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Abstract

BACKGROUND & AIMS—IL-10 deficient mice develop TH1/TH17-mediated colitis and 

IL-10-producing regulatory T cells suppress colitis, implicating IL-10 in maintaining mucosal 

homeostasis. We transferred germ-free (GF) or specific pathogen free (SPF) CD4+ cells from 

wild-type (wt) or IL-10−/− (ko) mice into wt or IL-10 ko Rag2−/− recipients to assess the relative 

importance of immunoregulatory IL-10 derived from T cells vs. antigen presenting cells (APC).

METHODS—CD4+ cells from either GF or SPF IL-10 ko or wt mice were injected into wt 

Rag2−/− or IL-10 ko Rag2−/− recipients. After 6-8 weeks we evaluated inflammation, spontaneous 

colonic cytokine secretion, T-bet, and TGF-β mRNA expression. Co-cultured APC-CD4+ cells 

were assayed for cytokines and FoxP3 and TGF-β/Smad signaling.

RESULTS—CD4+ cells from either GF or SPF IL-10 ko or wt mice induced more severe colitis 

and increased mucosal proinflammatory cytokines in IL-10 ko Rag2−/− than in wt Rag2−/− 

recipients. Either ko or wt CD4+ cells co-cultured with bacterial-pulsed IL-10 ko APC produced 

more IFN-γ, IL-12/23p40 and IL-17 than the same T cells cultured with wt APC. CD11b-positive 

APC were required for these effects. Blocking IL-10 receptors enhanced IFN-γ and IL-12/23p40 

production while exogenous IL-10 suppressed these cytokines. IL-10-producing APC induced 
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TGF-β-mediated retinoic acid-dependent differentiation of FoxP3+ Treg cells, while in vitro and in 

vivo blockade of the retinoic acid receptor reduced proportions of FoxP3+ cells.

CONCLUSIONS—IL-10 produced by APC is a key regulator of homeostatic T cell responses to 

commensal bacteria.
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Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are T 

cell-mediated inflammatory disorders induced by aggressive mucosal CD4+ cell responses 

to commensal enteric bacteria (1-3). Interleukin-10 (IL-10), in combination with 

transforming growth factor β (TGF-β), is a key inhibitor of effector T cell activation and 

mediator of mucosal homeostasis (1;4;5). IL-10 and IL-10 receptor beta (IL-10RB) deficient 

mice spontaneously develop TH1/TH17-mediated colitis when normal microbiota are 

present (6;7), whereas recombinant IL-10 delivered by parenteral injection or genetically 

engineered enteric bacteria prevents onset of experimental enterocolitis (8-10) and improves 

epithelial barrier properties (11). Furthermore, polymorphisms of either the IL-10 or IL-10R 

genes are associated with ulcerative colitis (12) and early onset pediatric Crohn's disease 

(13). Mutations in IL-10R A and B associated with severe, early onset fistulizing Crohn's 

disease mediate loss of functional IL-10 signaling and STAT3 (signal transducer and 

activator of transcription 3) phosphorylation (13). Thus, IL-10 has a crucial role in 

maintaining intestinal homeostasis (4).

IL-10 is produced by T cells, certain B cells, macrophages, dendritic cells (DC) and 

keratinocytes. This cytokine's immunosuppressive and anti-inflammatory activities are 

mediated through STAT3 (14) and act directly on macrophages and dendritic cells to inhibit 

IL-12 secretion and downregulate the expression of MHC Class II and costimulatory 

molecules (4;15-17). In addition, IL-10 directly affects T cell effector function by inhibiting 

T cell cytokine secretion and proliferation (18-20).

Multiple studies implicate regulatory CD4+ T cell subsets producing IL-10 in mucosal 

homeostasis (21-25). In vivo neutralization of IL-10 or transfer of IL-10−/− CD45RBlow 

CD4+ cells prevented inhibition of colitis by regulatory cells in the CD4+CD45RBhi/low T 

cell cotransfer SCID mouse model (21), however IL-10 deficient CD25+CD4+ cells, while 

less effective than IL-10 sufficient cells, nevertheless partially reverse colitis in the T cell 

transfer model (22). Selective deletion of IL-10 in CD4+ cells induces colitis (23) and 

ablation of IL-10 in FoxP3-expressing T cells also generates mild colitis (24). Furthermore, 

IL-10-secreting CD4+ T regulatory cells recognizing colonic bacterial antigens prevent 

colitis induced by bacterial antigen-specific CD4+ cells (25). IL-10 derived from cells other 

than T cells may be of importance in immunity to certain pathogens and regulation of colitis 

(26-28). However, the relative functional role of IL-10 produced by antigen presenting cells 

(APC) vs. T lymphocytes in mucosal immunoregulation remains uncertain.

