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Abstract

Traumatic brain injury (TBI) is a major public health issue exacting a substantial personal and economic burden globally. With

the advent of ‘‘big data’’ approaches to understanding complex systems, there is the potential to greatly accelerate knowledge

about mechanisms of injury and how to detect and modify them to improve patient outcomes. High quality, well-defined data

are critical to the success of bioinformatics platforms, and a data dictionary of ‘‘common data elements’’ (CDEs), as well

as ‘‘unique data elements’’ has been created for clinical TBI research. There is no data dictionary, however, for preclinical

TBI research despite similar opportunities to accelerate knowledge. To address this gap, a committee of experts was tasked

with creating a defined set of data elements to further collaboration across laboratories and enable the merging of data for

meta-analysis. The CDEs were subdivided into a Core module for data elements relevant to most, if not all, studies, and Injury-

Model-Specific modules for non-generalizable data elements. The purpose of this article is to provide both an overview of TBI

models and the CDEs pertinent to these models to facilitate a common language for preclinical TBI research.
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Introduction

Traumatic brain injury (TBI) is now recognized as a major

health issue that affects more than 3.5 million persons each

year.1 The impact of TBI on the public includes the personal burden

endured by survivors and their families and a substantial economic

toll.2 Further, TBI may also be a risk factor for the later development

of neurodegenerative disorders, including Alzheimer disease.3–13

Despite this huge encumbrance on society, no treatment has been

shown to be efficacious despite multiple phase III clinical trials.14–17

While the reasons for these failures are complex, the inability to

translate therapeutic efficacy observed in animal TBI models to

clinical studies has been a major point of criticism and reflection.18

Cautionary tales regarding terminology and interpretation of

experimental models include the designation of ‘‘severe TBI’’ for

injured animals that are able to ambulate, eat, and groom within

hours of TBI, unlike severe TBI in humans. Another major limi-

tation of animal models of TBI is the apparent inability to compare

data between laboratories, in part because of overt and subtle dif-

ferences in injury parameters and outcome measures. Indeed, it is

well known that small modifications to an injury device can have

dramatic effects on outcome, yet there has not been a means to

calibrate interpretation of different data sets between laboratories.

Nonetheless, the ability to compare data is of obvious impor-

tance in developing treatment strategies for TBI using preclinical

models. Given that there are hundreds of drugs and biologics that

demonstrate efficacy in animal models of TBI, an effective way to

compare their effect sizes on a global outcome measure is critical

for selecting the most promising therapeutics to use in clinical trials.

The National Institute of Neurological Disorders and Stroke

(NINDS) has spearheaded the development of standardized defini-

tions for basic units of data, or ‘‘common data elements (CDEs),’’19
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for clinical research in several neurological disorders, including

TBI.20 Following on the success of the clinical CDEs, a committee of

experts was tasked with developing a matrix of CDEs for preclinical

TBI models.

Methods

Development and structure of pre-clinical CDEs for TBI

To address the widely heterogeneous aspects of human TBI,
numerous animal TBI models have been developed over several
decades. In particular, diverse variations in the species, sex, genetic
backgrounds, injury biomechanics, neurobehavioral and neuro-
pathological outcomes of models have emerged. Moreover, an ar-
ray of iterative modifications of established models by individual
laboratories adds further complexity.

To reasonably permit data comparison with respect to outcome,
CDEs will need to address both ‘‘Core’’ data elements relevant to all
studies, such as species, age and sex, as well as those specific to
established individual models and their modifications and outcomes.
To achieve this goal, a working group was established that comprised
11 experts with experience across a range of preclinical TBI models.
Multiple iterative working group meetings and teleconferences were
held to draft an overall structure of the CDEs. In addition, individual
experts were tasked with identifying CDEs specific to each model.

The proposed CDEs were sent out for review to the larger TBI
research community using the NINDS TBI Research listserv
(https://list.nih.gov/cgi-bin/wa.exe?A0 = TBI) to provide an op-
portunity for feedback and further improvements. The suggestions
were reviewed, and many were incorporated into the matrix.

Results

Thus far, 167 data elements have been defined for preclinical

TBI research. The data elements are organized around 10 modules,

including a module of Core CDEs (Table 1) and 9 other modules

relevant to specific injury models (outlined below) (Tables 2–6).

