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The origin of nervous systems has traditionally been discussed within two

conceptual frameworks. Input–output models stress the sensory-motor

aspects of nervous systems, while internal coordination models emphasize

the role of nervous systems in coordinating multicellular activity, especially

muscle-based motility. Here we consider both frameworks and apply them

to describe aspects of each of three main groups of phenomena that nervous

systems control: behaviour, physiology and development. We argue that

both frameworks and all three aspects of nervous system function need to

be considered for a comprehensive discussion of nervous system origins.

This broad mapping of the option space enables an overview of the many

influences and constraints that may have played a role in the evolution of

the first nervous systems.
1. Introduction
The origin of the nervous system was an evolutionary event that fundamentally

changed how control is achieved within a multicellular body. Recent progress

in genomics, phylogenetics, developmental biology and the study of simple ner-

vous systems has provided a wealth of new empirical information that bears on

the earliest stages in neural evolution. However, many of the conceptual frame-

works that are used to discuss this work recognize only a limited subset of the

range of roles that nervous systems can play; the neural control of development

and physiology is often sidelined or omitted in favour of an exclusive focus on be-

haviour. In addition, these frameworks tend to employ an overly simple

conception of the role of neural activity in the adaptive shaping of behaviour

itself. The aim of this paper is to organize ideas and hypotheses in this area in a

global way by charting the ‘option space’ for hypotheses about early neural evol-

ution, making explicit the entire range of functions that early nervous systems

may have played.

Historically, the origin of nervous systems has been discussed in the light of

two different conceptual models. We call these the input–output (IO) and

internal coordination (IC) models. The two models emphasize two different

aspects of the nervous system as a control device. According to IO models,

the main role of the nervous system is to receive sensory information and

process it to produce meaningful motor output. Braitenberg’s ‘vehicles’ [1] rep-

resent a simple conceptual IO model of an organism, where directional light

sensors modify the speed of wheels in a moving vehicle.

In contrast to IO models, IC models hold that a central role of early nervous

systems was to induce and coordinate activity internal to large multicellular

organizations. While an IO model tends to assume an operational effector

system and addresses how this system is to be put to use, an IC model high-

lights the evolutionary shift involved in generating new multicellular

effectors. In particular, the use of extensive contractile tissues (muscle) by

large organisms is an important evolutionary invention. Achieving organized

movement in a muscle is a demanding task that should not be taken for

granted, as sometimes happens in discussions employing an IO framework.
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Figure 1. Schematic of input – output and internal coordination systems. (Online version in colour.)
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The difference between IC and IO models can be under-

stood more abstractly as a distinction between two kinds of

coordination. An IO device aims to coordinate what is done

by the organism with the state of the environment; it is con-

cerned with act–state coordination, where the difference

between acts and states is that acts are choices of the organism

itself while states are external and must be sensed.

The aim of an IC device, by contrast, is to coordinate

different aspects of what an organism does; it is concerned

with act–act coordination. Expressed differently, it coordin-

ates the micro-acts of a system’s parts into the macro-acts of

a whole (figure 1). We argue that both these conceptual

frameworks must be considered when discussing early ner-

vous system evolution. The IO/IC distinction is applied

here both to conceptual frameworks used to explain nervous

system phenomena and also to ways a nervous system can

actually be organized. We will refer to IO and IC ‘models’

and ‘systems’ to refer to conceptual frameworks and to

types of nervous system organization, respectively.

Historically, there has been a strong emphasis on IO

models in attempts to understand nervous system function

and early neural evolution. This mainstream tradition was

heavily influenced by Charles Sherrington’s work on the

reflex arc [2]. The reflex arc was used as a paradigm case of

neural organization by G. H. Parker, who proposed an influ-

ential scenario for the origin of sensory-motor coordination.

As Parker saw it, ‘independent effectors’ arose first, and the

essential function of early nervous systems was to connect

these effectors with specialized sensors (‘receptor mechan-

isms’, [3]). This tradition runs through to the present day

and is seen especially in work on the evolution of locomotion

systems, as exemplified by Mackie [4,5] and Jékely [6].

