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The introduction of high throughput sequencing technologies has triggered an increase of the number of
studies in which the microbiota of environmental and human samples is characterized through the
sequencing of selected marker genes. While experimental protocols have undergone a process of
standardization that makes them accessible to a large community of scientist, standard and robust data
analysis pipelines are still lacking. Here we introduce MICCA, a software pipeline for the processing of
amplicon metagenomic datasets that efficiently combines quality filtering, clustering of Operational
Taxonomic Units (OTUs), taxonomy assignment and phylogenetic tree inference. MICCA provides
accurate results reaching a good compromise among modularity and usability. Moreover, we introduce a
de-novo clustering algorithm specifically designed for the inference of Operational Taxonomic Units
(OTUs). Tests on real and synthetic datasets shows that thanks to the optimized reads filtering process and
to the new clustering algorithm, MICCA provides estimates of the number of OTUs and of other common
ecological indices that are more accurate and robust than currently available pipelines. Analysis of public
metagenomic datasets shows that the higher consistency of results improves our understanding of the
structure of environmental and human associated microbial communities. MICCA is an open source
project.

M icrobial communities are an essential part of every ecosystem ranging from marine water to soil and to
the human body. The recent advancements in High Throughput Sequencing technologies have greatly
increased our understanding of the role of the microbiota in different habitats and health conditions.

The structure ofmicrobial communities is often investigated through the sequencing of selected genomicmarkers
able to characterize the sample to a given level of taxonomic resolution. The choice of these markers usually falls
on the variable regions of the 16S rDNA gene if the targetmicrobial community is composed by bacteria, or on the
internal transcribed spacer (ITS) region in the case of fungal communities.

To characterize the taxonomic structure of the samples, the sequences are organized into Operational
Taxonomic Units (OTUs) at varying levels of identity (usually 97%), which represent the common working
definition of bacterial species. OTU clustering is a key step for the definition of the microbial diversity and
taxonomic composition of the analysed samples, and its accuracy depends not only on the clustering algorithm,
but also on the pre-processing of the reads for the removal of low quality reads and of chimera sequences that
might be generated by template switching during the cloning step. An aggressive approach using strict quality
filtering may lead to a loss of information particularly affecting the least abundant species, while, on the other
hand, clustering of low quality reads may produce spurious OTUs leading to an overestimate of the complexity of
the analysed samples.

Given the complexity of next generation sequencing (NGS) datasets, a common approach of the available
pipelines for OTUs identification is based on incremental algorithms like the one implemented in mothur1, a
pipeline for targeted metagenomic data incorporating several tools for sequence filtering, OTUs definition and
estimate of ecological parameters. For the OTU definition mothur exploits a greedy algorithm, that assigns
sequences to OTUs according to three different criteria: in nearest neighbourmethod a sequence is inserted into
an OTU if it is similar to any other sequence in that group, furthest neighbour criteria assigns a sequence to an
OTU if it is similar to all the sequences in that group and average neighbourmethod instead averages the distances
among the sequences in a group. QIIME2, a recent workflow for metagenomic data analysis, integrates several
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tools in a single pipeline to analyse sequencing data including also the
possibility to display the results in a graphical form. To cluster
sequences into OTUs, QIIME uses UCLUST3, a heuristic recursive
algorithm that first identifies the centroid of the OTU based on its
abundance and then includes in the OTU all sequences having
sequence identity above a prefixed threshold with the centroid. A
recently introduced pipeline, UPARSE4, implements a slightly dif-
ferent approach than mothur and QIIME: after cleaning, quality
filtering and dereplication, the input sequences are ordered accord-
ing to their abundances considering that high abundance reads are
more likely to be correct and then are suitable to use as cluster seeds.
Given a sequence, a maximum parsimony model is found using
UPARSE-REF and the read can be assigned to a known OTU,
marked as chimeric (and therefore discarded) or become a new
centroid. Compared to the other two tools UPARSE has been shown
to be more accurate in OTU reconstruction4.
Here we present MICCA, a software pipeline for the processing of

targeted metagenomic datasets that efficiently combines filtering
process, OTU clustering and taxonomic assignment. Besides reach-
ing a good compromise among modularity, usability and efficiency,
MICCA includes OTUCLUST (Supplementary Figure S1), a new de
novo OTUs clustering algorithm that improves the performances of
available software. Using synthetic datasets we show that thanks to
the optimized reads filtering process and to the performances of
OTUCLUST, MICCA can reconstruct the structure of microbial
community with higher accuracy and efficiency than currently avail-
able pipelines. Analysis of public metagenomic datasets demon-
strates that the noise reduction accomplished by MICCA improves
our understanding of microbial communities both in environmental
and human associated samples.

