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Large, complex brains have evolved independently in several lineages of

protostomes and deuterostomes. Sensory centres in the brain increase in size

and complexity in proportion to the importance of a particular sensory

modality, yet often share circuit architecture because of constraints in proces-

sing sensory inputs. The selective pressures driving enlargement of higher,

integrative brain centres has been more difficult to determine, and may

differ across taxa. The capacity for flexible, innovative behaviours, including

learning and memory and other cognitive abilities, is commonly observed in

animals with large higher brain centres. Other factors, such as social grouping

and interaction, appear to be important in a more limited range of taxa, while

the importance of spatial learning may be a common feature in insects with

large higher brain centres. Despite differences in the exact behaviours under

selection, evolutionary increases in brain size tend to derive from common

modifications in development and generate common architectural features,

even when comparing widely divergent groups such as vertebrates and

insects. These similarities may in part be influenced by the deep homology

of the brains of all Bilateria, in which shared patterns of developmental gene

expression give rise to positionally, and perhaps functionally, homologous

domains. Other shared modifications of development appear to be the result

of homoplasy, such as the repeated, independent expansion of neuroblast

numbers through changes in genes regulating cell division. The common

features of large brains in so many groups of animals suggest that given

their common ancestry, a limited set of mechanisms exist for increasing

structural and functional diversity, resulting in many instances of homoplasy

in bilaterian nervous systems.
1. Introduction
The conserved expression patterns of homologous developmental genes have

provided a foundation for the hypothesis that the ancestral bilaterian possessed

a centralized nervous system. A largely conserved battery of transcription factors

and signalling molecules pattern elements of the nervous system in Bilateria

(reviewed by [1,2]), while a number of genes involved in neuron differentiation

and function are also shared with the Cnidaria [3,4]. By this criterion, the use of

a different array of developmental genes in the Ctenophora suggests that their

nervous systems evolved independently from those of Cnidaria þ Bilateria [5].

In the latter grouping, however, the molecular developmental evidence sug-

gests that neurons arose in a common ancestor of Cnidaria þ Bilateria, while

mechanisms for patterning subcompartments along the anterior–posterior and

dorsal–ventral axes were present in the ancestral bilaterian.

Overlying these conserved underpinnings of animal nervous systems, natural

selection on body plans and behaviours has driven tremendous morphological

and functional diversification of nervous systems. These selective pressures inter-

act with constraints imposed by the inherited structural and functional

framework of the nervous system, constraints owing to developmental processes,

and constraints imposed by the processing roles that must be fulfilled by the

nervous system [6,7]. When similar selective pressures and constraints are

encountered by divergent lineages, convergent and parallel evolution of structu-

res and circuits will often result. Convergence refers to the independent evolution

of similar structures from different ancestral structures and genetic mechanisms,

while parallelism occurs when similar structures evolve independently from
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shared ancestral and genetic mechanisms [8]. Convergence and

parallelism can be difficult to differentiate, especially when

the phylogeny of the species being compared is incomplete

or unavailable. Thus, the remainder of this review will refer

to convergence and parallelism collectively as ‘homoplasy’.

Homoplasy in sensory systems is often relatively straight-

forward to link to shared behaviours and environments

across species. The olfactory system, as described below,

provides an excellent example of architectural and functional

homoplasy between distantly related animals, which is

associated with lifestyles dependent on the detection and dis-

crimination of odourants. By contrast, complex, integrative

higher brain centres such as the mammalian cerebral cortex

and the arthropod mushroom bodies are required for many

behaviours, and the selective pressures that drive homoplasy

in these structures can be much more difficult to ascertain.

Homoplasy is pervasive in animal nervous systems, and

can only be detected through comparative studies. Such

studies can also reveal the origins of nervous system features,

providing insight into their adaptive functions. However,

detailed functional studies of neural circuits are most easily

carried out in a small number of genetic model species. A

comprehensive understanding of nervous system function

must incorporate both approaches.
2. Homoplasy in sensory nervous systems
Homoplasy is widespread in animal nervous systems. The

concept of deep homology has allowed conserved patterns

of gene expression in cellular fields during development to

be interpreted as evidence of common ancestry of brain

regions [9]. Yet, the evolution of complex neuroarchitectures

such as the retinas and eyes of insects, vertebrates and

cephalopods is still most plausibly attributed to homoplasy,

even if some of the component cell types share patterns

of gene expression that support deep homology [10]. Homo-

plasy of sensory neuroarchitectures may encompass stunning

similarities in development, function and morphology.