IC models date from the 1950s, especially with the work of

Chris Pantin [7], who criticized Parker for failing to recognize

the importance of internal coordination in the new effector sys-

tems that arose in metazoan evolution, especially with the

origin of muscle. As Pantin said, ‘the complex and important

movements required in behaviour can only be brought about
indirectly through the coordinated contraction of large regions

of these muscle sheets . . . , which indirectly move and distort

the body into the position or shape required’ [7]. IC models

also stress the role of coordinators of endogenous activity

such as oscillators, which initiate and maintain coordinated

activity across muscle tissue that is not directly linked to sensory

input [8]. While initially taken up by some biologists such as

Passano [8] and de Ceccatty [9], the IC model never became

very prominent, although recently it has been reintroduced

by Keijzer et al. [10].

Our present aim is to combine the IO and IC models into

a single framework; we argue that both need to be considered

to understand early neural evolution as they stress different

but complementary issues. In §§2–6, we apply these two

frameworks to describe aspects of each of three main

groups of phenomena that nervous systems control: behav-

iour, physiology and development. This broad mapping of

the option space enables a more comprehensive overview

of the many influences and constraints that played a role in

the evolution of the first nervous systems.
2. What are nervous systems and what do they
do?

A nervous system represents the totality of neurons in an

organism. The definition of a neuron is more difficult than it

initially appears, however. Many standard definitions are too

narrow. For example, if the presence of synapses is required,

then this results in the exclusion of some important activities

even within our own brains, where neurosecretory cells influ-

ence other cells via paracrine or hormonal signalling. The

most fundamental features of neural activity are excitability,

and the influencing of the activity of other cells on small tem-

poral scales (milliseconds to seconds). This can happen either

by synaptic (chemical or electrical) or neuroendocrine (para-

crine, hormonal) means. It would be possible to use a very

broad and purely functional concept of ‘neuron’, in which a
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neuron is any electrically excitable cell that influences another

cell by means of electrical or secretory mechanisms. This broad

definition would include some cases that are not usually seen

as neural phenomena—for example, electrically conducting tis-

sues in some plants—and it might be unhelpfully broad for

that reason. We suggest that it will be clearest to use a concept

narrower than that one, but still broader than many textbook

definitions. This definition augments the broad functional

view of the neuron with an anatomical requirement—we

only include excitable cells with specialized projections, such

as axons and dendrites. A neuron in our sense, then, is an elec-
trically excitable cell that influences another cell by means of electrical
or secretory mechanisms, and whose morphology includes specialized
projections. This, or any other, definition of ‘neuron’ is best

employed with an expectation that we will encounter grey

areas and borderline cases. Here, as elsewhere in biology, it

is important to avoid what Ernst Mayr called ‘typological

thinking’, the imposition of sharp boundaries in domains

where such boundaries are unlikely to be found.

Our option space for neural evolution distinguishes three

roles that nervous systems play in an organism: the control of

behaviour, the control of physiology and the control of develop-
ment. We will argue that all three roles probably have

considerable evolutionary importance. The control of behav-

iour is the most familiar role, and workers in cognitive

science tend to emphasize it above everything else when dis-

cussing nervous system function. The control of behaviour

includes phenomena like locomotor control, along with the

control of sexual behaviour and feeding. The control of physi-

ology, a second major role of nervous systems, includes

phenomena such as circadian and circalunar clocks, the control

of metabolism, digestion and diuresis. Some borderline cases

can be categorized either as behaviour or physiology, such as

the feeding and peristaltic gut motion in a sea anemone.

The control of development, also neglected in many discus-

sions, is a fundamental role of all animal nervous systems. It

includes the control of growth and metamorphosis, along

with phenomena such as moulting and regeneration. These

processes are controlled by hormonal signals emanating from

the nervous system. The §§3–5 discuss each of these major

families of functions in the light of IO and IC models.
3. Behaviour
Animals make use of three basic kinds of effector systems for

the production of behaviour: ciliary motion, muscular con-

traction and glandular secretion (figure 1). This list is not

exhaustive (the activity of bioluminescent photocytes in

ctenophores, for example, is distinct from these), but it

covers the main types.

Although the centrality of these effector systems is un-

controversial, the boundary between ‘behaviour’ and other

phenomena may appear somewhat different from the vantage

point of IO and IC models. An IO model tends to cast behav-

iour in relation to environmental factors and functional

environmental effects; an IC model stresses self-generated

motion that imposes a force on some medium as the key feature

of behaviour, irrespective of whether or how this has specific

environmental effects. Thus, coordinating heart muscle in the

pumping of blood, or coordinating lung cilia to expel mucus

would be clear forms of behaviour from an IC viewpoint,

while remaining boundary cases in the former.
(a) Internal coordination and input – output systems for
cilia-based behaviours

Ciliary beating is used for locomotion in a wide range of

small organisms, and also has other uses; inside a sponge,

for example, cilia are used to create water flow to enable

access to food and oxygen. Many marine larvae employ

cilia to bring food into their mouth [11–13]. In all these

cases, the cilia must have their movements coordinated—this

is a first context in which an IC function might be relevant.