Results
MICCA is a software pipeline for the analysis of targeted metage-
nomic data, which includes tools for quality, chimera filtering and
OTU clustering. In addition, we have also included modules for
taxonomic classification, multiple alignment and phylogenetic tree
inference (Table 1). MICCA can be used with any kind of amplicon
reads obtained by different sequencers such as Roche 454 or
Illumina. In order to assess the performances of our pipeline, we
have generated and analysed three synthetic metagenomic datasets
(16S-10, ITS-10 and 16S-R) of known structure and composition
using MICCA, and compared the results to other popular analysis
pipelines The results were analysed in term of number of reads
passing the quality filtering, percentage of identified chimeras, num-
ber of OTUs and stability of the main diversity indices. To compara-
tively test the robustness of MICCA and other pipelines to different
choices of the amplified region, we have analysed datasets derived
from the HumanMicrobiome Project (HMP)5, for which the V1-V3,
V3-V5 and V6-V9 variable regions of the 16S rDNA gene were
amplified and sequenced.

Quality filtering and chimera identification. To investigate the
ability of MICCA to filter low quality reads and identify chimeric
sequences, we have analysed the 16S-10 and ITS-10 datasets
generated using a realistic error model for 454 reads and including
20% of chimera sequences. The results in term of number of reads
passing the filtering and number of identified chimeras are reported
in Table 2. While the number of reads discarded by MICCA and
QIIME are very similar, UPARSE tends to discard a higher number
of reads, keeping only 42.3% and 66.8% of the reads on the 16S-10
and ITS-10 datasets, respectively. This behaviour is due to the
stringent quality filtering approach used by UPARSE4, which is
based on truncating the reads at the first base position which has a
quality score less than a specified threshold. Combined with the
requirement of a minimum read length, this behaviour causes the
loss of a large fraction of the sequence data and has potentially a

negative impact on the ability to estimate the frequency of low-
abundant species.
We have also measured the number of chimeric reads that are still

present in the processed datasets from the three pipelines. The results
are shown in Table 2. While the performances obtained by MICCA
and QIIME are very close, UPARSE obtained the worst results in
terms of number of chimeric reads retained on both 16S-10 and ITS-
10 datasets (15.6% and 15.5% respectively).

OTUs identification. To measure the ability of MICCA to correctly
estimate the number of OTUs in metagenomic datasets, we have
generated 16S-R, a large synthetic sequence dataset including 500
different OTUs and 100000 sequence reads. The sample was rarefied
to a fixed depth of increasing size at steps of 1000 reads, obtaining 30
samples containing from 1000 to 30000 sequences and from 231 to
500 OTUs. By analysing subsamples of growing size, we expect the
estimated number of OTUs to approach the actual number of species
in the original dataset. Larger systematic deviations from this
number are indication of decreasing performance of the software.
In Figure 1a (see also Supplementary Table S1) we show the number
of OTUs estimated by MICCA and MICCA-FAST, with the latter
implementing an exact string matching dereplication algorithm (see
OTUCLUST algorithm), as a function of the size of the rarefied
sample. The green solid lines are the true number of OTUs in the
subsamples, while the dashed lines are the estimates obtained by
MICCA, MICCA-FAST, QIIME and UPARSE. The data
demonstrates that while QIIME overestimates the complexity of
the sample with no sign of levelling of the number of OTUs for
increasing size of the sequence sample, UPARSE is more
conservative, converging to a number of estimated OTUs that is
approximately 64% on average of the real number. The
performances of mothur were qualitatively similar to QIIME
(Supplementary Figure S2) not reaching a plateau in the
rarefaction curve and overestimating the number of OTUs4.
Amongst the tested software suites, MICCA and MICCA-FAST
achieve the best performances, converging to a number of
estimated OTUs that are on average approximately 77% and 68%
of the real number, respectively. In Supplementary Table S2 we also
report the Shannon diversity index, a popular ecological measure
used to estimate the complexity of microbial populations from
metagenomic data, to highlight the effects of the more accurate
estimation of the OTUs. In the case of UPARSE, the lower number
of reads passing the quality filter could contribute to the lower
number of estimated OTUs. To assess this point, we have repeated
the analysis skipping the filtering step for MICCA and UPARSE.
Even in this case, the number of OTUs predicted by MICCA is
much closer to the real number (see Supplementary Figure S3),
demonstrating that the superior performances of MICCA are due
to the efficient clustering algorithm.
Besides estimating the biological complexity of a sample, metage-