Homoplasy may also be evident when considering how

sensory centres have adapted to changing selective pressures

in different lineages.

First-order olfactory centres, such as the antennal lobe of

insects and the olfactory bulb of vertebrates, provide excellent

examples of brain regions with striking morphological

and functional similarities that have almost certainly arisen

through homoplasy. These olfactory centres are characterized

by a glomerular organization, in which each glomerulus pro-

cesses inputs from olfactory receptor neurons expressing just

a single type of olfactory receptor protein. Local interneurons

(mostly inhibitory) interconnect these glomeruli, and pro-

jection neurons convey the output of glomeruli to higher

brain centres [7,11]. Glomeruli allow convergence of many

olfactory receptor neurons expressing the same receoptor

protein onto a small number of outputs, greatly increasing

the signal-to-noise ratio and thus the sensitivity of the olfac-

tory system [12]. An activated glomerulus also represents a

specific component of each odourant molecule, owing to

the homogeneity of inputs from similarly tuned olfactory

receptor neurons [13,14]. The activity of each glomerulus is

sharpened relative to that of other glomeruli through lateral

inhibition by local interneurons, resulting in a spatial and

temporal representation of the molecular features of each
odourant [15,16] (reviewed in [17,18]). Perhaps, one or all

of these functions make glomeruli particularly adaptive for

the challenges of olfactory coding.

Further adaptations of the primary olfactory system also

take a similar form across phyla: both insects and vertebrate

species that rely heavily on olfaction have larger arrays of

functional olfactory receptor genes in the genome [19–21]

and larger olfactory bulbs/antennal lobes with more glomer-

uli [22–25]. Interestingly, these structures do not appear to be

capable of adapting to a return to an aquatic lifestyle, as

olfactory bulbs and antennal lobes are lost or greatly reduced

in secondarily aquatic animals such as cetaceans or whirligig

beetles [26,27].

The antennal lobe and olfactory bulb reveal their inde-

pendent origins at the molecular level. Most strikingly, the

olfactory receptor proteins that perform the critical role of

binding odourants share little sequence homology between

vertebrates and insects (reviewed in [28–30]). Signal transduc-

tion within olfactory receptor neurons also involves different

intracellular pathways; in vertebrates, olfactory transduction

uses canonical G protein-coupled receptor pathways, while

in insects, olfactory receptor proteins dimerize with a co-

receptor to form ion channels that are ligand- and/or cyclic

nucleotide-gated [31,32].

Why the striking morphological homoplasy despite inde-

pendently evolved odourant binding and signal transduction?

The olfactory systems of animals have evolved under shared

selection pressures and constraints. Selection for the need to

detect and identify airborne odours is constrained by physical

properties of the sensory stimulus, and probably by the organ-

ization of circuitry that can compute basic parameters of the

stimulus (glomeruli).
3. Factors driving homoplasy in higher brain
centres

Highly conserved developmental gene expression patterns

appear to define the anterior-most segments of the bilaterian

nervous system: the forebrain of vertebrates and protocerebrum

of arthropods and annelids [2,9,33,34]. The debate over whether

this developmental brain segment contains homologous cell

populations or even basic circuitry across phyla is ongoing

[9,35], although such ‘deep homology’ does not preclude homo-

plasy of later-arising features, such as higher brain centres

contained within these anterior brain segments [8].

Higher brain centres within a lineage such as the vertebrates

or the insects share a highly conserved structural and develop-

mental groundplan, suggesting homology within that lineage

[36,37]. On top of this lineage-specific groundplan, higher

brain centres have clearly evolved additional features contribut-

ing to higher processing and complex behavioural output.

Among the best-studied evolutionary trajectories in higher

brain centres is the increase in neuron number and size of

these centres relative to the rest of the brain, which has occurred

several times independently in large taxonomic clades like the

insects and mammals [38,39].