However, coordination of cilia can often be achieved by

non-neural means. In particular, adjacent cilia in multiciliated

epithelia spontaneously synchronize their beating activity by

means of hydrodynamic coupling, leading to the formation

of metachronal waves in multiciliated epithelia or ciliary

bands [14–16].

The large-scale non-neural coordination of cilia requires

that cilia themselves be properly oriented within the body,

though. This is ensured by the planar polarity of the cells,

which controls the axis of beating [17]. In ciliated larvae,

Wnt signalling is the likely ancestral regulator of establishing

axial polarity of the body and the planar polarity of cilia. In

the ciliated larvae of the cnidarian Clytia hemisphaerica, a

Wnt ligand is expressed in the oral pole [18] and directly or

indirectly regulates PCP signalling [19]. The planar polarity

of the ciliated epithelium requires the conserved protein stra-

bismus both in cnidarians and vertebrates [19,20]. Sponge

larvae also have polarized ciliated epithelia, express a Wnt

in the posterior pole [21], and the sponge genome contains

the conserved components of PCP signalling [22]. If the planar

polarity of cilia is established, the coordinated beating of cilia

emerges via physical principles. So in this case, there is signal-

ling in development that sets things up so that the IC function

in the cilia themselves can be achieved without signalling (or

other internal control devices) during behaviour.

Once coordinated ciliary motion exists in an organism,

control devices may modify the activity of the cilia. Thus

cilia can become part of an IO system. Phototactic steering

is an important IO function that is specific to locomotion

and can be found in many metazoan larvae. The addition

of this IO function does not require nervous control—in

some sponge larvae, phototaxis is achieved by photosensitive

ciliated cells that use light-controlled rudder-like cilia for

phototactic steering without a need for nervous control

[23,24]. So especially in cilia-based behaviour, there can be

significant IO and IC function without a nervous system.

In other cases, however, especially in bilaterians, the

steering and modification of ciliary motion does come

under nervous control. It has been proposed that the pres-

ence of a nervous system increases the efficiency of the

control of cilia as a few sensors can control many effectors

[6] (see also [4]). This allows the diversification of the reper-

toire of senses as a few dedicated sensory cells are sufficient

to perform a specialized function.

Ciliary bands can be controlled directly by multifunctional

sensory-motor cells, as during phototaxis in the larvae of the

annelid Platynereis dumerilii (figure 2) [25]. In the same larvae

many different sensory-motor peptidergic neurons can control

cilia to regulate the swimming depth of the larvae [26]. Large

ciliomotor neurons can enable the control of all the cilia at

once in a large body. In Platynereis larvae, the simultaneous

arrest of all cilia is triggered by one giant ciliomotor neuron

(C. Verasztó and G. Jékeley 2015, unpublished data). Via
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Figure 2. Examples of input – output and internal coordination systems for the control of behaviour, physiology and development. (Online version in colour.)
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neural mechanisms, then, many effectors may be yoked to a

smaller and specialized sensory apparatus.

Other cases show a similar role for efficiency enabled by

division of labour. In the larvae of the mollusc Helisoma sp.,

a few sensory neurons innervate the entire ciliary band and

upregulate cilia beat frequency under hypoxic conditions

[27]. Tosches & Arendt [28] have recently described neuro-

endocrine control of ciliary swimming in the larva of

Platynereis. These larvae migrate from deeper to shallower

water on a daily basis, and make use of a light-entrained

neuroendocrine signal, melatonin, to control ciliary swim-

ming. The use of a neuroendocrine system enables a

damped response to changes in the light input—the system

does not respond to momentary changes in illumination. In

the ctenophore Pleurobrachia pileus, prey capture triggers a

complex and coordinated change in ciliary beating in the

organism [29].

The addition that neurons make to ciliary systems, then, is

on the IO side. Ciliary systems do not require neural control

for internal coordination. The role of nervous systems is to

speed up cilia, slow them down, reverse and arrest them, in

accordance with sensory information.

(b) Internal coordination and input – output systems for
muscle-based behaviours

A second category of behavioural effector systems is muscle.