nomic data provide a picture of the taxonomic structure of microbial
communities. To understand the performances of the different pipe-
lines, in Figure 1b we plot the relative abundances of the top 20 most
abundant OTUs in the synthetic dataset estimated by MICCA,
MICCA-Fast, QIIME and UPARSE against the effective abundances
(see also Supplementary Figure S4 for mothur). Amongst the tested
pipelines, MICCA shows the smallest deviation form the real relative
abundances, with a value of the Residual Sum of Squares (RSS) of
0.004, to be compared with 0.027 and 0.028 for QIIME andUPARSE,
respectively (0.008 for mothur). Thus, compared to other software,
MICCA provides a more realistic estimate of both the number of
distinct OTUs present in the sample and of the relative frequency of
the most abundant samples.
In order to quantify to what extent the improved estimate of the

OTUs given by MICCA translates into the identification of novel
taxa, we have analysed samples of variable biological complexity
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from the Human Microbiome Project5 and determined the distinct
bacterial genera identified by the various pipelines. To take into
account possible biases introduced by the choice of the amplified
region, we have selected datasets where the V1-V3, V3-V5 and V6-
V9 hypervariable regions of the bacterial 16S gene have been amp-
lified and sequenced. The OTUs identified by the different pipelines
were classified to known genera using RDP6 (confidence level $
90%), discarding those that could not be classified, thus guaranteeing
that low quality OTUs or chimaeras that might have not been iden-
tified in the filtering step did not influence the results. Counting the
number of distinct genera guarantees that novel OTUs deriving from
the artificial splitting of single taxa do not bias our measure of sens-
itivity. Results are shown in Figure 2 and in Supplementary Table S3.
In all cases, we found that MICCA estimates a number of OTUs that
is intermediate between what found by QIIME and UPARSE (always
much closer to the UPARSE estimate), as already found on the syn-
thetic datasets. However, the number of distinct genera is always only
marginally smaller than the estimate given by QIIME, showing that
the higher selectivity in the OTUs identification does not affect the
ability of MICCA to characterize the biological complexity of the
analysed samples. These results (number of OTUs and number of
distinct genera) indicate that MICCA reaches a good compromise
between the need to guarantee the quality of theOTUs and to identify
less abundant taxa, without excessive loss of information due to
filtering, thus confirming the advantage of MICCA over competing
software.

Estimates of the diversity indices. To assess the stability of the
OTUs estimates and of various ecological measure of complexity,
we generated two independent datasets, one for 16S bacterial
amplicons (16S-10) and one composed by ITS fungal amplicons
(ITS-10). Each dataset was composed by 10 independent samples
having the same community structure and number of OTUs.
Results are shown in Figure 3a and 3b for the 16S-10 and ITS-10
datasets respectively, where the horizontal lines indicates the median
over the replicated datasets and the dashed lines indicates the real
values. The impact of these different reconstructions of the microbial
communities is immediately evident calculating the Shannon,
Simpson and Inverse Simpson diversity indices, commonly used in
environmental metagenomic studies to measure the complexity of
the microbial communities. With the exception of the Shannon
diversity index for the ITS-10 dataset, the median of the indices
estimated using MICCA are closer to the real value than the
indices estimated with the other two pipelines. Moreover, the
spread in terms of interquartile range (IQR) of the estimates
obtained by MICCA is always considerably lower than the
dispersion of the estimates obtained both with UPARSE and
QIIME (Supplementary Table S4).