Note that the full definitions, permissible values, and references are

available on the NINDS TBI research website (http://www.ninds

.nih.gov/research/tbi/index.htm).

Within structured forms, adapted from the Federal Interagency

TBI Research (FITBIR) Informatics System data dictionary

(https://fitbir.nih.gov), each named data element has a detailed

description and is linked to its relevant classification and domain

(e.g., Core and Animal Characteristics). In addition, each data el-

ement has permissible values, whether these are alphanumeric or

text entries (e.g., male or female) or numeric values (e.g., velocity

of impact: 0–10 m/sec). The structured forms include appropriate

guidelines for data entry and references from the published litera-

ture (http://www.ninds.nih.gov/research/tbi/index.htm).

The level of detail to be captured using the CDEs was deter-

mined through an iterative process by working group members,

under the dictum that data elements sufficient to influence the re-

sults of the study should be incorporated while minimizing the data

entry burden to investigators where possible.

Core CDEs (Module 1)

The first module is composed of Core CDEs because of their

broad applicability to many preclinical studies. There are 57 Core

CDEs, which are divided into four domains including (1) the ani-

mal characteristics, (2) injury model characteristics, (3) the animal

history, and (4) assessments and outcome measures (Table 1,

Figure 1). While some Core CDEs provide essential information

that should be included in all preclinical research studies (e.g., age

and species), others should be used as needed (e.g., brain imaging

and acute physiological assessments). When a study is collecting

these types of data, use of the Core CDEs is highly recommended to

ensure that data will be collected in a standardized manner and will

enable meta-analysis in the future.

Table 1. Module 1: Core Common Data Elements for Pre-Clinical Traumatic Brain Injury Research

Animal characteristics Animal history Assessments and outcomes Injury model characteristics

Species
Birth date
Age
Age group
Sex
Animal vendor
Strain/genetic modifications
Weight measurement

Pre-injury subject housing
Pre-injury conditions
Pre-injury surgical procedures
Injury group
Injury date and time
Anesthetic type
Anesthetic route
Anesthesia duration
Analgesia type
Injury severity
Number of injury exposures
Interval between injuries
Post-injury surgical procedures
Post-injury conditions
Post-injury subject housing
Treatment group
Treatment onset
Drug treatment route
Treatment or therapy type
Treatment control
Treatment dose
Survival time
Euthanasia date and time
Euthanasia type

Outcome timing
Assessment date and time
Acute neurological assessment
Apnea indicator
Apnea duration
Righting response time
Toe pinch response
Acute physiological assessments
Brain imaging type
Chronic physiologic assessments
Memory/retention tests
Learning/acquisition tests
Sensory/motor tests
Anxiety tests
Social interaction tests
Body weight change
Histopathology

Injury model characteristics
External cause modeled
Injury model
Device manufacturer
Device manufacturer other text
Animal stabilization method
Impact location side
Impact location cortical region
Impact location coordinates
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Modules of specific TBI animal models

Historically, experimental TBI models were categorized broadly

as ‘‘focal,’’ or ‘‘diffuse.’’ Focal models included those that induce

cerebral contusions, edema, and hematomas. In contrast, diffuse

models displayed pathological features comprising more widespread

vascular injury, ischemia, general brain swelling, and diffuse axonal

injury (DAI). This stark distinction, however, is falling out of use

because it is now recognized that few focal models actually induce

exclusively localized pathology. In addition, the variation in the

character and extent of pathologies between models of diffuse TBI

models are too great to be captured under one heading. Instead, more

Table 2. Modules 2–5

Module 2. Weight drop injury relevant data elements

Invasive surgery
Surface material
Surgical procedure for cranial opening
Craniotomy size
Impactor/projectile mass
Impactor/projectile material
Impactor tip/projectile shape
Impactor tip rigidity

Weight drop height
Weight drop guidance
Weight drop characteristics
Impactor velocity
Contact surface type
Contact surface area
Impactor dwell time

Impactor retraction
WD-specific pre-injury surgical procedures
WD-specific post-injury surgical procedures