As in the case of ‘neuron,’ which we discussed in §2, giving a

biologically reasonable definition of ‘muscle’ is not a trivial

matter. In the sense we use in this paper, a muscle is an
area of contractile cells with highly organized actin–myosin fila-
ments. Muscle in this sense includes myoepithelia (epithelia

with contractile properties) in addition to smooth and striated
muscle, but is absent from sponges and placozoa. Using this

sense of ‘muscle’, together with the definition of ‘neuron’

given in §2, an important generalization can be stated: all
organisms with nervous systems have muscle, and vice versa.

The only exceptions to this generalization are the myxozoan

cnidarians, very reduced parasites, who have muscles but

no nerves [30].

Some behaviours that involve contraction can be achieved

without muscles or nerves; sponges use contractions in

response to touch and to regulate the flow of water through

their bodies and expel obstructions [31–34]. These behaviours

are fairly slow compared with those that can be achieved with

muscle, however. Muscle-based effector systems require quite

complex internal coordination to initiate and control events

spread out across large multicellular structures. Such multicel-

lular patterning of effector activity is where many important IC

roles for nervous systems can be found.

Locomotion in pelagic animals involving jet propulsion

and undulatory swimming are good examples of behaviours

in which the animal body has to function as a coherent unit in

order for muscle to work. In benthic organisms, there is

crawling, peristaltic movement and ‘foot’ movement in mol-

luscs [35]. An important minimal example is a mixed form

of locomotion seen in a hydrozoan larva (Clava multicornis).

The larva propels itself along the substrate by ciliary

motion, but steering is effected by lateral contractions of the

body [36]. A slightly more complex organization is described

for the acoel flatworm Convoluta pulchra [37]. Here cilia also

drive the worm forward, but muscle allows the worm to

change its shape and direction of movement as well as to pos-

ition its mouth and ingest food. While ciliated surfaces

require little neural control to act as a coordinated effector,

the coordination of muscle surfaces is a more challenging
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problem—coordination does not come ‘for free’, as it does in

ciliary metachronal waves.

Sessile organisms also have a range of uses for muscle,

including sphincter movement, control of tentacles, gut peri-

staltic movements and the pumping or release of gametes.

In anthozoa, the larvae move by means of cilia, and the sessile

adult uses muscle. The anemone Nematostella may illustrate an

early role for muscle, as a replacement for ciliary methods for

moving food within the organism. Nematostella has a long gut

through which food is moved by peristaltic motion (figure 2).

As discussed also in the case of ciliary motion, different

models may be applicable to the initial laying down of a

coordinated muscle-based effector and to later events by

which finer control is added. Thus, when muscle coordin-

ation is in place, IO functions may become important.

Simple examples of these roles include stopping a pattern

of muscle contraction, speeding it up, switching between

one pattern and another, and so on (e.g. [38]). In this case,

muscles come under the partial control of specialized sensing

devices, and complex neural structures that mediate between

sensors and effectors can become prominent. These cases are

highly familiar and we will not discuss them here.
(c) Internal coordination and input – output systems for
gland-based behaviour

Glandular systems are often neglected when discussing ner-

vous system function or evolution. Such systems are very

widespread and are essential in many animal groups for the

normal execution of several behaviours, including predation,

locomotion and surface adhesion. During predation, several

animals use special glands to catch or kill prey. These include

the nematocyst and toxin-producing gland cells of cnidarians

[39,40], the colloblasts of ctenophores [41] or the slime glands

of onychophorans [42]. These structures are under nervous

control [41,43] and sensory stimuli regulate secretion or

discharge. For example, in cnidarians, toxin-gland and cnido-

cyte discharge are triggered by prey encounter [40], and are

also influenced by light [44] (IO systems).

In small interstitial marine invertebrates, gland systems

often contribute to locomotion by regulating surface adhesion,

stopping, turning or ciliary gliding. Interstitial animals, such as

gastrotrichs, small annelids or flatworms can adhere to the

substrate with the caudal parts of their bodies when disturbed.

A specialized adhesive system, the duo-gland adhesive system,

common among the gastrotrichs, secretes an adhesive sub-

stance from one type of gland and another substance from

another gland that breaks the attachment [45]. Attachment

can be triggered by mechanical disturbation (e.g. waves), and

deattachment occurs once the disturbance subsides, suggesting

sensory/nervous control. In some cases, adhesive glands are

directly adjacent to a sensory neuron and nerves, suggesting

nervous regulation (IO system) [46]. Adhesive glands can

also contribute to turning and stopping, for example, in

Monocelis, a rapidly moving flatworm [45].