Performances on biological datasets. To show the effect of the
MICCA pipeline on real data, we have analysed two public
metagenomic datasets, one reporting the bacterial composition of
samples collected along the Delaware Bay, and the other reporting

Table 1 | List of the software wrapped in the main tools available in the MICCA pipeline

Command Description Tools Notes

micca-preproc

. primer trimming both in the 59 and 39
ends of reads using semi-global alignments

. quality trimming using sliding windows

. minimum length filtering

. Cutadapt

. SICKLE

supports gapped alignment and IUPAC
codes for primer trimming

micca-otu-denovo

. de novo sequence clustering

. de novo chimera filtering

. taxonomic assignment with RDP
classifier or BLAST1

. OTUCLUST

. UCHIME

. RDP Classifier

. BLAST1

BLAST1: Greengenes, Silva and UNITE
QIIME-formatted databases are supported.
RDP: versions 2.61 are supported.

micca-otu-ref

. reference-based clustering . DNACLUST

Greengenes, Silva and UNITE
QIIME-formatted databases are
supported

micca-phylogeny

. de novo and template-based
multiple sequence alignment (MSA)

. phylogenetic tree reconstruction

. MUSCLE

. T-Coffee

. PyNAST

. FastTree

Table 2 | Comparison of MICCA,QIIME and UPARSE on both 16-10 and ITS-10 datasets in terms of average % of reads passing the quality
filtering step, number ofOTUs found, chimeric and redundantOTUs (i.e. OTUs corresponding to the same centroid in the synthetic datasets).
Standard deviations are indicated in parentheses

Dataset Pipeline % reads passing the filtering step OTUs found % Chimeric Reads Chimeric OTUs Redundant OTUs

16S-10 MICCA 86.6 (1.8) 173.4 (6.2) 13.1 (0.7) 0.5 (0.5) 0 (0)
QIIME 84.4 (2.1) 263.3 (9.6) 12.0 (0.6) 26.8 (5.8) 31.5 (3.4)
UPARSE 64.6 (2.4) 148.3 (7.4) 15.5 (0.8) 0.2 (0.4) 0 (0)

ITS-10 MICCA 74.1 (5.2) 93 (2.3) 12.7 (0.5) 0.6 (0.8) 0 (0)
QIIME 71.8 (5.5) 179.1 (7.5) 11.5 (0.5) 28.7 (10.4) 34 (2.3)
UPARSE 66.8 (4.1) 89.5 (1.8) 15.5 (0.6) 0.1 (0.3) 0.9 (0.7)
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the bacterial component of the distal gut microbiota of three
individuals in a time series including two courses of antibiotic
treatment with ciprofloxacin. The analysis of an environmental
dataset and a gut dataset puts MICCA to the test of two of the most
common applications of metagenomics. The Delaware Bay study is
focused on the analysis of diversity, composition and activity of
bacteria in a salinity gradient typical of estuarial environment. We
have evaluated the Chao1 estimator of the number of OTUs after
sample pooling and rarefaction using MICCA, UPARSE and
QIIME. The results are shown in Figure 4. Qualitatively the results
confirm the behaviours of the three pipelines observed on the
simulated datasets. QIIME finds more than twice as many OTUs as
identified by MICCA, while UPARSE is much more conservative and
individuates less OTUs in each of the different samples.
Analysis of the antibiotic treatments study highlights the advan-

tages of using MICCA in term of the higher number of sequences
used and more consistent estimates of the number of OTUs across
replicates. In the original study a custom pipeline based on mothur
and UCLUST with a reference-based clustering protocol was
applied7. In this protocol, sequences that did not have a hit with a

reference OTU were excluded from the analysis. After pre-proces-
sing, clustering and rarefaction, the number of reads per sample
obtained by using the MICCA pipeline was 3.23 106 clustered into
1466 OTUs, while the reads per sample used in Ref. 7 was 1.83 106

clustered into 2582 OTUs. By aligning the representative sequences
of the OTUs obtained in Ref. 7 against the representative sequences
of the OTUs inferred by MICCA, we found that 1395 original OTUs
aligned to 702 OTUs of MICCA (alignments performed using blastn
and considering only hits with identity.0.97 and alignment length
.100 bp) (see Figure 5a). Themore robust estimate of the number of
OTUs improves the consistency of the results at the different time
points. For instance, in the case of patient E, first Cp treatment,
(Figure 5b) it is worth noting that, as expected, the number of
OTUs estimated by MICCA decreases during the first antibiotic
treatment (solid line, days 79-83), while we observe an inverse trend
with the analysis pipeline used in the paper of Dethlefsen (dashed
line), probably due to a less robust estimate of the number of OTUs.
A generally lower number of OTUs and smoother time series are
obtained also for the other patients (patients D, E and F in
Supplementary Figures S5, S6, S7 respectively).