Module 3. Fluid percussion injury relevant data elements

Surgical procedure for cranial opening
Craniotomy size
Connector angle
Connector tube
Connector tube length

Connector tube material
Port distal diameter
Cement
Transducer manufacturer

Cap characteristics
Peak pressure pulse
Pressure wave duration

Module 4. Controlled cortical injury relevant data elements

Invasive surgery
Surgical procedure for cranial opening
Craniotomy size
Impactor angle
Impactor angle measurement

Impactor tip/projectile shape
Impactor tip rigidity
Impactor depth setting

Impactor dwell time
Impactor velocity
Surface material

Module 5. Projectile concussive impact model relevant data elements

Projectile driver mechanism
Impactor/projectile material
Impact distance
Projectile velocity
Helmet

Impactor/projectile mass
Impactor tip/projectile shape
Peak pressure sensor film
Contact surface type
Contact surface area

Contact pressure
PCI-specific pre-injury surgical procedures
PCI-specific post-injury surgical procedures

WD, weight drop; PCI, projectile concussive impact.

Table 3. Module 6

Module 6. Blast-induced neurotrauma relevant data elements

Blast induced delivery device
Pressure wave type
Detonation type
Detonation material quantity
Driver gas
Pressure wave medium
Distance from detonation
Blast tube or column area
Blast tube length
Shock tube driven section length
Membrane thickness
Membrane burst method
Membrane burst pressure
Tube end configuration
Placement relative to shock tube

Distance between animal and tube
Animal orientation to blast wave
Overpressure peak
Overpressure rise time
Overpressure wave duration
Impulse
Reflective wave overpressure
Blast wind pressure
Pressure sensor orientation
Pressure sensor type
Pressure sensor sampling frequency
Incident pressure time history
Body exposure
Protective shielding location
Protective shielding type

Reflective surfaces
Primary blast effects
Secondary blast effects type
Secondary blast effects

specifications
Tertiary blast effects
Tertiary blast effects specifications
Quaternary blast effects
Systemic injury
Extracranial injuries
BIN-specific pre-injury surgical

procedures
BIN-specific post-injury surgical

procedures

BIN, blast-induced neurotrauma.
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recent descriptions of TBI models address key pathological features

and/or injury severity, with the caveat that many other changes may

also be present.

The goal for the development of preclinical TBI CDEs is to start

with the most widely used models established in the literature

(Tables 2–6). These models and some of the common variations in

their execution are discussed below.

Head/brain impact models (Modules 2-5)

In the clinical setting, ‘‘focal TBI’’ is used to describe a spectrum

of pathologies regardless of the biomechanical nature of injury.

This includes intracerebral and intracranial hemorrhage, as well as

one of the most common pathologies across the injury severity

spectrum, cortical contusion. In contrast, the vast majority of lab-

oratory models of focal TBI represent pathologies resulting from a

blow to the head. Indeed, virtually all focal TBI models are more

specifically cortical contusion models with or without more wide-

spread neuropathology. Numerous species have been used to model

cerebral contusion including cats,21 sheep,22 ferrets,23 non-human

primates,24 pigs,25–30 and rodents.31–40 Mice and rats, however,

have been, by far, the most widely used species primarily for rea-

sons of convenience and economic viability.31–40

Currently, four general techniques are used to apply impact

forces directly to the brain or skull of the animal and induce focal

brain injury in rodents: weight drop,31–34 fluid percussion,37–39

controlled cortical impact,35,36 and projectile impact.40 The

parameters of these models are designed to produce dynamic

deformation of brain tissue over a target duration of approxima-

tely 10–50 msec, but it can be longer in some cases.41

As the name implies, weight drop models use weights that are

dropped freely or through a guiding apparatus to generate an impact

either on the closed cranium, a metal plate fixed to the cranium, or

through a craniectomy directly on the dura. The widely recognized

Marmarou model of impact acceleration in rats has been described as

resulting in diffuse brain injury.42 In this model, a weight is dropped

onto a plate fixed to the rat’s cranium. While previous weight-drop

models described the head as being fixed or positioned on a hard

surface,34,43 in this adaptation, however, the head was not fixed and

allowed to rotate downward. It has been suggested that this motion,

in combination with the impact, results in overt widespread damage

to axons.42 Nevertheless, there has been debate as to whether the

axonal injury occurs as a result of the acceleration or of skull de-

formation. In addition to the issue of head stabilization, the surface

material on which the animal is positioned can influence outcome

(e.g., foam vs. rigid surface), as well as the impounder shape, ma-

terial, and height from which it is dropped (Table 2).