Another type of gland system contributes to ciliary gliding.

Rhabdites are rod-shaped secretory products of some flat-

worms, nemerteans, gastrotrichs and annelids, and are

thought to provide a secreted layer of sticky mucus for ciliary

gliding [47,48]. Mucus-secreting cells can also be under sensory

control, as for example, the mucus cells of ctenophores that are

innervated by sensory-motor neurons (IO system) [49].
The above examples were more on the IO side, but several

glandular secretion behaviours are under autonomous pro-

grammes and represent IC systems, including tube-building

by annelids using mucus-producing cells and sand grains

[50,51]. The luminescent photocytes of ctenophores (that we

discuss under gland systems) represent an interesting

example showing both IC and IO aspects. Photocytes are

innervated and are activated by mechanical stimulation (IO

aspect) [52,53] but they are also electrically coupled,

suggesting the spread of luminescence excitation among

cells (IC aspect) [53].
4. Internal coordination and input – output
systems for the neural control of physiology

Although many discussions regard nervous systems as fun-

damentally concerned with control of behaviour, these

systems also have important roles in the control of physi-

ology. This becomes self-evident when one considers the

autonomic nervous system that coordinates functions like

metabolism, internal clocks, digestion, heart rate and many

other activities. Here, too, a distinction between IC and IO

roles can be made, and often IC and IO functions are super-

imposed onto each other. As for behaviour, also for

physiological functions we can distinguish three types of

effectors that the nervous system can influence, cilia, muscles

and glands.

Some physiological processes require internal coordin-

ation which nervous systems make possible. Complex,

muscle-driven physiological processes, such as peristaltic

contractions to move the content of the gut or heartbeat,

require IC systems to control them. For example, during

defaecation behaviour in the fly, the hindgut and anal sphinc-

ter are driven by the sequential activation of motorneurons

[54], representing an IC system. The motorneurons also

receive sensory feedback from a mechanosensory neuron in

the anus, adding an IO component to the circuit [54].

Gland-based systems can also use IC and IO mechanisms.

Salivary gland cells in gastropod molluscs and the mouse are

electrically coupled, which allows the propagation of action

potentials along the glandular epithelium, coordinating

secretion from many cells [55,56]. This represents an example

of an IC system of physiology in non-neural excitable cells.

Saliva secretion can be induced by the nervous system [57],

sometimes in a clear IO setting, as during the gustatory–salivary

reflex, where taste inputs lead to saliva secretion [58].

Other aspects of the neural control of physiology also

involve mixed IC and IO functions. A range of physiological

functions are controlled by perception of light, especially by

melatonin-based signalling systems. Melatonin signalling is

very old, seen in cnidarians [59] and annelids [28] as well as

chordates [60], and it can control both behavioural changes

and several aspects of physiology, including sleep, appetite

and reproduction [60,61]. Many marine animals make use of

moonlight to control the timing of reproduction [62]; corals,

for example, spawn once each year in a way controlled by

temperature, daily photoperiod and moonlight [63]. These

are all IO functions: light is an external variable which must

be tracked in some way. However, these IO functions influence

the circadian or the circalunar clock that are intrinsically IC

devices and are ultimately responsible for the periodicity of

the physiological signals.
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As during melatonin signalling, organisms often make use

of neurosecretory mechanisms to determine a physiological

response. In some hydrozoans, the release of oocytes is regu-

lated by light-controlled neuroendocrine signalling [64],

representing a clear IO case. Other neuroendocrine signalling

systems have a mixed IO/IC character. Insulin-related pep-

tides, produced by neurosecretory cells in flies and other

metazoans, regulate glucose levels in the haemolymph, and

lipid and carbohydrate storage. Dietary sugars, proteins and

lipids induce insulin release into the circulation by directly or

indirectly affecting insulin-producing cells [65,66]. This and

similar cases of internal homeostatic control by neuroendocrine

mechanisms (e.g. diuresis, regulation of oxygen level in the

blood) can be considered mixed IO/IC systems, with poten-

tially deep evolutionary ancestry [67]. Homeostatic control in

general requires a mechanism to sense internal states and an

effector mechanism to change them (IO aspect). However,

homeostatic control also has a strong IC character, because of

the presence of negative feedback and that internal conditions

are regulated.