Figure 1 | 16S-R dataset: Evaluation of MICCA pipeline performance compared with UPARSE and QIIME. MICCAwas also tested in fast variant

(MICCA-FAST). In (a) the rarefaction curves are plotted. The continuous green lines represent the actual values. In (b) the relative abundances of the top

20 ranked OTUs compared to the actual values. RSS: Residual Sum of Squares.

Figure 2 | Number of OTUs (upper panels) and of distinct genera (lower panels) obtained usingMICCA, QIIME and UPARSE for three choices of the
of the 16S variable region, namely V1-V3, V3-V5 and V6-V9. Samples were taken from the HMP, selecting those for which data for the

three regions were available.
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Discussion
The increasing throughput of NGS technologies and the decreasing
costs of sequencing is triggering an explosion of the number of pro-
jects that use metagenomics to characterize the structure and com-
position of microbial communities. However, while standard
experimental protocols and technologies are emerging that allow
the comparison of raw datasets generated by different groups, the
reusability of the processed data is often hampered by the lack of
standard processing and analysis pipelines. In addition, existing soft-
ware are often complex to use and allow many different combina-
tions of parameters that make it difficult to document and compare
results from different experiments. The availability of standard, easy-
to-use and optimized software pipelines would greatly benefit the

scientific community involved in the study of the microbiota using
metagenomic technologies.
The analysis of metagenomic sequences can be divided into three

main steps: i) quality filtering of the reads and chimera detection; ii)
OTU clustering; iii) OTU annotation and analysis. While the third
step relies on reference sequence databases to define the taxonomic
structure of the sample, the first two stepsmostly depend on complex
computational procedures for quality filtering and clustering and are
critical in order to produce consistent data. For example, failing to
eliminate spurious reads might lead to an overestimate of the sample
complexity, while a stringent filtering process might eliminate too
many reads penalizing the least abundant species. One example
of this behaviour is represented by UPARSE, which implements a

Figure 3 | Diversity indices computed using MICCA, UPARSE and QIIME on the 16S-10 (above) and ITS-10 (below) simulated dataset. The dashed
lines represent the real values.

Figure 4 | Curves of the salinity dataset after pooling and rarefaction.The
plot represents the variation of the number of OTUs as a function of

salinity in marine water in the Delaware Bay obtained analysing the data

using the three pipelines, MICCA, UPARSE and QIIME.

Figure 5 | (a) Scatter plot of the number of OTUs identified by the analysis

pipeline used in the paper of Dethlefsen et al. for patients, D, E and F vs the

number of OTUs estimated by MICCA. (b) Patient E. The microbial

growing curve inferred by the two pipelines during the first antibiotic

ciprofloxacin (Cp) treatment and the week post Cp (WPC).

www.nature.com/scientificreports
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stringent quality filtering algorithm at the cost of discarding a large
fraction of the sequence data. MICCA, implementing a more flexible
filtering strategy, tends to use more efficiently the sequenced reads
and therefore provides a more realistic estimate of the sample
complexity.
The second step of the procedure, the clustering process, is also

critical. The use of greedy clustering algorithms, while being capable
to quickly analyse large datasets, might lead to a definition of OTUs
that overestimates the number of different species actually present in
the sample. One example of this is represented by UCLUST algo-
rithm exploited by QIIME, which systematically overestimates the
sample richness, failing to converge to a finite number of OTUs in
rarefaction analysis. This feature, share by mothur, makes it difficult
to merge samples sequenced to different depths and might lead to
sequencing to excessive depth thus increasing the experimental costs.
A more accurate approach for the choice of the centroid is imple-
mented in theUPARSE andMICCApipelines, starting the clustering
process from the most abundant reads individuated after the dere-
plication step. In this way UPARSE and MICCA, using abundance
information in the clustering step, are able to provide estimates of the
number of OTUs that are less dependent on sequencing depth, thus
allowing to attain a good description of metagenomic samples with
lower sequencing depth than needed by QIIIME and mothur. In
addition, the efficient use of sequence data identifies a richer popu-
lation structure than UPARSE, avoiding the danger of filtering out
the complexity of the sample.
Given the lack of official and well-studied datasets to test the

