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We performed genetic analysis of Bartonella isolates from rodent populations from Heixiazi Island in northeast China. Animals
were captured at four sites representing grassland and brushwood habitats in 2011 and examined for the prevalence and genetic
diversity of Bartonella species, their relationship to their hosts, and geographic distribution. A high prevalence (57.7%) and a
high diversity (14 unique genotypes which belonged to 8 clades) of Bartonella spp. were detected from 71 rodents comprising 5
species and 4 genera from 3 rodent families. Forty-one Bartonella isolates were recovered and identified, including B. taylorii, B.
japonica, B. coopersplainsensis, B. grahamii, B. washoensis subsp. cynomysii, B. doshiae, and two novel Bartonella species, by
sequencing of four genes (gltA, the 16S rRNA gene, ftsZ, and rpoB). The isolates of B. taylorii and B. grahamii were the most
prevalent and exhibited genetic difference from isolates identified elsewhere. Several isolates clustered with strains from Japan
and far-eastern Russia; strains isolated from the same host typically were found within the same cluster. Species descriptions are
provided for Bartonella heixiaziensis sp. nov. and B. fuyuanensis sp. nov.

Significant numbers of zoonotic Bartonella species have been
recognized in the past 25 years. Before 1991, B. bacilliformis

was the only member of the Bartonella genus. At present, the ge-
nus Bartonella contains over 30 formally described species of Bar-
tonella and many unnamed Bartonella spp. isolated from a variety
of mammal species, most often from rodents, ruminants, and
carnivores (1). Some Bartonella spp. are long-known etiological
agents of human diseases (Carrion’s disease, cat scratch disease,
and trench fever) and some specific syndromes (verruga peruana,
bacillary angiomatosis, endocarditis, pericarditis, and neuroreti-
nitis) associated with these agents. Rodents are the largest source
of Bartonella spp. There are more than 40 species of rodents
known to be associated with 26 different species of Bartonella,
seven of which have been implicated as occasional causes of
human infections (1). People become infected with rodent-
borne Bartonella incidentally, when they are exposed to habitats
and ectoparasites of wild rodents harboring various Bartonella
species.

Previous field and clinical studies in mainland China demon-
strated circulation of a variety of different Bartonella spp. associ-
ated with peridomestic, feral, and exotic animals across the coun-
try (2–5) and low levels of human Bartonella infections, diagnosed
primary as cat scratch disease due to B. henselae, in heavily popu-
lated areas (6). Heixiazi Island has a beautiful natural landscape
and plentiful wildlife; it is expected to become a tourist attraction
because of its special history and geographical position. This is-
land was previously unpopulated and isolated from mainland
northeast Asia before its recent opening to tourists. Thus, in the
present study, to evaluate the potential risk for transmission of
rodent-borne Bartonella on Heixiazi Island after opening it up to
tourists, we conducted a baseline survey of the occurrence and
prevalence of Bartonella infections in rodents on Heixiazi Island,
China. The genetic diversity of Bartonella isolates and their rela-
tionship to hosts and geographic distributions were examined and

evaluated in the context of current knowledge about Bartonella
species which are associated with rodents.

MATERIALS AND METHODS

Ethics statement. This study was performed after review and approval by
the Ethics Committee of the National Institute for Communicable Dis-
ease Control and Prevention of the Chinese CDC. All animals were treated
according to the approved protocols and the guidelines for the Laboratory
Animal Use and Care from the Chinese CDC and the Rules for the Imple-
mentation of Laboratory Animal Medicine (1998) from the Ministry of
Health, China.

Sampling sites and tissue collections. Rodents were captured using
the trap-at-night method in May 2011. Six hundred traps baited with
peanuts were set up in four sites of Heixiazi Island consisting of grass-
land and brushwood, the predominant habitats on the island. The
trapped animals were morphologically identified to species. Collection
time, site, habitat, species, gender, weight, head-body length, and tail
length were recorded. Liver and spleen were collected into 1.5-ml
Nunc CryoTubes and stored in liquid nitrogen prior to processing and
laboratory testing.

Received 20 June 2015 Accepted 3 September 2015

Accepted manuscript posted online 11 September 2015

Citation Li D-M, Hou Y, Song X-P, Fu Y-Q, Li G-C, Li M, Eremeeva ME, Wu H-X, Pang
B, Yue Y-J, Huang Y, Lu L, Wang J, Liu Q-Y. 2015. High prevalence and genetic
heterogeneity of rodent-borne Bartonella species on Heixiazi Island, China.
Appl Environ Microbiol 81:7981–7992. doi:10.1128/AEM.02041-15.