The control of ciliated effector systems in physiology can

also have IC and IO aspects. For example, the cilia of ependy-

mal cells in the wall of the cerebral ventricles in vertebrates are

regulated by neuron-derived melanin-concentrating hormone

[68]. This system may be responsive to changes in glucose

levels (IO aspect) and upregulate cerebrospinal fluid flow

when glucose levels drop. Interestingly, as we have seen

above for salivary gland cells, the adjacent ciliated ependymal

cells are electrically coupled, allowing the coordination of

activity (IC aspect) [69].

There are also several examples of the non-neural control of

physiology by both IC and IO systems. The epidermal cilia of

corals generate strong vortical flows that enhance the exchange

of nutrients and dissolved gases in the boundary layer.

Whether the beating of cilia can be influenced by environmental

cues (e.g. oxygen level) is not known in this system [70]. In other

ciliated epithelia, sensory stimuli are known to influence beat-

ing. Ciliated cells of human airway epithelia express sensory

bitter taste receptors, and bitter compounds increase ciliary

beat frequency by a cell-autonomous mechanism [71].
5. Internal coordination and input – output
systems for the neural control of development

Another often-neglected but very important aspect of ner-

vous system function is control of development, including

metamorphosis, growth, moulting and sexual maturation.

Again a distinction can be made between IC and IO func-

tions, and often there is a close interaction between the two.

Developmental changes are often cued by external events

(IO systems). The metamorphosis of marine invertebrate

larvae is the clearest example. In many marine organisms,

metamorphosis is triggered by environmental cues, which

indicate a suitable site for settlement of a planktonic larval

stage [72]. This pattern is seen across corals, annelids, molluscs,

ascidians and others [73–77]. A swimming larva encounters an

environmental cue that is processed neurally [75]. A neuro-

endocrine cascade then triggers metamorphosis [78]. Sponge

larvae, which do not have neurons, also settle and trigger meta-

morphosis in a roughly similar way, and this developmental

transition in sponges is potentially significant in the earliest his-

tory of nervous systems [79]. The neuroendocrine signalling
during larval settlement and metamorphosis employs the

same or homologous signalling molecules, including nitric

oxide (NO) and Wamide neuropeptides [77,79,80], suggesting

deep evolutionary conservation [81]. Marine larval metamor-

phosis is triggered by environmental cues and represents an

IO system. Other life cycle transitions are internally coordin-

ated. Sexual maturation in vertebrates [82], or ecdysis in

insects is regulated by complex hormonal or peptidergic sig-

nalling. For example, in Drosophila, the ecdysis sequence is

under the control of a peptidergic signalling cascade, involving

the stepwise activation of peptidergic neurons [83].

Growth and regeneration are also influenced by the

nervous system [84,85]. For example, insulin-like peptides,

conserved in most metazoans, including placozoans [86],

have probably ancient IC roles in the regulation of growth,

as well as physiology (see above) [85,87].

In sum, though control of development is the least

familiar role of nervous systems from a cognitive science

point of view, it may have been especially important in

early nervous system evolution. Simple marine organisms

often exhibit dramatic changes between different modes of

living and their accompanying morphologies. The triggering

and coordination of metamorphosis for many animals is a

crucially important life cycle transition that places significant

demands on control systems.
6. Possible historical sequences
We have discussed six categories. Each combines an explana-
tory model with a function of nervous systems. What sort of

historical organization of these options might exist? One

possibility is that some single one of our six options was the

first or the most important factor in early nervous system

evolution. Claims of this kind have been made, or in some

cases implied, in a number of earlier discussions. For example,

Jékely [6], described a historical sequence in which behaviour

(especially locomotion) is central to early nervous system

evolution, and an IO pattern of explanation is applied. Jékely’s

hypothesis is a modern version of scenarios sketched also by

Parker [3] and Mackie [4,5], with a focus on ciliary loco-

motion. In Jékely’s model, precursors of nervous systems

arose to improve control of ciliary locomotion by means of

division of labour and economies of scale. Consider, for

example, the non-neural control of swimming in a sponge

larva. Here sensory mechanisms influence the activity of

cilia on the same cell, thereby steering the whole larva. This

way of connecting sensory and motor capacities is notably

inefficient, as every motor component needs its own sensor.

It would be more efficient for a small number of sensory

cells to control a large bank of motor devices, and this is

what the advent of neurons makes possible. So one plausible

account of the origin of nervous systems focuses on the effi-

cient control of locomotion by sensory mechanisms in a

ciliated swimming stage of an early metazoan: this is an IO
behaviour hypothesis.