Fluid percussion (FP) models of brain injury use rapid injection of

fluid through a sealed hollow post into the closed or open cranial

cavity (Fig. 2c). The diameter and length of the fluid-filled tube are

known variables with regard to injury level, in addition to the cra-

niectomy size and shape through which the fluid pulse is injected.

Moreover, simply the manufacturer of the fluid percussion device

may result in high variation in the nature and extent of injury (Table 2).

Controlled cortical impact (CCI) is a rigid indentation method that

typically uses a pneumatic, electronic, or spring-driven impactor to

Table 4. Module 7

Module 7. Penetrating ballistic-like brain injury relevant data elements

Surgical procedure for cranial
opening

Craniotomy size
PBBI probe
PBBI orientation
Balloon inflation diameter
Balloon inflation volume
Balloon life span
Brain cavity volume

Impactor tip/projectile shape
Impactor tip rigidity
Impactor depth setting
Connector tube length
Connector tube material
Port distal diameter
Cement

Cap characteristics
Peak pressure pulse
Pressure wave duration
PBBI-specific pre-injury surgical procedures
PBBI-specific post-injury surgical procedures

PBBI, penetrating ballistic-like brain injury.

Table 5. Modules 8 and 9

Module 8. Intracranial hemorrhage and subdural/subarachnoid hemorrhage relevant data elements

Hemorrhage cause
Hemorrhage intended compartment
Hemorrhage intended side
Hemorrhage actual location

Hemorrhage actual side
Hemorrhage volume
Injection material
Injection duration
Peak intracranial pressure

ICH-specific pre-injury surgical
procedures

ICH-specific post-injury surgical
procedures

Module 9. Increased intracranial pressure model relevant data elements

Intracranial pressure
elevation-specific surgical procedures

Increased pressure maneuver
duration

Anatomic location of ICP measurement

Peak ICP
ICP specific pre-injury surgical

procedures
ICH-specific post-injury surgical

procedures

ICH, intracranial hemorrhage; ICP, intracranial pressure.
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deform the brain through a craniectomy, at a pre-specified velocity

and depth, with the dura open or intact (Fig. 2 a,b). More recently,

various groups have used CCI directly onto the closed skull in at-

tempts to model more mild and diffuse forms of TBI, often using

repetitive injury paradigms.44–49 In addition to modifiable aspects of

the model such as impact velocity and geometry, the size, shape, and

material of the impounder can result in significant changes to the

injury (Table 2).

Similar to FP, the size and location of the craniectomy alone can

dramatically change injury severity, even when the same im-

pounder is used. Moreover, for various impact models, the bone

flap that is removed for injury is often not replaced. In contrast,

other groups have opted for a craniotomy, where the original bone

flap is affixed back in place or cranioplasty performed using syn-

thetic material to reseal the skull. It is important to note that unless

sealed, creating an opening in the skull may influence intracranial

pressure (ICP) by acting as a decompressive craniectomy post-

trauma, which can potentially affect outcome.50,51

A more recently published model, referred to as projectile

concussive impact (PCI), relies on closed head impact via a pro-

jectile launched via the rapid sublimation of dry ice40 or com-

pressed nitrogen.52 While the nature of the projectile is critical to

the injury, other important variables include the location of impact,

surface pressure at contact, the projectile’s trajectory, velocity, and

the presence or absence of a helmet (Table 2).

Animal models of blast-induced TBI (Module 6)

The incidence of blast-induced TBI has risen markedly in recent

military engagements.53–56 Blast exposures are often complex events

and may induce multiple types of TBI by direct impact, including

penetrating injuries and rapid acceleration-deceleration injuries from

being thrown or struck by objects, or from exposure to the primary

blast wave itself. Thermal or chemical insults can also play a role.57,58

The role of ‘‘pure’’ or primary blast injury caused by the prop-

agation of rapid pressure waves remains unclear, however. Speci-

fically, the relative contribution of primary blast versus inertial

forces in closed-head TBI is currently debated both clinically and

experimentally.59–61 This lack of clinical information is a major

limitation when attempting to generate appropriate models and

underscores the need for the use of CDEs in an immature research

area where causal mechanisms of injury are uncertain. Nonetheless,

in attempts to simulate field conditions, animal models of blast TBI

have directly used explosive material or experimental shock tubes

to approximate blast conditions.