We performed an in depth analysis of the innate and acquired immune response in IL-10 

normal (wt) Rag2−/− or IL-10 deficient (ko) Rag2−/− recipients of IL-10 wt or IL-10 ko 
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CD4+ cells. We assessed functional activities of IL-10 derived from T cells vs. APC in 

suppressing pathogenic TH1/TH17 immune responses to antigens of commensal intestinal 

microbiota in vivo and in vitro. Our results suggest that production of IL-10 by APC is a key 

determinant in preventing onset of bacterial antigen-driven CD4+ cell TH1/TH17-mediated 

chronic experimental colitis. Our studies mechanistically extend the recent observation that 

myeloid cell production of IL-10 maintains in vivo expression of FoxP3 during intestinal 

inflammation and prevents colitis in the CD45RBhigh CD4+ cell transfer model (29).

Materials and Methods

Mice

IL-10 ko mice (129S6/SvEv background) and Rag2−/− mice (129S6/SvEv background) 

(Taconic Farms, Germantown, NY) were crossed to obtain IL-10 ko/Rag2−/− double-

deficient mice, which lack T and B cells and IL-10 production. GF mice were derived and 

maintained in the UNC National Gnotobiotic Rodent Resource Center.

Transfer of CD4+ cells and treatment of recipient mice

SPF IL-10 ko Rag-2−/− and IL-10 wt Rag2−/− mice were injected intraperitoneally with 5 × 

105 CD4+ cells from spleens of either GF or SPF IL-10 wt or IL-10 ko donors. In a separate 

experiment, recipients of SPF IL-10 wt CD4+ T cells were given 100 μg of LE540 (Wako, 

Japan) or vehicle (1:1 DMSO plus soybean oil) by gavage 2 days before T cell transfer then 

every other day for the two week duration of the experiment.

Analysis of inflammation - see supplementary material.

Cell preparation, purification and culture - see supplementary material.

Cytokine measurements

To detect production of IFN-γ, IL-12/23p40, IL-10 or IL-17, ELISAs were performed in 

triplicate using R&D Systems products. See supplementary material.

Real-time PCR - see supplementary material

Western blot analysis

Wild type CD4+ cells and IL-10 ko or IL-10 wt APC were mixed, stimulated with CBL 

(10μg/ml) in the presence or absence of TGF-β1, and phosphorylated Smad3 was evaluated 

as described in supplementary material.

Flow cytometry – see supplementary material

Statistical analysis

We used Prism 5 software (GraphPad, San Diego, CA) to compare means between two 

groups with two-tailed, unpaired Student's t tests; comparisons of means from multiple 

groups were analyzed with one-way ANOVA and Bonferroni post test. P-values lower than 

0.05 were considered significant.

Liu et al. Page 3

Gastroenterology. Author manuscript; available in PMC 2015 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Production of IL-10 by both non-T cells and by CD4+ cells determines susceptibility to 
chronic colitis

To directly assess the in vivo contribution of IL-10 derived from CD4+ cells vs. non-T cells 

in the development of colitis, we transferred CD4+ cells from SPF IL-10 ko mice with active 

colitis or from normal wt IL-10-producing donor mice into IL-10 ko Rag2−/− or IL-10 wt 

Rag2−/− recipients. IL-10 ko CD4+ cell–reconstituted IL-10 ko recipients (ko→ko) 

displayed severe colitis compared with IL-10 wt recipients of IL-10 ko CD4+ cells (ko→wt) 

(Fig. 1A). Clinically, IL-10 ko recipient mice exhibited severe chronic diarrhea. Histologic 

features of colitis in IL-10 ko recipients appeared typical of that in IL-10 ko mice with 

robust lamina propria and submucosal infiltration of mononuclear cells, crypt abscesses, 

marked crypt hyperplasia, and near total goblet cell depletion (Fig 1A). Some mice 

developed mucosal ulcerations. Blinded histologic inflammatory scores confirmed more 

severe inflammation in IL-10 ko vs IL-10 wt recipients (p<0.001) that received IL-10 ko 

CD4+ cells (Fig 1B). IL-10 ko recipient mice reconstituted with CD4+ cells from normal 

IL-10 producing wt mice developed moderate intestinal inflammation (wt→ko), whereas 

IL-10 wt mice reconstituted with IL-10 wt CD4+ cells did not develop colitis (wt→wt). 