By contrast, other hypotheses stress the importance of the

control of muscle-based movement. The primacy of the ner-

vous control of muscles in evolution is supported by the

observation that muscle cells and nerve cells, bar one excep-

tion, always co-occur across animal diversity. Keijzer et al.
[10] recently offered an IC based proposal where muscle-

based behaviour is held central. Their ‘skin brain thesis’
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conjectures that contractile and excitable epithelia provided

a basic contractile organization that became more complex

when neurons added long-distance projections. The propo-

sal stresses that muscle contraction requires whole-body

coordination and early nervous systems organized this coord-

ination. For example, they introduce the concept of a Pantin
surface, defined as the total contractile surface (or volume)

that an animal has available for motility. Useful motility

requires specific and stereotypical patterns of contraction and

extension across this surface. New kinds of cell-to-cell inter-

actions became important and nervous systems arose, on this

view, to coordinate the micro-actions of cells into the macro-

actions of whole organisms. In this view, the initial role of

external sensors is comparatively minimal compared with IC.

However, a control structure for contraction-based motility

can have acted as a scaffold for the subsequent evolution of

large-scale external sensors [88].

Both these hypotheses, and others like them, remain

difficult to test at present, especially as extant organisms

are highly evolved compared with the proposed basic con-

figurations. For example, the well-studied hydromedusa

Aglantha digitale exhibits both excitable epithelia and nerve

nets. However, their interaction cannot be seen as primitive

as this organism’s nervous system must have undergone a

major evolutionary overhaul to accommodate and integrate

two giant axons used for a fast escape response [89]. The gen-

eral message remains that all extant ‘primitive organisms’

have a long evolutionary history since the first nervous sys-

tems arose and cannot be without further evidence be taken

as representative for any primitive condition.

Single-factor hypotheses such as these represent one class

of possibilities. According to hypotheses of this kind, the

other roles for nervous systems were added later. At the

other extreme, it is possible that all of our six options were

important from very early days. In elementary form, all of

these functions are seen in simple extant marine animals. Fur-

thermore, examples of all six of our categories are seen, to

varying degrees, in marine animals that lack nervous systems.

This shows the importance, in principle, of all six of these

forms of control to simple marine organisms. Sponge meta-

morphosis is controlled by chemosensing of the substrate

(IO, development), and their larvae exhibit ciliary locomotion

controlled by photoreception (IO, behaviour); contractile

motions of Trichoplax are a form of internally coordinated be-

haviour (IC, behaviour), influenced by sensory cues from

food (IO, behaviour) [90] that may also influence digestive

enzyme secretion (IO, physiology). Trichoplax also has insu-

lin, a peptide that regulates growth and physiology [86]

(IC, physiology/development).

Given that all six of the functions that neurons can play are

seen in simple form in animals without nervous systems, it is

plausible that all six of the roles we have discussed evolved in

parallel from the beginning. There is, at least, quite a strong

argument here against the exclusive importance of any of the

six. Deep comparative studies have the potential to clarify the

origin of some of the early roles nervous systems played. For

example, both insulin-like peptides (IC role in physiology and

development) and Wamides (IO role in triggering metamorpho-

sis) are ancient molecules with broadly conserved functions.

Opsins (IO roles in behaviour and physiology) are also old,

and present in ctenophores, cnidarians and bilaterians.

However, in different contexts and at different evolution-

ary stages, some of our six options may have become more
important than others. An important role may be played by

body size, for example. Ceteris paribus, larger bodies will pre-

sent more challenges for internal coordination in the control of

behaviour. If the first nervous system arose in a small animal,

especially if it first appeared in the larval stage [91], this will

probably reduce the need for IC functions in behaviour. The

possible evolutionary sequence due to Jékely that was out-

lined above, in which an IO-behaviour function is central, is

based on the assumption of a small organism in which the

demands of internal coordination on behaviour are not

great. This raises the possibility, also, that early nervous sys-

tems may have played somewhat different roles at different

stages in the life cycle of a single organism. A small, motile

larva faced IO problems; a larger adult, perhaps drifting or

sessile, faces IC problems. In many extant animals the larval

stage uses cilia for motion while later developmental stages

make use of muscle for behaviour—this combination is seen

in all animals that have a dispersing ciliated larval stage

(e.g. annelids, molluscs, cephalochordates) [92].
7. Discussion
The primary aim of this paper has been to chart the space of

options for early neural evolution, and also to highlight a

number of evolutionary possibilities that are often neglected.