Direct explosive models have used a range of high explosives,

with exposure being ‘‘open-field’’ absent walls/obstructions (e.g.,

360-degree radius), ‘‘closed-field’’ within a defined space, and/or

within ‘‘complex environments’’ consisting of partial walls/ob-

structions and vehicle surrogates. Various species have been ex-

amined including rodents,62,63 non-human primates,64 and

pigs.65,66 To complement these efforts, in-laboratory blast testing

has been performed using shock tubes, which are typically cylin-

drical tubes where rats,60,67–76 mice,77,78 and ferrets79 have been

exposed to blast-like pressure wave propagation driven by com-

pressed gas (e.g., air, nitrogen, helium) (Fig. 2d). Other studies have

used explosive charge-driven shock tubes.80,81

To date, there are not standardized shock tube paradigms (e.g.,

gas vs. chemical explosives, tube design), species, location of the

specimen, or use of body shielding and head mobility, maximum

(peak) overpressure peak or overpressure duration; and all of these

factors may greatly alter the nature of the injury, which again speak

to the critical need for the use of CDEs in an emerging area of

research.

Differences in the implementation of blast paradigms may, in

part, explain the variations in reporting of thresholds and pathol-

ogies between laboratories. Indeed, perhaps because of the recent

development of various models and the lack of clinical and neu-

ropathological descriptions of blast-TBI, these models are con-

ceivably the most varied in experimental TBI, and therefore also

have the largest number of model-specific CDEs (Table 3).

Penetrating ballistic-like brain injury (PBBI)
model (Module 7)

While closed head injuries are the most common type of injury

in the civilian population, penetrating injuries from firearms remain

a substantial cause of morbidity and mortality, particularly in

young adults in the United States.82,83 In addition, penetrating in-

juries are significantly more prevalent in the military versus civilian

population.84

Experimental models of penetrating brain injury are not widely

studied, however. While several stab injury models have been re-

ported,85–88 these fail to recapitulate the biomechanics of common

penetrating injuries clinically, such as those associated with fire-

arms. In contrast, PBBI89–91 was designed to simulate both bullet

trajectory and the resultant cavitation from energy dissipation from

a bullet round in the brain parenchyma. This model uses a probe

with a rapidly inflatable tip. The size of the probe, magnitude and

Table 6. Module 10

Module 10. Porcine rotational acceleration model relevant data
elements

Rotation plane
Rotational motion

duration

Peak angular
velocity

Peak angular
acceleration

Peak angular
deceleration

Angular motion range

FIG. 1. The preclinical common data elements (CDEs) are orga-
nized around four domains: Animal Characteristics; Animal History
(including treatments); Injury Model Characteristics; and Assess-
ments and Outcomes. These domains describe factors and outcomes
relevant to preclinical therapy development for traumatic brain in-
jury. Color image is available online at www.liebertpub.com/neu
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rate of inflation, as well as location can all influence the patho-

logical nature of the injury (Table 4).

Intracranial hemorrhage (ICH) and subdural/
subarachnoid hemorrhage (SDH/SAH) relevant data
elements (Module 8) and ICP models (Module 9)