Spontaneous IFN-γ production by colonic explants was significantly higher in IL-10 ko 

recipients reconstituted with ko or wt CD4+ cells compared with IL-10 wt recipient mice 

(Fig 1C). Similarly, colonic IL-12/23p40 production was elevated in IL-10 ko recipients 

reconstituted with CD4+ cells compared with IL-10 wt recipients (data not shown). These 

results demonstrate a crucial protective role for IL-10 production by the non-T cell 

population in Rag2−/− recipient mice and indicate that IL-10 secreting regulatory CD4+ cells 

are not sufficient to prevent colitis in the absence of IL-10 production by non-T cells in the 

recipient mice. Expression of T-bet, a transcription factor that regulates adaptive andinnate 

proinflammatory immune responses and is required for IFN-γ production was higher in the 

colon of IL-10 ko mice after transfer of either IL-10 ko or IL-10 wt CD4+ cells, with lower 

levels of T-bet detected in the colon of IL-10 wt recipient mice (Supplementary Figure 1).

Transfer of CD4+ cells from germ-free donors induces colitis in SPF IL-10-deficient 
recipients

To examine whether CD4+ cells that have not been stimulated by in vivo exposure to 

bacterial components develop into pathogenic effector cells that mediate disease in SPF 

IL-10 ko recipients, we transferred CD4+ cells from GF IL-10 ko mice, which have no 

colitis or clonal expansion of bacterial antigen-responsive CD4+ cells (31). Adoptive 

transfer of CD4+ cells from GF IL-10 ko mice induced severe colitis in SPF IL-10 ko 

recipients that was comparable to that seen after transfer of activated CD4+ cells from SPF 

IL-10 ko mice (compare Figs 1B and E). Likewise, reconstitution of IL-10 wt recipients 

with CD4+ cells from GF IL-10 ko mice induced mild to moderate inflammation (Fig 1E). 

Transfer of GF IL-10 wt CD4+ cells did not induce inflammation in IL-10 wt recipients but 

induced moderate-severe colitis in IL-10 ko hosts (Fig 1E). Spontaneous IFN-γ production 

by colonic explants was higher in IL-10 ko recipients reconstituted with GF IL-10 ko or GF 

IL-10 wt CD4+ cells compared with IL-10 wt − recipient mice (Fig 1F). These results 
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demonstrate that CD4+ cells from both IL-10 ko and IL-10 wt GF mice can be programmed 

by IL-10 deficient APC to induce colitis in the presence of enteric bacterial antigens.

IFN-γ, IL-17 and IL-12/23p40 responses are potentiated in IL-10 ko Rag2−/− recipients 
regardless of IL-10 production by transferred CD4+ cells

To further confirm differences in pathogenic cytokine production in IL-10 normal and 

deficient recipients after adoptive transfer, we examined in vitro cytokine responses to 

physiologic luminal cecal bacterial stimulation. Unfractionated MLN cells from recipient 

mice were stimulated in vitro with cecal bacterial lysate (CBL) and levels of IFN-γ, IL-17, 

and IL-12/23 p40 were measured. MLN cells collected from IL-10 ko recipients 

reconstituted with either SPF (Fig 2A) or GF (Fig 2B) IL-10 ko CD4+ cells produced 

markedly higher levels of IFN-γ, IL-17 and IL-12/23p40 following stimulation by CBL than 

did cells from IL-10 wt recipients. Similarly, levels of these proinflammatory cytokines 

were higher after CBL stimulation of MLN cells from IL-10 ko recipients of SPF or GF 

IL-10 wt CD4+ cells compared to cells from IL-10 wt recipients. These results indicate that 

non-T cell-derived IL-10 inhibits development of pathogenic T cell responses and promotes 

immunologic tolerance to luminal bacterial components in vivo, with some additional 

contribution by IL-10 producing CD4+ cells. Supporting this concept, ex vivo IL-10 levels 

were highest in supernatants of colonic fragment cultures from IL-10 wt recipients, with 

very little production by IL-10 ko recipients of IL-10 wt CD4+ cells compared with IL-10 ko 

recipients of IL-10 ko CD4+ cells. This suggests that IL-10 wt CD4+ cells in IL-10 ko 

recipients produced very little IL-10 in ex vivo cultures, although these cells produced some 

IL-10 in IL-10 wt recipients.