Changes in size and structural complexity of primary

sensory centres are often easy to relate to the behaviour and

ecological niche of the animal. For example, increased size

and complexity of the olfactory bulb or antennal lobe is associ-

ated with increased numbers of olfactory receptor genes

expressed in a greater number of olfactory receptor neurons



rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

370:20150054

3
occupying an expanded peripheral olfactory epithelium, all

adaptations driven by an increased dependence on olfaction

for survival. By contrast, it is very difficult to pinpoint causes

of homoplasy in higher brain centres, as they typically receive

inputs from multiple sensory stimuli and other brain regions,

and participate in many complex behaviours. It is often unclear

what behaviours of a particular animal required increased

processing capabilities and thus drove elaboration of the

higher brain centre necessary for those behaviours. Unlike sen-

sory brain centres, homoplasy in gross morphologies of higher

brain centres, such as significant increases or decreases in size

relative to the rest of the brain, appears to have occurred as a

result of different selective pressures on different groups of ani-

mals [38,39]. This difference reflects the fact that the definition

of a complex behaviour may be relatively lineage-specific, and

multiple such behaviours may have impacted higher brain

centre evolution in each lineage.

In mammals, the social brain hypothesis was proposed to

explain how large brains, and especially large cerebral cortices,

had evolved in primates (reviewed in [40,41]). This hypothesis

posits in particular that the social behaviour of anthropoid

primates, including humans, was especially cognitively

demanding owing to the formation of complex societies requir-

ing interaction and communication between many individuals.

However, attempts to extend the social brain hypothesis

to other groups of mammals and birds primarily served to

emphasize the different types of animal sociality, as corre-

lations were not consistently observed between general social

behaviour (as measured by social group size) and brain size

in these other animals [42–45]. Outside of the anthropoid pri-

mates, social effects on large brain evolution were seen

primarily in species that pair bonded. It was proposed that in

anthropoid primates, pair bond-like associations are extended

to members of the individual’s larger, long-lasting social

group, leading to a correlation between group size and brain

size in this taxon only [43,46,47]; reviewed in [40]. Thus, all

types of sociality are not equal in their propensity to drive

the evolution of large brains, and by extension, their require-

ment for complex processing capabilities that would be

provided by larger and more complex brains.

Non-social behaviours have also influenced the evolution

of large brains in vertebrates, although these behaviours

have been even more difficult to define than the nature

of sociality. ‘General intelligence’ encompasses a number of

behaviours that demonstrate the ability of the animal to

engage in flexible, innovative behaviours when confronted

with a problem. Innovative behaviours typically involve

novel means of food acquisition and are exemplified by the

multiple independent instances of British birds learning to

open foil-covered milk bottles [48]. Across birds, the highest

innovation rates are observed in lineages with the largest

forebrains relative to body size, for example, the Corvoidea

(crows and jays) [49]. The same association is also observed

in primates [50], suggesting that benefits of being able to

behave flexibly exert similar selection pressures on birds

and primates, resulting in convergent evolution of large

forebrains, including the cerebral cortex.

Dietary and habitat variability and complexity have also

been associated with the evolution of large brains in vertebrates,

sometimes together with social behaviours [42,46,51,52]. Taken

together, the selective pressures that promote increased brain

and higher brain centre size and complexity are many, interact-

ing, and at this point almost entirely correlational. There is little
direct evidence to link novel cognitive abilities to processing

capabilities found only in larger brains.

Although hundreds of millions of years diverged from

vertebrates, insects also possess integrative higher brain

centres called mushroom bodies. Mushroom bodies are

found in polychaete annelids, turbellarian platyhelminths,

onychophorans, and many, but not all arthropods [53–56].

They are best studied in the insects, where they are likely to

have arisen in a common ancestor prior to the divergence

of the wingless Zygentoma (silverfish and firebrats) [37,57].

Insect mushroom bodies typically have a single, ovoid sen-

sory input neuropil called the calyx that primarily receives

input from olfactory centres, although important exceptions

exist and will be discussed below.

Mushroom body size and architecture vary widely

across this tremendously diverse and speciose class. Mush-

room body size has increased relative to brain size in clades

belonging to a handful of divergent lineages, suggesting that

these are evolutionarily independent events [38]. There has

been a tendency to ascribe the same selective pressures that

have influenced the evolution of the vertebrate brain, and

especially the primate cortex, to the insect mushroom bodies.

The social Hymenoptera, exemplified by ants, bees and

wasps but mainly composed of solitary species, may serve as

a case study. Social hymenopterans, including the well-studied

honeybee (Apis mellifera), possess greatly enlarged mushroom

bodies that include duplicated and convoluted calyces that

are subdivided functionally by afferent source [58,59]

(figure 1). Further functional subdivisions are observed in the

lobes, which both receive higher-level afferent input and pro-

vide output to other brain regions [62,63]. These elaborate

mushroom bodies of social Hymenoptera have for decades

been tacitly (and perhaps anthropomorphically) assumed to

be adaptations for the sensory and cognitive complexities of

eusocial behaviour (reviewed in [64,65]).