Acute intracranial hematoma is an extremely common conse-

quence of TBI. In particular, acute subdural hematoma frequently

results from tearing of the bridging or cortical veins, while acute

epidural hematomas most commonly occur secondary to rupture of

the middle meningeal artery or from bone bleeding. Despite the rel-

ative frequency of these pathologies, acute intracerebral hemorrhage

is poorly studied when compared with other trauma-induced brain

pathologies, perhaps as a result of their primary management being

neurosurgical evacuation. Nonetheless, several models have been

reported that largely depend on the introduction of autologous blood

to the subdural or epidural space in rodents or larger animals.92–97

One group simulated the compressive effects of epidural hematoma

in dogs using an inflatable balloon within the epidural space.98

FIG. 2. Examples of common devices used to induce experimental traumatic brain injury that are modified in various ways that
influence outcome. (a) Illustration of a controlled cortical impact (CCI) device that delivers stereotactic guidance for impact placement
and uses electromagnetic force. (b) Illustration of a CCI device that relies on delivering an impact via a pneumatically controlled piston.
The nature of the injury is modifiable by various factors including the impact velocity and geometry, the size, shape, and material of the
impounder. (c) Illustration of a fluid percussion device. Known variables that influence histopathological and clinical outcome include
the diameter and length of the fluid-filled tube, the craniectomy size and shape to which the fluid pulse is injected. (d) Representative
shock tube assembly. Dimensions of the device vary dramatically, ranging from centimeters to tens of meters in length. A membrane/
diaphragm (e.g., Mylar) is inserted between the driver section and driven section. Compressed air/gas fills the driver section to a
pressure that ruptures the membrane inducing a characteristic blast shock wave that travels through the driven section. Test animals or
materials are placed either inside or outside the driven section. Images courtesy of Dr. C. Edward Dixon and Mr. Michael Farmer (a–c),
and Dr. Douglas H.Smith (d). Color image is available online at www.liebertpub.com/neu
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Models of raised ICP have also been developed by balloon infla-

tion within the subdural, epidural space or the lateral ventricle99–105

or via infusion of artificial cerebrospinal fluid or other fluid in to the

cerebral ventricles or cisterna magna.106–110 Various aspects such as

the location, nature, volume, and rate of the fluid injection or balloon

inflation are important with regard to interpretation and compara-

bility. Similarly, the magnitude of ICP attained as well as how and

where it is measured is critical (Table 5).

Head rotational acceleration models (Module 10)

Rotational acceleration of the brain can be triggered by transla-

tional forces impacting the head inducing rotation, in the absence of

head impact when the head is allowed to move freely during a sudden

deceleration during which the body is restrained, or by pure rotation

via head coupling to a rotational acceleration device. Head rotational

acceleration causes various brain regions to undergo differential shear,

tensile, and compressive forces that cause tissue deformation at high

strain rates.111 The amount of shear strain is related not only to the

amount of rotational acceleration, but also to the presence of intra-

cranial dural compartments (e.g., falx, tentorium cerebri) and direction

of motion. These inertial forces are responsible for DAI,112 one of the

most common and important pathological features of TBI.113–116

Notably, while referred to as ‘‘diffuse’’ clinically, traumatic injury to

axons is perhaps more accurately described as multifocal, preferen-

tially involving midline white matter tracts such as the corpus callo-

sum, internal capsules, brainstem, and cerebellar peduncles.113,115,117

Few models of DAI in gyrencephalic animals have been char-

acterized, although these models are considered increasingly

valuable because of their high clinical relevance to mild TBI or

concussion. Their lack of widespread use in part reflects the diffi-

culty of developing a model system that replicates the dynamics of

diffuse injury, such as the inertial loading conditions produced in

automotive crashes or at the moment of head impact.118

Because of the large effect of brain mass on angular acceleration,

acceleration force magnitudes must be very large to compensate for

the small brain volumes of most experimental animals and create

the same mechanical loading of brain tissue that occurs in human

TBI.111, 119–122 Indeed, only two animal models have been shown

to replicate the key clinical features of DAI. These ‘‘inertial’’ injury

models were initially characterized in non-human primates, using

non-impact head rotational acceleration to produce coma in asso-

ciation with diffuse axonal damage.123 Non-human primates were

originally chosen for this experimental model because of their large

brain mass, which allows for mechanical devices to produce the

magnitude of deceleration needed to create the development of

high strain between regions of tissue.

More recently, a porcine model of rotational acceleration brain

injury has been developed, using young adult miniature swine,111,124

which have a brain mass of approximately 70–100 g, comparable to

that of the non-human primates. In addition, neonatal and pediatric

domestic swine models have been developed.125,126 Peak coronal

plane rotational accelerations were found to range from 0.6–1.7 · 105

rad/sec2. Rotational acceleration at these parameters was sufficient to

consistently produce axonal injury throughout the white matter,

particularly subcortically.