Kinetic analysis of inflammation and proinflammatory cytokine production in ko→ko and 
ko→wt mice

We next investigated the time course of colitis and pathogenic cytokine production after 

transfer of CD4+ cells from SPF IL-10 ko mice with colitis to IL-10 ko or IL-10 wt 

recipients. Histologic scores peaked 6 weeks after CD4+ cell transfer and were consistently 

higher in ko→ko relative to ko→wt mice at all times investigated (Fig 3A). Spontaneous 

secretion of IL-12/23p40 in overnight cultures of colonic tissues indicated greater innate 

immune cell activation in IL-10 ko compared to IL-10 wt recipients with statistically 

significant differences observed 6 weeks after transfer (Fig 3B). In vitro stimulation of MLN 

cells with CBL showed rapid activation of acquired and innate immune responses in IL-10 

ko recipients, with near maximum IFN-γ secretion 1 week after CD4+ cell transfer (Fig 3C). 

Of interest, IFN-γ production 1 week after transfer of activated IL-10 ko CD4+ cells to IL-10 

wt (ko→wt) mice was slightly higher than in IL-10 ko recipients (ko→ko), but rapidly 

decreased to consistently lower levels 2-12 weeks after transfer (Fig 3C). Production of CBL 

stimulated IL-12/23 p40 followed a similar time course (Fig 3D). These findings suggest 

that activated CBL-responsive CD4+ cells are rapidly down-regulated by IL-10-secreting 

APC, while lack of immunologic tolerance to commensal bacterial components persists in 

the absence of IL-10.
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IL-10 production by APC inhibits bacterial antigen-stimulated CD4+ TH1 and TH17 cell 
responses in vitro

To further investigate the relative roles of IL-10 produced by APC vs. T lymphocytes in 

inflammatory responses, we performed APC-CD4+ cell co-cultures in vitro. CBL-pulsed 

IL-10 ko Rag2−/− APC co-cultured with either IL-10 wt or ko splenic CD4+ lymphocytes 

stimulated high amounts of IFN-γ, IL-17 and IL-12/23p40 secretion (Fig 4), whereas CD4+ 

cells stimulated with CBL-pulsed IL-10 wt Rag2−/− APC secreted much lower amounts of 

these cytokines. No significant differences were seen with CD4+ cells from IL-10 wt or 

IL-10 ko mice. These data, showing a dominant effect on bacterial antigen-stimulated TH1 

and TH17 responses by CBL-pulsed APC, further confirm our in vivo results, which 

indicated that non-T cells determine responses of CD4+ cells after adoptive transfer.

Because both APC and CD4+ cells produce IL-10, we designed experiments to evaluate the 

relative amounts of IL-10 produced by APC and by T cells. IL-10 wt CD4+ cells co-cultured 

with CBL-pulsed IL-10 ko APC secreted low levels of IL-10 (Fig 4D). CBL-pulsed IL-10 

wt APC cultured alone (without T cells) secreted higher amounts of IL-10. We observed a 

small incremental increases in IL-10 secretion in co-cultures containing IL-10 wt CD4+ cells 

compared to IL-10 ko CD4+ cells stimulated with CBL-pulsed IL-10 wt APC. These results 

indicate that APC from normal IL-10-replete hosts are the primary source of 

immunosuppressive IL-10 in response to physiologic intestinal bacterial stimulation, with a 

small contribution from IL-10-secreting CD4+ cells.

We further investigated the effects of IL-10 production in vitro by either blocking the IL-10 

receptor or by adding exogenous IL-10 to APC during pulsing with cecal bacterial lysate 

(Supplementary Figures 2 and 3). Our results indicate that suppressive activity of IL-10 

signaling acts primarily in APC.

CD11b+ IL-10 wt APC regulate bacterial antigen-stimulated TH1 and TH17 responses

To determine which type of APC regulated CBL-induced TH1 and TH17 responses, we 

separated APC from IL-10 ko and wt Rag2−/− mice into CD11b-enriched or CD11b-

depleted populations. Lower amounts of IL-17 and IFN-γ were produced in co-cultures 

containing CD11b-enriched wt APC compared to CD11b-enriched IL-10 ko APC co-

cultures (Fig. 5A and 5C), suggesting that IL-10 secreting CD11b+ cells regulate CBL-

induced cytokine proinflammatory production. As demonstrated in Fig. 5B and 5D, CD11b-

depleted APC had little if any ability to activate IL-17 or IFN-γ producing CD4+ cells.