Editor: C. R. Lovell

Address correspondence to Qi-Yong Liu, liuqiyong@icdc.cn.

D.-M.L. and Y.H. contributed equally to this article.

Supplemental material for this article may be found at http://dx.doi.org/10.1128
/AEM.02041-15.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

December 2015 Volume 81 Number 23 aem.asm.org 7981Applied and Environmental Microbiology

http://dx.doi.org/10.1128/AEM.02041-15
http://dx.doi.org/10.1128/AEM.02041-15
http://dx.doi.org/10.1128/AEM.02041-15
http://aem.asm.org


Isolation and cultivation of Bartonella organisms, phenotypic char-
acterization, and electron microscopy. Approximate 20 mg of organ
samples was disrupted using a Dounce-Potter homogenizer in 0.6 ml
of tryptic soy broth (TSB) (BD), and suspensions were inoculated onto
tryptic soy agar (TSA) plates (BD) supplemented with 5% defibrinated
sheep blood. Plates were kept in a 5% CO2 humidified atmosphere at
35°C for 30 days and were checked daily for bacterial growth starting at
day 3 after inoculation. Small, round, gray-white colonies were mor-
phologically identified as Bartonella and passaged onto fresh plates.

Material from a single colony was suspended in 100 �l of deionized
water, heated for 10 min at 95°C, and cleared by centrifugation for 5 min
at 6,000 � g at 4°C. The supernatant was used as a source of DNA template
for PCR. The presence of Bartonella DNA was first determined by PCR
detecting a portion of the citrate synthase gene (gltA) with the primers
BhCS.781p and BhCS.1137n (Table 1) as described elsewhere (7). Bacte-
rial isolates identified as Bartonella were cloned by limiting dilution, and
established cultures were preserved in brain heart infusion (BHI) broth
(BD) supplemented with 30% glycerol at �70°C. Isolates were passaged
into flasks containing insect Schneider’s medium and propagated accord-
ing to previously established procedures to observe their growth charac-
teristics (8, 9).

To prepare samples for electron microscopy, bacterial cells were sus-
pended in deionized water, spread onto a water surface, absorbed onto
Formvar stabilized with carbon support film, stained for 2 min in 1%
uranyl acetate, and then air dried. Samples were examined with a trans-
mission electron microscope (Hitachi, HT7700) at 80 kV with negative
staining.

Biochemical testing was performed using commercially available re-
agents (Rapid ID 32 A; bioMérieux) according to the manufacturer’s in-
structions. Fatty acid methyl esters were obtained by saponification,
methylation, and extraction according to the MIS operation manual
(Midi Inc., 2002) and then analyzed using Agilent Hp6890 as Chromato-
graph and ChemStation v A5.05.

PCR amplification and sequencing of Bartonella genes. DNA was
extracted from bacterial isolates using the DNeasy tissue kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. For all
identified isolates, four gene fragments were amplified and their se-
quences were obtained: gltA, the 16S rRNA gene (10), cell division protein
gene ftsZ (11), and RNA polymerase beta-subunit gene rpoB (12). Nucle-
otide primers used in this study are listed in Table 1.

PCR amplification was performed using Pfu DNA polymerase
(TransGen Biotech, Beijing, China) and 20 to 50 ng of genomic DNA
in a final volume of 50 �l containing 0.2 �M each primer and 25 �l 2�
TransTaq-T PCR SuperMix. The PCR amplification conditions were
as follows: an initial step of 94°C for 2 min; 30 amplification cycles,
each consisting of 94°C for 30 s and 53°C for 30 s; an elongation step of
72°C for 2 min; and a final incubation at 72°C for 5 min. Amplified
products were analyzed by electrophoresis on 1% agarose gels supple-
mented with 0.005% of GoldView (SBS Genetech, Beijing, China) and
visualized under UV light. PCR products of the expected length were

then purified and sequenced on both strands by Tsingke Biotechnol-
ogy (Beijing, China).

Phylogenetic analysis. Individual gene sequences and concatenated
sequences assembled for gltA (326 bp), 16S rRNA gene (1245 bp), ftsZ
(767 bp), and rpoB (771 bp) fragments were aligned using ClustalW, and
neighbor-joining analysis was performed using MEGA6 (13) with the
Kimura 2-parameter model. A phylogeny was constructed based on the
concatenated sequences using the maximum-likelihood method and
HKY85 model implemented in PhyML software (14). Homologous se-
quences of Brucella abortus were used as an outgroup. Bootstrap analysis
was carried out with 1,000 resamplings. Homologous sequences for ref-
erence Bartonella species were downloaded from the NCBI GenBank,
and their accession numbers are listed in Table S1 in the supplemental
material.