analysis tools, it is generally difficult to assess the accuracy and reli-
ability of a metagenomic pipeline. To overcome these limitations we
tested our pipeline on simulated data where the OTU composition
was known, showing that MICCA improves over the existing soft-
ware. MICCA was able to accurately reconstruct the OTU composi-
tion of the samples and gave reliable estimate of the most commonly
used diversity indices. In addition, the estimatedOTUs, although less
numerous that what obtained by QIIME, covered a similar range of
biological diversity, as witnessed by the similar number of identified
bacterial genera in samples derived from the HMP. When tested on
real datasets representing the two most common scenarios for meta-
genomics studies, i.e. environmental metagenomics and gut metage-
nomics, MICCA showed a higher consistency of the results. For
instance, MICCAwas able to reconstruct the expected growing curve
of themicrobiota during two antibiotic courses even in the absence of
a reference database for OTUs. This suggests that MICCA can be
effectively used also on samples that are rich in species not previously
characterized, as is often the case in environmental metagenomic
projects.

Methods
MICCA. MICCA is an open-source software pipeline built using the Python and C
programming languages (https://www.python.org/) and several external
applications. Starting from raw sequencing data, MICCA performs a series of initial
analyses to clean the reads cutting the primers and trimming the low quality regions.
The pre-processing module of MICCA implements a sliding window approach for
quality filtering, discarding the 39-end of the read when the average quality in the
sliding window (including 10% of the read length) drops below a specified threshold.
Moreover, ending and contiguous Ns are discarded. After trimming, sequences are
discarded if their length is below a specified threshold. All the preprocessing steps are
performed by a single command line tool (micca-preproc) which wraps cutadapt8 for
primers trimming (modified to include IUPAC codes support) and sickle (https://
github.com/najoshi/sickle) for the windowed adaptive quality filtering. After that, a
de novo clustering (micca-otu-denovo, using OTUCLUST, a clustering algorithm
specifically designed for MICCA) or a reference-based clustering (micca-otu-ref,
which wraps DNACLUST9) can be performed. For the chimera-filtering step,
OTUCLUST embeds the public domain version of UCHIME10. In de novo mode, the
representative sequences of the OTUs can finally be classified using BLAST1 (against
a QIIME-formatted database, such as Greengenes11, UNITE12) or exploiting the RDP
classifier6 (version 2.61 are supported). Furthermore, the single command micca-
phylogeny produces a multiple alignments using MUSCLE13, T-Coffee14 or
PyNAST15 and infers a phylogenetic tree with FastTree16. In Supplementary Table S5

we reported the computation times of the MICCA pipeline using different wrapped
tools available in each processing step.

MICCA can be easily used on a wide range of *NIX platforms, from laptops to high
performance computing clusters. The output ofMICCA is fully compatible with the R
package phyloseq17 for downstream analyses.

OTUCLUST. OTUCLUST is a new open-source application specifically created to
partition a set of amplicon reads into clusters of sequences within a given identity
threshold. OTUCLUST is the default clustering method used in micca-otu-denovo.
In OTUCLUST, a cluster is built starting from a centroid (the representative
sequence) and from the sequences which have pair-wise similarity with the
representative one above the threshold.

Overview of OTUCLUST algorithm. The OTUCLUST algorithm can be divided
into three main steps: a) dereplication and abundance estimation, b) de novo chimera
removal (optional) and c) clustering using a greedy approach, where representative
sequences are selected starting from high-abundance reads, which are more likely to
be representative sequences (Supplementary Figure S1).

The aim of the dereplication is the removal of duplicate sequences. This step is
performed by the clustering procedure (described below) with an identity threshold
of 100%. Given the increasing size of metagenomic datasets, this step is computa-
tionally intensive. In order to provide a faster alternative we have included the pos-
sibility to use an exact prefix matching algorithm (MICCA-FAST). Abundances of
the dereplicated sequences are estimated by counting the number of reads.
Dereplicated sequences are ordered by their abundance and passed to UCHIME10 for
chimera detection. Reads detected as chimeras are removed.