IL-10 producing APC induce regulatory T cell differentiation in a TGF-β and retinoic acid-
dependent manner

To evaluate the influence of IL-10 producing APC on FoxP3+ Treg cell development, we 

stimulated IL-10 wt CD4+ cells with CBL-pulsed APC derived from either IL-10 wt or ko 

Rag2−/− mice with or without TGF-β. After 4 days, a greater porportion of CD4+ cells co-

cultured with CBL-pulsed IL-10 wt APC vs IL-10 ko APC expressed FoxP3 (Fig 6A). To 

investigate mechanisms by which IL-10-producing APC efficiently generate FoxP3+ Treg 

cells, we examined the role of the vitamin A metabolite retinoic acid (RA). A synthetic 

retinoic acid receptor antagonist LE540 added to APC–CD4+ cell co-cultures reduced the 
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number of TGF-β-dependent FoxP3+ Treg cells induced by IL-10-producing APC from 

7.8% to 5.4% while IL-10 ko APC were less efficient (5.2% to 4.4%) (Fig 6A). These 

results indicate that both IL-10 and retinoic acid contribute to TGF-β-mediated generation of 

inducible or expandable FoxP3+ Treg cells by CBL-pulsed APC. To further investigate the 

retinoic acid receptor pathway in combination with IL-10 in regulating Foxp3+ Treg 

population in vivo, cells from LE540-treated mice were evaluated. Fewer FoxP3+ cells were 

seen in both spleens and MLN of LE540-treated compared to the vehicle-treated control 

recipients (Fig. 6B). Expression of Aldh1a1 and Aldh1a2, which encode dehydrogenases 

that convert vitamin A to RA, was monitored by real-time PCR in MLN from IL-10 ko or wt 

recipient mice after CD4+ cell transfer. Significant upregulation of Aldh1a1 and Aldh1a2 

mRNA was observed in MLN of IL-10 wt compared to IL-10 ko recipient mice 6 weeks 

after transfer of either IL-10 ko or IL-10 wt CD4+ cells (Fig 6C). These results suggest that 

IL-10 produced by APC stimulates expression of isoforms of this RA enzyme.

We further investigated the ability of endogenous IL-10 from APC to induce FoxP3 

generation by adding anti-IL-10R antibody to IL-10 wt CD4+ cells co-cultured with IL-10 

wt Rag2−/− APC and TGF-β1. In cultures containing TGF-β1 plus anti-IL-10R, fewer CD4+ 

cells expressed FoxP3 compared to CD4+ cells cultured with TGF-β plus rat IgG isotype 

control (Fig 6D). Conversely, TGF-β1-stimulated Foxp3 expression was higher in IL-10 wt 

CD4+ cells co-cultured with IL-10 ko APC in the presence of exogenous IL-10 compared to 

cultures that did not contain added IL-10 (Fig 6E). These results indicate that IL-10-

producing APC stimulated by commensal bacterial components promote the generation 

and/or expansion of FoxP3-expressing Treg cells in the presence of TGF-β.

IL-10 producing APC induce TGF-β1-mediated Smad signaling

To investigate a possible role for APC-derived IL-10 in TGF-β-mediated Smad signaling, 

IL-10 wt or ko APC were pulsed with CBL and co-cultured with IL-10 wt CD4+ cells with 

or without TGF-β1. Following TGF-β1 stimulation, Smad3 was progressively 

phosphorylated in IL-10 wt CD4+ cells co-cultured with APC from IL-10 wt mice over 2 

hours but only transiently phosphorylated to a lesser degree in CD4+ cells co-cultured with 

APC from IL-10 ko mice (Fig 7A and B).

TGF-β is known to play a key role in controlling proliferation, differentiation, and function 

of numerous immune and non-immune cells and to interact with IL-10 (5). To determine if 

IL-10 from APC influenced TGF-β expression in this transfer model, TGF-β1 mRNA in 

MLN of recipient mice was evaluated. The levels of mRNA expression of TGF-β in the 

MLN of IL-10 wt recipients were higher than those in IL-10 ko recipients after 6 weeks 

irrespective of whether wt or ko CD4+ cells were transferred (Fig 7C). In parallel studies 

using in vitro APC-CD4+ cell co-cultures, higher levels of TGF-β1 mRNA were detected in 

APC from IL-10 wt mice compared to IL-10 ko mice co-cultured with IL-10 wt CD4+ cells 

(Fig 7D). These results indicate that IL-10 produced by APC promotes both TGF-β 

expression and signaling.
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Discussion

We demonstrate that IL-10 production by APC is a key mediator of mucosal homeostasis. 