However, studies in other insect species have long

suggested that the proposed link between complex sociality

and mushroom body size and complexity had at the very

least a number of significant exceptions. Cockroaches (Dictyop-

tera) have mushroom bodies very similar in gross morphology

to those of the social Hymenoptera. However, cockroaches are

not social and form at most loosely organized aggregates

[66,67]. Large mushroom bodies are also found in Odonata

(dragonflies and damselflies) [37], Isoptera (termites) [68],

butterflies of the genus Heliconius (Lepidoptera) [69], feeding

generalist scarab beetles (Coleoptera) [70,71], and parasitoid

and parasitic wasps (Hymenoptera), all of which are solitary

[61,72–74] (figure 1). With the exception of termites, none of

these species demonstrates true colony-based social behaviour.

In feeding generalist scarab beetles and social Hymenop-

tera, studies of afferent input to the mushroom body calyces

revealed a striking feature that had been acquired indepen-

dently in both groups, but was not found in most other

insects: large tracts providing visual inputs directly from the

optic lobes to novel subcompartments in the calyces [58,75].

As stated above, mushroom bodies of most insects are small

with a single calyx, and the predominant sensory input to the

mushroom body calyces is olfactory; this includes scarabaeoid

beetles basal to scarab beetles and the basal, phytophagous

Hymenoptera [61,71]. Interestingly, the latter study demon-

strated that large mushroom bodies with visual inputs were

not restricted to social hymenopteran species, but appeared

widespread in solitary and parasitoid wasps [61]. Tracts from



Kc

KcKc

Kc
Kc

CaCa

Ca
Ca Ca

Ca
*

*
*

*

(b)(a)

(c)
(d )

Figure 1. Independent evolution of elaborate mushroom bodies in two
lineages of insects, the scarabaeid Coleoptera (scarab beetles) and the Hyme-
noptera (ants, bees and wasps). Each panel shows a mushroom body in one
hemisphere of the brain. Mushroom body intrinsic neurons (Kenyon cells, Kc)
and sensory input regions called calyces (Ca) are labelled. Note in particular
the expansion and subcomparmentalization of the calyces (asterisks) in the
large mushroom bodies in (b) and (d ). The ventral (bottom) subcompartment
in both cases marks the location of novel visual inputs to the mushroom
bodies that are not observed in species with smaller mushroom bodies
(a,c). (a) The mushroom body of the feeding specialist scarab beetle
Phanaeus vindex (Coleoptera: Scarabaeinae). (b) Mushroom body of the feed-
ing generalist scarab beetle Cotinus mutabilis (Coleoptera: Cetoniinae).
(c) Mushroom body of the phytophagous sawfly Dolerus sp. (Hymenoptera:
Tenthredinidae). (d ) Mushroom body of the parasitoid wasp Ophion sp. (Hyme-
noptera: Ichneumonidae). Scale bars, (a) 100 mm, (b) 50 mm, (c and d)
20 mm. a and b from [60]; c and d from [61]. (Online version in colour.)
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the optic lobes to the calyces are also been described in dragon-

flies [76], the cockroach Periplaneta americana [77,78], the

butterfly Pieris rapae [79] and the whirligig beetle Deineutus
sublineatus [27]. In most of these insects, the mushroom

bodies are large with expanded, often duplicated calyces,

much like the mushroom bodies of the social Hymenoptera.

However, none of these species is social, and all occupy

branches of divergent lineages of the insect phylogenetic tree,

suggesting that they acquired large mushroom bodies with

significant visual input independently [60,80].

A comprehensive comparative study in the Hymenoptera

showed that large mushroom bodies are present in the earliest

lineage of parasitoid wasps, the Orussidae [61]. Large mush-

room bodies were found throughout the Euhymenoptera (all

parasitoids þ Aculeata, the latter containing the social ants,

bees and wasps). Visual inputs to the calyces were also

found throughout this group, and quantitative comparisons

of mushroom body volume found no difference between

parasitoid and social species. Thus, the acquisition of large,

elaborate mushroom bodies with novel visual inputs predated

the evolution of sociality in the Hymenoptera by approxima-

tely 90 Myr, suggesting that sociality arose in hymenopteran

ancestors that already possessed these modifications to the

mushroom bodies. Interestingly, the same appears to be true

for the other major eusocial insect group, the termites (Iso-

ptera). Current phylogenies place the Isoptera within the
Dictyoptera [81], and all cockroaches investigated to date

possess large, elaborate mushroom bodies [68].

