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Complex Robertsonian rearrangements, with shared arms in different fusions,

are expected to prevent gene flow between hybrids through missegregation

during meiosis. Here, we estimate gene flow between recently diverged

and chromosomally diverse rock-wallabies (Petrogale) to test for this form of

chromosomal speciation. Contrary to expectations, we observe relatively

high admixture among species with complex fusions. Our results reinforce

the need to consider alternative roles of chromosome change, together with

genic divergence, in driving speciation.
1. Introduction
Chromosome change has long been regarded as a driver of speciation [1,2].

This can happen in two ways: (I) underdominance—where hybrid individuals

have reduced fertility resulting from missegregation during meiosis; and

(II) recombination suppression—where genes associated with local adaptation

within rearranged regions are linked as a result of reduced recombination

within rearranged segments [3]; differences can then accumulate through time

and cause reproductive isolation between chromosomally different populations

(e.g. [4–6]). The former mechanism is commonly associated with Robertsonian

changes and the latter most strongly with inversions.

Robertsonian rearrangements cause little disruption of meiosis when single

fusions occur, fixing in populations under weak genetic drift or through meiotic

drive [7–9]. However, hybrids between populations differing by multiple

fusions with one or more arms in common (monobrachial homology) typically

have severely reduced fertility owing to missegregation of complex multivalent

chains (model I) [10–12]. Under this scenario, reproductive isolation occurs

quickly leading to reduced gene flow between populations [7]. However, the

effect of chromosomal rearrangements on gene flow is debated [4,6,13] and in

systems with extensive monobrachial homology (e.g. Rattus, Mus, Sorex), the

relationship of genic and karyotypic divergence is mixed [8,10,14,15].

Petrogale (rock-wallabies) have been regarded as a classic example of chromo-

somal speciation through meiotic breakdown (model I) [5,16,17]. The restriction

of Petrogale populations to isolated rock outcrops with concomitant low dispersal

and small population size has been assumed to facilitate the fixation of novel

underdominant rearrangements via genetic drift [18]. Therefore, the use of Petro-
gale extends the scope of current model systems (e.g. rodents, shrews, Drosophila
[4–6]), in which various models of chromosomal speciation can be explored and

new theory developed—e.g. to incorporate drift into currently deterministic

models. The six parapatric Petrogale species on the northeast coast of Australia

show a range of autosomal chromosomal rearrangements, including Robertso-

nian fusions, inversions and centric shifts (figure 1 and table 1) [20]. The recent

and rapid radiation of these taxa (0.44–1.58 Ma) [21] provides an opportunity

to test for reduced gene flow in the presence of complex chromosomal changes
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Figure 1. (a) Distribution of six Petrogale species in northeastern Australia (colours are species-specific for 1a – d; triangles represent natural godmani � mareeba hybrids)
and relative mutation-scaled migration rates between adjacent species based on MIGRATE-N [19]. (b) Schematic of species karyotypes highlighting the diagnostic Robert-
sonian fusions (for more detail on rearrangements refer to electronic supplementary material, table S6). (c) MDS of mtDNA based on genetic distances ( percentage of
variation: PC1 ¼ 9.23%, PC2 ¼ 7.56%). (d ) PCA of microsatellite data based on species genetic distance matrix of species in (a) ( percentage of variation: PC1 ¼
21.29%, PC2 ¼ 18.50%). PC1 is on the X-axis, PC2 is on the Y-axis.

Table 1. Summary of chromosome differences and known fertility for hybrids among the six northeast Queensland Petrogale. i, inversion; —, fusion; a, shift in
centromere to acrocentric; FGD, fixed allozyme differences. Predicted levels of introgression are based on model I (see text).

hybrid
chromosomal
changes

chromosome
heterozygosity

fertility
male

fertility
female FGD

predicted level
of introgression

coenensis � godmani simple (4) 3 5 6 10

3a 5i 6 – 10a

unknown unknown 0 high

godmani � mareeba complex (6) 5i 6 – 10a 9

5 – 10 6 – 9a

sterile subfertile 2 – 4 low

mareeba � sharmani simple (2) 6 – 9a

6 9

sterile unknown 0 high

mareeba � assimilis complex (5) 5 – 10 6 – 9a

5i 6 – 10 9

sterile subfertile 0 low

assimilis � sharmani complex (3) 5i 6 – 10

5 – 10 6

sterile unknown 0 low

assimilis � inornata simple (3) 3a 4a 6 – 10

3 4 6 10

sterile unknown 1 high
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(i.e. model I). Evidence from hybrids [16,22] indicated that genic

as well as chromosomal differences may be involved in repro-

ductive isolation (models I and II) and preliminary analyses

using low-resolution methods also suggested introgression

between species [23–25].

Here, we apply fine-scale genetic markers (mitochondrial

DNA—mtDNA sequences and microsatellite genotypes) to

(i) investigate the concordance between genetic and karyoty-

pic structure across the chromosomally diverse eastern

Petrogale; and (ii) test for reduced gene flow between parapa-

tric taxa with complex monobrachial homology, compared to
those with simple fusions (table 1) as expected under model I

and generally assumed for this system.
2. Material and methods
One hundred and four samples were used in mtDNA and 99

in microsatellite analyses from across the distributions of six

parapatric northeastern Australian Petrogale species: P. coenensis
(n ¼ 8); P. godmani (n ¼ 17); P. mareeba (n ¼ 16); P. sharmani
(n ¼ 11); P. assimilis (n ¼ 31) and P. inornata (n ¼ 18) (figure 1a;

electronic supplementary material, figure S1 and table S1).
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Figure 2. Genetic clustering of adjacent species of Petrogale ( figure 1a) based on STRUCTURE [28] and PCA. Highlighted is the three-way comparison of Petrogale
assimilis (A), P. mareeba (M) and P. sharmani (S) who share complex (A/M; A/S) and simple (S/M) rearrangements—table 1 ( percentage of variation: PC1 ¼
21.74%, PC2 ¼ 18.43%).
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In addition, two naturally occurring F1 chromosomal hybrids