Lack of IL-10 in recipient T cell-deficient mice resulted in unopposed activation of bacterial 

antigen-driven immune responses and onset of aggressive colitis following transfer of either 

IL-10 sufficient or deficient CD4+ cells. Prior in vivo bacterial antigen-mediated activation 

and clonal expansion was not required, since CD4+ cells from GF mice also induced colitis. 

In vitro APC-CD4+ cell co-cultures documented the key role of IL-10 secretion by APC in 

suppressing commensal bacterial antigen-driven IFN-γ and IL-17 production. Furthermore, 

we document interactions between APC-produced IL-10, TGF-β and retinoic acid in 

expanding CD4+ FoxP3+ cells.

Our results are consistent with several previous observations that non-T cell sources of 

IL-10 attenuate experimental colitis and other T cell-mediated inflammatory responses and 

also induce regulatory T cells (26;29;32-34). IL-10 produced by APC suppressed antigen-

specific T cell responses in transgenic mice expressing IL-10 directed by the MHC Class II 

promoter (32), similar to the findings that constitutive expression of IL-10 in macrophages 

suppressed differentiation of antigen-activated naïve T cells to become effector cells and 

attenuated experimental autoimmune uveitis to a greater degree than did IL-10-transgenic T 

cell lines (34). Murai et al used a similar strategy to ours, transferring CD4+CD45RBhigh T 

cells into IL-10 deficient Rag1−/− recipient mice (29) to demonstrate that IL-10 produced by 

CD11b+ myeloid cells was required to maintain FoxP3 expression and inhibitory Treg 

activity during inflammation. Gregori et al. reported that a subset of IL-10-secreting human 

dendritic cells, DC-10 cells, induce TR1 cells via a IL-10- dependent ILT4/HLA-G 

signaling pathway (35). In preliminary studies, Nguyen et al demonstrated that Wiskott-

Aldrich Syndrome (WASP) deficiency of innate immune cells was associated with reduced 

IL-10 production, defective Treg generation and induction of colitis by transfer of normal 

CD4+ cells (36). However, other investigations support the contrasting view that regulatory 

T cells are the requisite source of IL-10 that prevents and treats experimental colitis 

(21-24;37) and that induction of IL-10-secreting regulatory T cells (Tr1 and FoxP3- Treg) 

does not require IL-10 from other sources (38). Conditional deletion of IL-10 in CD4+ cells 

induces severe colitis similar to that in mice with global deletion of IL-10 (23) and selective 

deletion of IL-10 under control of the FoxP3 promoter results in colitis, although this is less 

aggressive than seen in IL-10−/− mice (24). The latter result and the less than complete 

protection of co-transferred IL-10 deficient CD4+CD25+ with IL-10-producing 

CD4+CD45RBhigh cells compared with total loss of protection with anti-IL-10R neutralizing 

antibody (22) suggest that non-Treg cell production of IL-10 contributes to protection 

against colitis. Darrasse-Jeze et al propose a feedback regulatory loop between DC and Treg 

cells dependent on Flt-c-induced DC proliferation, MHC II interaction with Treg and Treg 

secretion of IL-10, which decreases dendritic cell numbers (39). In a schistosomiasis model, 

IL-10 produced by both innate and CD25+ regulatory T cells prolongs host survival (40). 

Likewise, our in vivo transfer studies demonstrate combined inhibitory activities of IL-10 

produced by CD4+ cells and by non-T/non-B cells, since we observed intermediate colitis 

scores in wt→ko and in ko→wt mice. In vitro, we observed more striking differences in 

proinflammatory cytokine production by CBL-stimulated IL-10 ko and IL-10 wt APC-CD4+ 
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cell co-cultures, regardless of the source of CD4+ T cells (IL-10 deficient or replete), 

suggesting a more dominant inhibitory effect of IL-10 secreted by APC than by CD4+ cells. 

These results support and extend our previous studies that demonstrated synergistic 

stimulation of APC-derived IL-10 by CBL plus IFN-γ (41). In addition, we and others 

previously demonstrated that non-T cells regulate susceptibility to immune-mediated colitis 

in the HLA-B27 transgenic rat model (42;43).