In insects, the evolutionary acquisition of elaborate

mushroom bodies is not driven by sociality. What novel or

enhanced cognitive abilities are provided by elaborate mush-

room bodies, and what selective pressures drove their

evolution in multiple independent lineages? The well-studied

landmark learning and navigation abilities of the social

Hymenoptera, combined with the common acquisition of

visual inputs across species, suggest that additional visual

processing capabilities, perhaps spatial learning, may be

performed by elaborate mushroom bodies. Environments in

which this type of visual processing is beneficial, say where

food sources are patchy but persistent, provide selective

pressure for learning and remembering locations of food

sources. In social insects, food sources often fit exactly this

type of profile, and individuals must also navigate between

food sources and a nest site [82].

The behaviour of insects that are not agriculturally

beneficial, detrimental or particularly charismatic is often

poorly understood. But spatial learning abilities have been

demonstrated in a few non-social hymenopteran species. For

example, Heliconius butterflies have enormous mushroom

bodies (although visual input has not been studied) [69],

return to common roost sites at night, and visit food patches

in a predictable order (‘trap-lining’, a behaviour also observed

in social Hymenoptera) [83].

Host location strategies that use spatial learning have

been demonstrated in the parasitoid wasp Hyposoter horticola
[84,85] and the kleptoparasitic wasp Dasymutilla coccineohirta
[86]. Other insects with elaborate mushroom bodies receiving

visual input, such as dragonflies and whirligig beetles,

have preferences for patrolling from or aggregating in fixed

locations that might require landmark learning [87,88].

There is incidental evidence that the generalist scarab beetle

Popillia japonica learns food source locations and returns to

them repeatedly [89]. Finally, outside of the insects in the

Chelicerata, the wandering spider Cupiennius salei has mush-

room bodies that primarily receive visual input from the optic

lobes [90], and the orb-web spider Cyclosa octotuberculata
employs spatial learning to monitor more attentively the

parts of the web that have previously been successful in

capturing prey [91].

Experimentally, only a single study has demonstrated

participation of elaborate mushroom bodies in spatial learning

tasks. In the cockroach P. americana, mushroom body lesions

prevent individuals from learning to quickly navigate a

heated maze using remote spatial cues [92]. Interestingly,

mushroom body lesions do little to impede simple forms of

spatial learning in the fruit fly Drosophila melanogaster [93,94],

an insect that may rely predominantly on olfactory rather

than visual navigation in its natural environment [93,95].

Although not yet demonstrated experimentally, it is possible

that the evolution of elaborate mushroom bodies with direct

visual input from the optic lobes facilitated spatial learning

using distal landmarks that insects like honeybees are adept

at. This also suggests that some aspect of mushroom body

circuitry and function made this brain centre a target for

repeated, independent evolution of novel computations

involving visual inputs.

In vertebrates, the hippocampus performs spatial learning

computations and is relatively larger in several lineages of ani-

mals that rely heavily on spatial learning [22,96,97]. Although
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more study will be required before selection for spatial learning

ability can be definitively pinned on mushroom body elabor-

ation, the finding that sociality is not a factor in driving

mushroom body size and complexity underscores the impor-

tance of carefully considering the behavioural ecology of

each animal being studied. For example, social behaviour in

insects, especially eusociality, is very different from mamma-

lian sociality (with the exception of the single eusocial

species, the naked mole rat). Owing to the division of labour

in eusocial colonies, individuals typically perform fewer beha-

viours than do individuals in closely related solitary species

[98]. If the evolution of elaborate higher brain centres reflects

an increase in behavioural and computational complexity,

then insect eusociality would be expected to have the opposite

effect on brain size; a recent study suggests that this is indeed

the case [99]. So while the ability to perform more complex

behaviours in some contexts appears generally to underlie

the convergent evolution of large, complex higher brain

centres, what constitutes a complex behaviour may differ a

great deal in different groups of animals.
0054
4. Homoplasy of morphology and development
Despite the differences in selective pressures driving the