The complex biomechanics involved in this model are vital to

clinical and neuropathological outcomes. Specifically, attaining the

relevant peak rotational accelerations and velocities, as well as the

maximal duration of rotation are critical in replicating human pa-

thology (Table 6). Moreover, studies using this model demon-

strated that the plane of head rotational acceleration in reference to

the brainstem is important in determining the induction and dura-

tion of loss of consciousness after injury.127.128

Implementation

The preclinical CDEs are currently accessible via the NINDS TBI

Research website (http://www.ninds.nih.gov/research/tbi/index.htm)

and in the future will be accessible via the FITBIR Informatics Sys-

tem, currently operational for clinical TBI research (https://fitbir.-

nih.gov/). The FITBIR Informatics System was developed as a

web-based platform designed to permit cross-site meta-analysis

and data comparisons and sharing of clinical research data within

the TBI research community. The preclinical CDEs will provide

standardized definitions or a ‘‘data dictionary’’ for the data sub-

mitted by preclinical TBI investigators. In addition, if investi-

gators use the Protocol and Form Research Management System

(ProFoRMS), a web-based data collection/research tool that

permits real time electronic data collection (as is normally done in

individual notebooks), data will be automatically uploaded into

FITBIR, thus limiting the workload for investigators.

Another major advantage of the system is that once specific forms

are published, standardized and vetted sets of data elements, e.g., for

a specific experimental model, will be available to the wider re-

search community to use. To ensure high quality data, FITBIR has

quality control measures that reject data that are outside of per-

missible values. In the future, it is anticipated that FITBIR will also

have links to analytical tools to facilitate data analysis.

Discussion

Goals and utility of pre-clinical CDEs for TBI

The preclinical CDEs aim to capture sufficient detail to identify

likely sources of variability that in the past have confounded cross-

comparison between studies. Notably, as described above, many of

these variables are often subtle and inadequately described in pub-

lished articles. Incorporating this detail into a readily accessible and

searchable database will open avenues of cross-comparison be-

tween data sets not previously possible and will potentially accel-

erate the advancement of preclinical TBI research. Such widespread

data sharing will not only foster collaboration but will also provide

an important platform to address specific scientific questions using

existing data sets and meta-analyses. Mapping of preclinical CDEs

to existing clinical CDEs may have important utility for translation.

Notably, to permit standardization, established CDEs require

stability. As new models are generated and existing models mod-

ified, however, the addition of new CDEs (in the form of new

modules, as well additional unique data elements) will be incor-

porated. As such, it is envisioned that the CDEs will be a ‘‘living

document’’ with flexibility to update in a dynamic fashion.

Having a centralized and accessible database, such as FITBIR,

would also be advantageous not only with regard to study com-

parison, but also may serve to standardize and increase the rigor of

future data collection. Specifically, FITBIR has a tool (ProFORMS)

that makes it possible for investigators to create electronic forms

that automatically load the data into the database. The creation of

ProFoRMS for preclinical research will provide a useful resource

that promotes standardized data collection across groups and may

be particularly helpful to new investigators. Reference values and

existing data sets will also serve as a resource for validation of

models in new laboratories. Study design can be aided by searching

data for appropriate outcome measures, e.g., behavioral testing at

specific time points post-injury. Finally, a potentially important
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outcome of data submission in the context of CDEs will be the

inclusion of studies with negative findings, which are often not

submitted or accepted for publication.129,130 This reporting is a

much-needed resource that will allow investigators to avoid un-

necessary duplication of studies and the associated waste of re-

sources.

Lastly, while there are few established preclinical CDEs for any

disorder, the spinal cord injury (SCI) research community has also

undertaken steps toward the identification of key information

needed for preclinical research studies and standardization of data

elements.131 Although TBI and SCI produce uniquely different

types of neurotrauma, there are many common mechanisms of

injury, and ways to integrate the TBI and SCI preclinical CDEs

should be explored in the future. There is much to learn about the

feasibility and utility of preclinical CDEs, but it is hoped that they

will facilitate data sharing and collaboration within and across

preclinical and clinical research fields and ultimately lead to bio-

marker discovery and effective therapies for TBI.
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