Recombination analysis. The multiple-alignment sequences (MAS)
were scanned for intragenic and intergenic recombination using
RDPv.3.44 (15), GENECONV, Bootscan, MaxChi, Chimaera, and SiScan
as implemented in RDP with default settings. A phylogenetic tree was also
inferred using ClonalFrame v1.1 (16) with the number of Markov chain
Monte Carlo (MCMC) iterations set to 50,000, following a burn-in period
of 50,000 iterations.

The Neighbor-Net implemented in the software SplitsTree 4.13 (17)
with 1,000 bootstrap replicates was used to create the EqualAngle phylo-
genic network for the concatenated sequences. The pairwise homoplasy
index (PHI) in SplitsTree 4.13 was used to test the role of past recombi-
nation events in generating allelic variation.

Population diversity and distribution analysis. Nucleotide diversity
indices (�) and the polymorphic level (haplotype diversity [Hd]) were
calculated using DNAsp v5.10 (18). The aligned segment of gltA was used
to construct a phylogenetic network with the postprocessing of maximum
parsimony (MP) calculation (19) using the median joining method (20)
after the preprocessing of star contraction (21) implemented in the pro-
gram Network 4.6.1.2. The parameters of characters were set at the default
values (epsilon and weight values � 0 and 10). Homologous sequences for
the Bartonella strains were downloaded from the NCBI GenBank, and
their accession numbers are listed in Tables S1, S2, S3, and S4 in the
supplemental material.

Statistical analysis. SPSS software (version 19.0) was used for statis-
tical analysis. Chi-square and Fisher’s exact tests were applied for assessing
the differences of infection rates in the tissues tested. A P value of �0.05
was considered statistically significant.

Nucleotide sequence accession numbers. Sequences of the Bartonella
gene fragments generated in this study were deposited in the NCBI
GenBank database under accession numbers KJ175028 to KJ175068 for
gltA, KJ361602 to KJ361642 for the 16S rRNA gene, KJ361684 to
KJ361724 for ftsZ, and KJ361725 to KJ361765 for rpoB.

RESULTS
Study site description. Heixiazi Island (134°24=E, 48°22=N) (also
called Fuyuan Delta or Bolshoi Ussuriysky Island), located at the

TABLE 1 Oligonucleotide primers used for PCR

Target gene Primer Primer direction Primer sequence (5=–3=) Product length (bp)

gltA BhCS.781p Forward GGG GAC CAG CTC ATG GTG G 379
BhCS.1137n Reverse AAT GCA AAA AGA ACA GTA AAC A

16S rRNA gene fDl Forward AGA GTT TGA TCC TGG CTC AG 1,400–1,500
rDl Reverse AAG GAG GTG ATC CAG CC

ftsZ Bfp1 Forward ATT AAT CTG CAY CGG CCA GA 896
Bfp2 Reverse ACV GAD ACA CGA ATA ACA CC

rpoB 1400F Forward CGC ATT GGC TTA CTT CGT ATG 866
2300R Reverse GTA GAC TGA TTA AAC GCT G
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Chinese-Russian border, is a natural sedimentary island at the
confluence of Heilongjiang and Wusulijiang Rivers (called the
Ussuri and Amur Rivers in Russia) (Fig. 1). Heixiazi Island
serves as a natural border between China and Russia; it is 327
km2 with an average altitude of about 40 m. China restored
sovereign control over half of Heixiazi Island (171 km2) from
Russia on 14 October 2008. The Chinese section of the island is
part of Fuyuan County, Heilongjiang Province. The landscape
consists mainly of wetlands and lush growth of elms, poplars,
willows oak trees, sedges, and grasses.

Animal trapping. A total of 71 small mammals belonging to 6
species and 4 genera from 3 rodent families were captured in 4
sampling sites. Forty-three animals were trapped in woodland
habitats and 28 animals in grassland habitats. The northern red-
backed vole Myodes rutilus was the most prevalent animal species
and accounted for 64.8% (n � 46) of the rodents captured. Striped
field mouse Apodemus agrarius (n � 12), reed vole Microtus fortis
(n � 5), Maximowicz’s vole Microtus maximowiczii (n � 1), Ko-
rean field mouse Apodemus peninsulae (n � 6), and Siberian chip-
munk Eutamias sibiricus (n � 1) were also collected and ac-
counted for 16.9%, 7.0%, 1.4%, 8.5%, and 1.4%, respectively, of
all trapped animals.