(godmani � mareeba) were included and a P. penicillata as an out-

group for phylogenetic analysis. Individuals were identified to

species via karyotyping [16,24]. Methods for mtDNA sequencing

and genotyping of 17 microsatellite loci are presented in the elec-

tronic supplementary material. Two of the 14 loci mapped to

available Macropus eugenii data are on rearranged chromosomes

in Petrogale (see the electronic supplementary material).

Multidimensional scaling (MDS) of sequence divergence

among mtDNA haplotypes was conducted using the package

ape [26] in R [27] based on Euclidean genetic distances to visual-

ize genetic differentiation among species. In addition, a principal

coordinate analysis (PCA) of microsatellite loci was analysed

using a standardized covariance method in GenAlEx 6 [28].

The extent of recent admixture at microsatellite loci was also

assessed using STRUCTURE (v. 2.1) ([29]; see the electronic sup-

plementary material for details). For PCA and STRUCTURE,

comparisons were conducted (i) for all species, and (ii) for com-

parisons between adjacent species, to assess admixture rates

among geographically proximate taxa. Genic differentiation

between species was also assessed using both FST (mtDNA)

and FST (microsatellites) calculated in ARLEQUIN (v. 3.11) [30].

Using microsatellite genotypes, we estimated relative mutation-

scaled migration rates between adjacent species using coalescence

in MIGRATE-N (see the electronic supplementary material). To

evaluate whether high similarity among species could be the

result of recent separation rather than migration, we used IMa

[31] to contrast population-splitting models with and without

migration, focusing on the P. assimilis, P. mareeba, P. sharmani
(AMS) system (see the electronic supplementary material).
3. Results
Overall, there is no strong mtDNA structuring besides

P. inornata (no reciprocal monophyly or separation in MDS—

figure 1c; electronic supplementary material, figure S2).
Similarly, the microsatellite loci reveal no clear genetic separ-

ation among species (PCA—figure 1d) and STRUCTURE results

suggest only two genetic clusters, largely separating the north-

ern taxa (P. coenensis and P. godmani) from the remainder

(electronic supplementary material, figure S3, and tables S2

and S3).

Contrary to expectations, there is no general pattern of

stronger suppression of gene flow between taxa with complex

versus simple Robertsonian fusions (figures 1a and 2; electronic

supplementary material, figures S2 and S3). This is especially

evident across the three-way contact between AMS. Admixture

and gene flow are highest between P. assimilis and P. mareeba,

which differ by complex fusions, whereas P. sharmani clustered

separately from P. mareeba despite only a simple chromosomal

difference (figures 1a and 2; electronic supplementary material,

table S4). IMa nested model comparisons reject the hypothesis

that genetic similarity between AMS species is owing to ances-

tral polymorphism alone (electronic supplementary material,

table S5). At other contacts, there is evidence for low admixture,

with (P. godmani/P. mareeba) or without (P. assimilis/P. inor-
nata) monobrachial homology of fusions (figure 2; electronic

supplementary material, S3). In general, parapatric species

pairs have the lowest genetic differentiation (FST, FST; elec-

tronic supplementary material, table S3) and to some extent

greater gene flow (figure 1a; electronic supplementary

material, table S4), despite some evidence of separation

based on pairwise PCA comparisons between geographically

adjacent species (electronic supplementary material, figure S3).
4. Discussion
The empirical results for Petrogale do not support a strong

role of monobrachial homology in chromosomal speciation
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(model I) as has long been assumed. Specifically, we did not

observe consistently reduced admixture in the presence of

complex (monobrachial) versus simple Robertsonian fusions.

This is concordant with other systems (e.g. Sorex, Mus) where

complex rearrangements have differential roles as gene flow

barriers [8,32]. The (sub)-fertility of some female hybrid Petro-
gale may allow for backcrossing [33] and thus introgression

between species, as has been noted in the well-studied Mus
system [8].

In principle, high genetic similarity (and thus high rates of

gene flow inferred using MIGRATE-N) can also result from

recent separation, as could occur if the fusions resulting in

monobrachial homology established quickly [14]. Retained

ancestral polymorphism could explain some of the admixture

seen, particularly for mtDNA. However, consistent rejection

of models with zero migration using IMa (electronic supple-

mentary material, table S5) highlights that recent separation

alone cannot entirely explain our results.

The fact that our predictions associated with model I

were not supported suggests that other mechanisms are

acting independently or synergistically with the chromosomal

rearrangements to drive speciation in this system (model II).

The increasing scope and sophistication of theory relating

chromosome change to gene flow suppression and speciation

point to the need for incorporating population genomic

data to test for suppression of gene flow and/or adaptive

divergence specific to rearranged regions of chromosomes
(model II). Such analyses for model systems with high-

quality genomes have sometimes supported these predictions

(e.g. [34,35]). However, there is a need to extend this approach

to systems with diverse life histories to test generality, with an

initial step to demonstrate that strong reproductive isolation

owing to underdominance (model I) alone does not hold. We

now expect that future comparative population genomic analy-

sis of Petrogale would therefore illuminate how different effects

of chromosome change and genic divergence interact to drive

speciation, and so extend the generality of such studies.
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