In our kinetic analysis of adoptive transfer recipients, IFN-γ production by bacterial lysate-

stimulated MLN CD4+ cells was quite high one week after transfer in ko→wt mice, but was 

rapidly downregulated by 2 weeks, consistent with suppressive activities of IL-10 produced 

by non-lymphoid cells in the Rag2−/− recipients. Mechanistic in vitro studies indicated that 

IL-10-producing APC induced TGF-β-stimulated FoxP3 expressing CD4+ Treg more 

efficiently than did IL-10 ko APC, facilitated SMAD signaling after TGF-β exposure, and 

augmented expression of TGF-β in APC-CD4+ cell co-cultures. In vivo confirmation of the 

latter results were provided by greater TGF-β expression in MLN of wt recipients compared 

with IL-10 ko mice after CD4+ cell transfer. Other investigators have demonstrated 

interactions between IL-10 and TGF-β to coordinately regulate homeostatic mucosal 

immune responses. IL-10 has been shown to facilitate expression of TGF-β-secreting Treg 

cells (5) and maintain FoxP3 expression and regulatory activity in an inflammatory milieu 

(29). We demonstrated that induction of TGF-β-stimulated FoxP3+ CD4+ Treg cells by 

CBL-activated IL-10-secreting APC was dependent on RA in vitro and in vivo. Furthermore, 

expression of Aldh1a1 and Aldh1a2, which convert vitamin A to RA, were upregulated in 

IL-10 wt mice compared with IL-10 ko recipients after CD4+ T cell transfer from either 

IL-10 ko or wt mice. RA function is complex, however, since RA reciprocally regulates 

FoxP3 and IL-10 in CD4+ Treg following activation of dendritic cells by TLR 9 ligation 

(44).

In conclusion, the observation that IL-10 production by APC is a key factor in inhibiting 

bacterial antigen responsive CD4+ TH1 and TH17 effector cells that cause colitis can focus 

therapeutic efforts to stimulate this pathway. These efforts must consider, however, that a 

small subset of IBD patients may be refractory to exogenous or endogenous IL-10 due to 

loss of IL-10 signaling (13), comparable to that seen in HLA-B27 transgenic rats (45).
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Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

APC antigen presenting cells

CBL cecal bacterial lysate

FoxP3 forkhead box P3

GF germ-free

IFN interferon

IL interleukin

ko knockout

MLN mesenteric lymph nodes

RA retinoic acid

Rag2 recombination activating gene 2

SPF specific pathogen free

TGF transforming growth factor

TH T helper cell

Treg T regulatory cell

wt wild type
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Figure 1. Colonic inflammation in IL-10 wt Rag2−/− or IL-10 ko Rag2−/− recipients reconstituted 
with either SPF or GF IL-10 ko or wt CD4+ cells
(A) Representative H&E stained sections of the distal colons of recipient mice 6-8 wk after 

transfer of SPF CD4+ cells (20× magnification). (B) Blinded histologic scores in the large 

intestine and (C) spontaneous secretion of IFN-γ by colonic fragments of recipients of SPF 

CD4+ cells. (D) Representative H&E stained sections of the distal colons of recipient mice 

6-8 wk after transfer of GF CD4+ cells. (E) Blinded histologic scores and (F) IFN-γ 

secretion by colonic fragments of recipients of GF CD4+ cells. Results show mean ± SEM, 

pooled from three separate experiments, with (ko→ko, n=14; ko→wt, n=12; wt→ko, n=11; 

wt→wt, n=11) for recipients of SPF CD4+ cells and (ko→ko, n=7; ko→wt, n=12; wt→ko, 

n=11; wt→wt, n=14) for recipients of GF CD4+ cells. *p< 0.05, **p<0.01 & ***p<0.001.
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Figure 2. Cytokines produced by MLN cells after transfer of SPF or GF IL-10 ko or IL-10 wt 
CD4+ T cells
Six-eight weeks after transfer of either SPF (A) or GF (B) CD4+ cells, unseparated MLN 

cells from IL-10 ko Rag2−/− or IL-10 wt Rag2−/− recipients were stimulated with CBL for 

72 hours and IFN-γ, IL-17 and IL-12/23p40 secretion were measured. Spontaneous IL-10 by 

colonic fragments was evaluated. Results show mean ± SEM (number of mice/group same 

as Figure 1). *p< 0.05, **p<0.01, ***p<0.001.
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Figure 3. Time course of histological evaluation of colitis and proinflammatory cytokine 
production in recipient mice
(A) Histologic score, (B) spontaneous IL-12/23p40 in colonic cultures, and amounts of (C) 

IFN-γ and (D) IL-12/23p40 produced by unfractionated MLN cells stimulated with CBL (10 