We organized the options with a three-way distinction between

the functions nervous systems can play, and a two-way distinc-

tion between explanatory models. The resulting space of

options is represented in figure 2 and table 1.

In our discussion, we mentioned cases where one ex-

planatory model or the other, IO or IC, is paramount or

more conspicuous and discussed examples where IC and

IO functions are combined in a single form of activity. Most

nervous system functions require a combination of internal

coordination and the matching of acts with the state of the

environment, tracked through the senses. The same may

apply to behaviours that were important in early neural evo-

lution. One possibility, which may be common, is a situation

that features a ‘default’ behaviour produced by an IC system,

along with an IO system that overrides or modifies it. The

swimming-beat contraction in scyphozoan medusae is a

good illustration of a default behaviour in those organisms,

and a substantial portion of the neural activity in a jellyfish

goes into maintaining this rhythmic behaviour [93,94].

Against that IC background, the jellyfish can also modify

its behaviour according to conditions it senses in its environ-

ment [38]. Similarly, ctenophores generally maintain a

default pattern of ciliary motion but reverse this motion

when they touch prey [29].

Another way IC and IO functions can be combined is for

a number of internally coordinated motor programmes to be

chosen, with none as default, according to the sensing of

external events. Yet another possibility is a more seamless

integration of the two kinds of function. One intriguing possi-

bility here derives from the systematic feedback generated by

an organism’s own movement that would link IC to IO func-

tions in a more direct way [88] and which links up with

current developments in embodied cognition (e.g. [95]).

A more integrated view of this kind is perhaps the most

accurate way to think about present-day human behaviour.

Still, even if this possibility is assumed, we maintain that

the distinction between IC and IO functions is theoretically



Table 1. The ‘explanatory model’ and ‘function’ matrix of the origin of nervous systems. The entries in the cells give examples, in simple organisms, of each of
the six roles that nervous systems can play.

function

explanatory
models neural control of behaviour neural control of physiology

neural control of
development

input – output phototaxis; chemotaxis; toxin

gland discharge

light-controlled reproduction; salivary reflex environmentally triggered

metamorphosis

internal

coordination

jet propulsion; undulatory

swimming

gut peristalsis; diuresis control; neuroendocrine

control of metabolism

neuroendocrine control of

growth; ecdysis
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important; these are two fundamentally different tasks that

must be handled by an organism, whether they are separable

with respect to mechanisms or not.

We do not deny these complications, nor the coarse-

grained character of our central distinctions. However, we

maintain that workers in this field do tend to slip into one con-

ceptual framework or the other—often an IO framework—and

see neural evolution through that lens. We think that the evi-

dence available at this point suggests an important role for

both kinds of control system in early neural evolution.

So although the main purpose of this paper is charting the

option space itself, we think that existing evidence points

towards some cautious conclusions about the importance of

these options in possible historical scenarios. In particular,

single-factor explanations are made unlikely by the existence

of precursors in non-neural animals of all six of the functions

for nervous systems we have distinguished. Considerable

uncertainty remains about the phylogenetic relationships

between sponges, ctenophores, placozoa and other non-

bilaterian animals [96–99]. These relationships can be

expected to be important to hypotheses about early neural

evolution [98,100–103].
While the actual historical scenario—or scenarios—for the

evolution of the first nervous systems is beyond us for the

foreseeable future, we think that the six options that we

sketched do provide a general layout of the major constraints

that operated on this historical event, or events. Our aim is

not to defend one of these options at the expense of another,

but to stress their relevance as ways to focus on different

neural functions that play complementary roles in under-

standing how and why nervous systems first arose, and

subsequently evolved into the wide variety of these systems

seen today.
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22. Lapébie P, Borchiellini C, Houliston E. 2011
Dissecting the PCP pathway: one or more pathways?
Bioessays 33, 759 – 768. (doi:10.1002/bies.
201100023)

23. Leys SP, Degnan BM. 2001 Cytological basis of
photoresponsive behavior in a sponge larva. Biol.
Bull. 201, 323 – 338. (doi:10.2307/1543611)

24. Maldonado M, Durfort M, McCarthy DA, Young CM.
2003 The cellular basis of photobehavior in the
tufted parenchymella larva of demosponges. Mar.
Biol. 143, 427 – 441. (doi:10.1007/s00227-003-
1100-1)
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