Dereplicated and chimera-free sequences, ordered according to their abundance,
are used as cluster seeds by the clustering algorithm. The clustering procedure relies
on a search algorithm defined as follows:

Inputs:

. Query sequence: a cluster seed (dereplicated sequence)

. Sequence database: all sequences

1. Given a query sequence Q, the sequence database is sorted by decreasing k-mer
similarity. The k-mer similarity is defined as in Ref. 13:

sk{mer
i,j ~

P
t min ni tð Þ,nj tð Þ� �

min li,lj
� �

{kz1
ð1Þ

where t is a k-mer, n is the number of occurences of the k-mer in the sequences
and li, lj are the lenght of sequences i and j respectively.

2. For each sequence in the sorted database (target sequence, T) the similarity sGAQ:T
is computed using the Needleman–Wunsch algorithm. If sGAQ:T is greater or equal

than the identity threshold sthr (e.g. 0.97) the sequence Q is added to the results

and the reject counter nrej is set to zero, otherwise nrej is incremented by one.

Definition of pair-wise similarity sGAQ:T. Given a global alignment (GA), between the

sequences i and j, the pair-wise identity is defined as:

sGAi,j ~
# of matches

# of matchesz# of mismatches
of the GAi,j ð2Þ

Internal and external gaps are ignored in the definition of sGAQ:T
18, and mismatch and

gap penalties are set equal to one in the GA.
3. If nrej is above the given thresholdm (a value of 32 has proven to be a good choice

for this threshold) it is unlikely that another hit exists. In this case the reads
belonging to the cluster are removed from the sequence database and a new seed
sequence is chosen according to its abundance.

Synthetic data.We generated two amplicon datasets for the V3-V5 variable region of
the16S rRNA gene for bacteria (datasets 16S-R and 16S-10) and one dataset for the ITS
(ITS2) region for fungi, mimicking data obtained from a Life Sciences 454 sequencer
(GS FLX Titanium series reagents) using Grinder19 starting from 99% clustered OTUs
in Greengenes11 version 13_05 for the 16S data and 99% clustered OTUs in the UNITE
database12 release 04_07_2014 (after removing duplicate sequences) for the ITS datasets
(details, commands and Grinder profile files in Supplementary Data). Quality profiles
of the reads of the 454 pyrosequencing process were simulated with flowsim20.
Community structures were simulated with a power law rank-abundance distribution
and 20% of chimeras were generated (90% bimeras, 10% trimeras).

16S-R. 30 samples were generated from a single Grinder run (100000 reads, 500
OTUs). After the application of the flowsim model, samples were rarefied to a fixed
depth at steps of 1000 reads, obtaining 30 samples containing between 1000 and
30000 sequences (dataset available at http://compmetagen.github.io/micca/data/16S-
R.tar.bz2).

16S-10. 10 independent samples containing 5000 sequences were generated using
Grinder (200OTUs) and flowsim (dataset available at http://compmetagen.github.io/
micca/data/16S-10.tar.bz2).

www.nature.com/scientificreports
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ITS-10. 10 independent samples containing 5000 sequences were generated using
Grinder (100OTUs) and flowsim (dataset available at http://compmetagen.github.io/
micca/data/ITS-10.tar.bz2).

Biological data. HMP dataset. We analysed 12 samples of the Human Microbiome
Project5 dataset where the V1-V3, V3-V5 and V6-V9 hypervariable regions of the
bacterial 16S gene have been amplified and sequenced using the Roche-454 FLX
Titanium platform. Details and NCBI accession numbers are available in the
Supplementary Table S6.

Salinity dataset. This dataset characterizes the bacterial communities along the
salinity gradient in the Delaware Bay and it is described in Ref. 21. The 454 GS FLX
Titanium ‘‘whole water’’ samples were downloaded from the NCBI Sequence Read
Archive database, accession number SRA052537 (samples FB_WD, Bay_WD,
X14_WD, X16_WD, X18_WD, X20_WD, X22_WD, X26_WD, X28_WD).

Antibiotic dataset. Dataset of distal gut of three adult healthy subjects obtained by
collecting stool samples (52–56 per subject) over a 10-mo interval, during which time
these subjects took two 5-d courses of the antibiotic ciprofloxacin (Cp) separated by 6
mo. 454 GS FLX Titanium data from NCBI Sequence Read Archive, accession
number SRA0209617.

Software availability. MICCA is an Open Source project and it is freely available at
http://compmetagen.github.io/micca/.
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