μg/ml) after 3 day culture in vitro for mice evaluated 1, 2, 4, 6 and 12 weeks after transfer of 

SPF IL-10 ko CD4+ T cells to IL-10 ko Rag2−/− or IL-10 wt Rag2−/− recipients. ** p< 0.001 

and *p<0.05 or p value shown above the bar vs. IL-10 wt Rag2−/− recipients. Results show 

mean ± SEM, 6-8 mice per group at each time point.
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Figure 4. In vitro cytokine production
Splenic CD4+ T cells from SPF IL-10 ko or IL-10 wt mice were co-cultured with CBL-

pulsed APC from IL-10 ko Rag2−/− or IL-10 wt Rag2−/− mice for 72 hours and (A) IFN-γ 

(B) IL-17, (C) IL-12/23p40 (D) IL-10 concentrations were measured. Representative results 

(one of three separate experiments) are shown as mean ± SEM of triplicate culture 

supernatants. ***p<0.001 vs. co-cultures containing IL-10 wt APC. §§§p<0.001 vs co-

cultures containing IL-10 ko APC. □p<0.001 vs IL-10 wt APC alone or in co-culture with 

IL-10 ko CD4+ cells.
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Figure 5. CD11b-enriched APC regulate cytokine production
APC from IL-10 ko Rag2−/− or IL-10 wt Rag2−/− mice were separated into CD11b-enriched 

(CD11b+) or CD11b-depleted (CD11b−) populations by positive or negative magnetic bead 

sorting, respectively. Co-cultures contain either IL-10 ko or IL-10 wt splenic CD4+ T cells 

and CBL-pulsed APC. (A, B) IL-17 or (C, D) IFN-γ was measured in supernatants collected 

72 hours after co-culture initiation. Representative results (one of three separate 

experiments) are shown as mean ± SEM of triplicate culture supernatants. *p< 0.05, 

**p<0.01.
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Figure 6. Induction of FoxP3+ Treg cells by IL-10 wt Rag2−/− or IL-10 ko Rag2−/− APC
(A) Intracellular FoxP3 expressed by IL-10 wt CD4+ cells co-cultured with IL-10 wt or 

IL-10 ko Rag2−/− APC for 4 days in the presence or absence of TGF-β1 plus LE540 or 

vehicle (DMSO). (B) Intracellular FoxP3 in CD4+ cells from recipients treated in vivo with 

LE540 or vehicle (DMSO in soybean oil). (C) Expression of Aldh1a1 and Aldh1a2 mRNA 

relative to β-actin in MLN from IL-10 ko Rag2−/− or IL-10 wt Rag2−/− recipient mice. 

Representative results (one of two separate experiments) are shown as mean ± SEM of 

triplicate qPCR. *p< 0.05, **p<0.01. (D) FoxP3 expression by IL-10 wt CD4+ cells co-

cultured with IL-10 wt APC in the presence of TGF-β1(1 ng/ml) and anti-IL-10R or isotype 

control (30 μg/ml). (E) FoxP3 expression by IL-10 wt CD4+ cells co-cultured with IL-10 ko 

APC in the presence of TGF-β1 (1 ng/ml) with or without recombinant IL-10 (500 pg/ml) 

for 4 days. Representative results (one of three experiments) are shown for D and E.
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Figure 7. Smad3 and P-Smad3 protein and TGF-β1 mRNA expression
APC from IL-10 wt Rag2−/− and IL-10 ko Rag2−/− mice co-cultured with IL-10 wt CD4+ 

cells were stimulated with TGF-β1 in the presence of CBL (10 μg/ml). Cells were harvested 

at times shown and Western blot analysis visualized Smad3 and P-Smad3. (A) 

Representative blots from two experiments are shown. (B) Densitometric analysis of the 

Western blot shown in (A) p-Smad3/actin left panel, p-Smad3/total Smad3 right panel. (C) 

TGF-β1 mRNA expression in MLN from IL-10 ko Rag2−/− or IL-10 wt Rag2−/− recipient 

mice reconstituted with IL-10 ko or IL-10 wt CD4+ cells. Representative results (one of 

three experiments) are shown as mean ± SEM of triplicate qPCR. (D) TGF-β1 mRNA 

expression in co-cultured IL-10 wt CD4+ cells with CBL-pulsed APC from either IL-10 ko 

Rag2−/− or IL-10 wt Rag2−/− mice. Representative results (one of two separate experiments) 

are shown as mean ± SEM of triplicate qPCR.
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