tissues of either
animal after RPV LA administration. This is in contrast to our
previous studies, in which EFV monotherapy was administered
over 4 days in RT-SHIV-infected macaques and rapidly selected
the NNRTI resistance mutation K103N in the plasma virus that
affected the efficacy of subsequent combination therapy contain-
ing EFV, particularly in two animals with high plasma viremia
levels similar to the animals in this study (30, 40, 62). Another
study using a different strain of RT-SHIV in rhesus macaques also
showed that K103N and other DRMs arise during EFV mono-
therapy (34). The RT mutation K103N confers approximately 20-
to 35-fold resistance to HIV-1 in vitro and arises in HIV-infected
individuals on EFV-based ART (55, 63).

In contrast, K103N and other single DRMs selected by NNRTIs
approved earlier than RPV, such as Y181C, confer no or low-level
(i.e., 1- to 3-fold) resistance to RPV (55). K103N was not detected
in patients failing RPV-containing ART in two clinical trials (20).
In fact, with the exception of K101P, Y181I, andY181V, which
confer significant resistance to RPV in vitro (52-, 15-, and 12-fold
changes above WT HIV-1, respectively), HIV-1 with any other
single NNRTI-associated resistance mutation has no or low-level
resistance to RPV (55). Unlike K103N and Y181C, the mutations
K101P and Y181I/V require at least two base changes to be made
and therefore are likely more difficult to develop. In addition, the
accumulation of multiple NNRTI resistance mutations, as occurs
in treatment-experienced HIV-1� individuals, can enhance RPV
resistance (20, 55, 64, 65), which is less likely to occur prior to
therapy or to be transmitted to newly infected individuals (66).
Thus, it appears that isolates that are highly resistant to RPV are
difficult to develop compared to mutants that arise during use of
other NNRTIs, such as EFV and NVP.

Similarly, in a macaque study investigating sustained release of
the novel NNRTI MIV-150 from intravaginal rings (IVR) in RT-
SHIV-infected rhesus macaques, DRMs were not detected by
clonal sequencing of plasma virus after 42 days in 5/6 animals
using the IVR; however, DRM selection did occur when animals
were treated systemically with MIV-150 (39). One IVR-treated
animal had a single plasma clone containing Y181I, while all other
clones were WT. Similar results were found in LN at day 57, and
no DRMs were detected in vRNA isolated from the cervix or va-
gina, the site of drug release.

Recently, one individual unexpectedly became infected with
HIV-1 in the lowest RPV LA dose arm (300 mg) of the SSAT 040
trial (1/66 in the overall study and 1/20 in the 300-mg dose arm),

which evaluated the pharmacokinetics of the drug in HIV-nega-
tive individuals (67). K101E was selected in the RT of plasma
HIV-1 after seroconversion (i.e., K101E HIV-1 was not transmit-
ted to this individual), and K101E HIV-1 clones had 4-fold resis-
tance to RPV in vitro compared to that of WT virus. K101E or
E138K/Q was the most common RT mutation detected in patients
failing RPV-containing therapy in the ECHO, THRIVE, and STaR
studies, with E138K constituting the majority of detected NNRTI-
associated resistance mutations (20, 68). Molecular modeling
studies of RPV bound to the crystal structure of HIV-1 RT show
the formation of a salt bridge between E138 and K101 in the WT
p66 subunit (69). This interaction was lost with the substitution of
the low-level RPV-resistant mutations 138A/G/K/R/Q or 101E,
suggesting that disruption of the K101-E138 salt bridge causes
low-level RPV resistance (70). A higher prevalence of E138 muta-
tions, particularly E138K/G, in HIV-1 from individuals failing
RPV-containing therapy is unknown but may be due to muta-
tional bias (71) or G-to-A hypermutation (72). The E138Q/G mu-
tations that were selected by RPV LA in the macaques in our study
and the K101E mutation that was selected in the individual who
failed RPV LA were likely stochastic events.

While this is a small pilot study, the data are encouraging that
drug resistance may be difficult to develop in HIV-1 RT during
RPV LA monotherapy compared to NNRTIs approved prior to
RPV. The single DRMs that we did detect remained a minor spe-
cies despite persistent drug levels. Future studies looking at a
larger group of animals with different viremia levels and compar-
ing daily oral RPV dosing to dosing with RPV LA with different
lengths of sustained released are warranted to understand how
they influence the development of drug resistance. In addition, the
effect of development of minority, low-level RPV-resistant viruses
on subsequent combination therapy should be addressed.
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