elaboration of higher brain centres, they share many gross

structural features across taxa, suggesting common con-

straints in development and circuit organization. Many of

these anatomical features have been described in previous

reviews [60,75], and their functional roles may in some

cases be inferred. For example, both arthropod mushroom

body calyces and mammalian cerebral cortex become more

convoluted (increased gyrification) as neuron number in

these structures increases. Experiments in which cortical cell

number is increased in mice demonstrate that gyrification

occurs as cortical surface area increases [100,101]. Gyrification

benefits the organism by allowing a larger cortex to fit within

the skull, as well as facilitating the formation of local (small-

world) connectivity that is more rapid and energy efficient

than long-distance connections [102–104]. Parcellation, the

subdivision of a brain region into functional and structural

subdivisions, would also enable the formation of small

world circuitry, and is observed in both mushroom bodies

and cortex as they increase in size [58,75,105]. Interestingly,

despite the precise patterns of gyrification observed in the

cortex of a given species, gyri and sulci appear to result

from mechanical forces that are especially pronounced as

the cortical sheet increases in area relative to thickness

[103,106–109]. Again, these aspects of cerebral cortex evol-

ution highlight the interplay between constraints and

adaptive benefits. However, although the insect mushroom

bodies acquire similar modifications as they increase in size,

it is not clear how they benefit processing in the mushroom

bodies, nor whether the same developmental constraints

that act on a cerebral cortex containing billions of neurons

would be at play in an insect mushroom body, which at

maximum has a few hundred thousand neurons.

During development, evolutionary increases in both

mushroom body and cerebral cortical size are associated with

an increased number of stem cells providing neurons for

that structure [71,75]. Although this seems like a logical way

to increase the number of neurons in a structure, it is not

known whether similar mechanisms for regulating stem cell
number and proliferation have been employed across distant

taxa such as insects and vertebrates. In vertebrates, more pro-

genitors can be produced through increased early divisions of

progenitors and later production of a second population of inter-

mediate progenitors that give rise to neurons [110–112]. Rapidly

evolving genes in the human lineage that play a role in regulat-

ing cell division have been demonstrated to have a profound

effect on cortex size when introduced into the developing

mouse brain [113,114]. No candidate genes for the increased pro-

genitor number observed in insects with large mushroom

bodies have been identified. Those involved in cell division sym-

metry may be a good starting point, as mutations in these genes

in the fruit fly D. melanogaster greatly increase the number of

neural progenitors, including those that give rise to the intrinsic

neurons of the mushroom bodies [115–118].
5. Conclusion
Molecular developmental evidence suggests that the nervous

systems of most animals (Ctenophora excepted) arose

from cellular and molecular building blocks present in a

common ancestor [1–5]. In 600 Myr of bilaterian radiation,

nervous systems have diversified in structure and function.

In cases where similar selective pressures are coupled with

shared constraints, homoplasy of neural circuitry occurs.

However, identifying the particular selective pressures and

constraints may be difficult for complex higher brain centres,

which have increased in size many times independently,

most probably under selective pressure for more complex

processing capabilities. Broad, phylogenetically informed

comparative studies paired with detailed knowledge of the

ecology and behaviour of the species studied are crucial for

the identification of aspects of an animal’s behavioural ecology

that have driven the evolution of functionally and structurally

elaborate higher brain centres. Comparative studies also shed

light onto the ancestral organization of neural circuits and

the developmental and functional constraints that shaped

subsequent diversification. Comparisons of nervous systems

across broadly divergent animal groups provides deep insight

into how neural circuits develop, function and change in evol-

utionary time, eventually giving rise to new structures and

functions in some lineages.

Comparative demonstrations of behaviourally relevant

functional capabilities of evolutionarily novel neural circuits

are largely absent in the current literature. While the genetic

dissection of the developmental, structural and functional

features of neural circuits in model systems represents the

modern juggernaut in neuroscience research, this wealth of

experimental methods for exploring nervous system function

is rarely applied in a comparative context (although see

[113,114]). As such, model systems studies rarely consider

the selective pressures under which nervous systems evolved

and function, risking the assignment of functions to neural

circuits that have little relationship to the natural behaviour

of the animal, or may not be generalizable across species.

Fusing both traditional neuroethological and newer model

systems studies will allow a comprehensive understanding

of the evolution of nervous systems to suit a myriad of

functional goals.
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