Bartonella prevalence and identification. The prevalence of
Bartonella in rodents was 57.7% (41/71) but there were no signif-
icant variations of infection rate (P � 0.05, Fisher’s exact test)
between the two species belonging to Apodemus spp. In total, 66
Bartonella isolates were established from tissue samples of 71 ro-
dents, including 34 (48.6%) isolates from 70 liver tissues and 32
(47.8%) isolates from 67 spleen tissues. There were 25 paired iso-
lates recovered from the spleens and livers, respectively, of 25 ro-
dents. The other 16 isolates were obtained from livers (9 isolates)
or spleens (7 isolates) of different rodents (Table 2; see Table S5 in
the supplemental material). The prevalence of Bartonella infection
in livers did not differ from the prevalence of Bartonella infection
in spleens (P � 0.05, chi-square test). Bartonella growth could be
observed as early as day 4 after inoculation of the tissue homoge-
nate onto agar plates. Colony morphology and growth rate were
consistent with the characteristics of Bartonella isolates described
in the literature (22–24).

Genetic identification and phylogenetic relationships of ro-
dent Bartonella isolates from Heixiazi Island. Based on sequence
analysis of the 326-nucleotide (nt) gltA fragment, 41 newly estab-
lished isolates of Bartonella belonged to six known Bartonella spe-
cies and two potentially novel species. The isolates of B. taylorii (11
isolates), B. japonica (1 isolate), B. coopersplainsensis (3 isolates),
B. grahamii (5 isolates), B. washoensis subsp. cynomysii (1 isolate),
and B. doshiae (12 isolates) were obtained from voles, field mice,
and chipmunks from Heixiazi Island. Seven isolates from voles
(one from M. maximowiczii and 6 from M. rutilus) and one isolate
from a mouse (Apodemus agrarius) had unique genotypes, and the
representative strains were CR90HXZ and AA137HXZ. The iso-
lates CR90HXZ and AA137HX, each shared less than 95% nucle-
otide sequence similarity in their gltA fragment with homologous
genes of the nearest species of Bartonella, B. vinsonii subsp. aru-
pensis and B. grahamii, respectively.

To further explore the relationship of the new Bartonella iso-
lates from Chinese rodents with recognized species of Bartonella,
we performed a phylogenetic analysis based on the alignment of
the individual gene fragments of the gltA, 16S rRNA, ftsZ, and
rpoB genes (see Fig. S1 in the supplemental material). Further-
more, 3,110-bp fragments of concatenated sequences of the same
four conserved genes of 41 Bartonella isolates obtained in this
study and homologous sequences of 26 Bartonella type strains
retrieved from GenBank were analyzed. The same topology trees
were produced for each individual gene fragment and for the con-
catenated sequence fragments using both the neighbor-joining
(Fig. 2) and maximum-likelihood methods (see Fig. S2 in the sup-
plemental material). Overall, the 41 isolates exhibited 14 distinct
genotypes which were predicted using DnaSP v5.10.1; these 14
genotypes were clustered into 8 clades (I to VIII). The largest
number of isolates was associated with clades formed by six from
all recognized species of Bartonella, including B. taylorii (clade I),
B. japonica (clade II), B. coopersplainsensis (clade III), B. grahamii
(clade V), B. washoensis subsp. cynomysii (clade VI), and B. doshiae
(clade VIII) (Fig. 2). Eleven Chinese isolates clustered with B. tay-
lorii exhibited two distinct genotypes: one genotype comprised 8
isolates from M. rutilis (Myodes genotype) and a second genotype
consisted of 3 isolates from 2 A. peninsulae animals and one A.
agrarius animal (Apodemus genotype). Nucleotide sequences of
another isolate from A. peninsulae (AP73HXZ) were identical to
those of homologous gene fragments of B. japonica recovered
from A. argenteus in Japan (AB242289). Furthermore, sequences

TABLE 2 Bartonella infection rates in liver and spleen tissues of rodents
collected on Heixiazi Island, Chinaa

Rodent species

Liver Spleen
Liver and
spleen
coisolationn

No. (%)
positive n

No. (%)
positive

Microtus fortis 5 1 (20.0) 5 1 (20.0) 1
Microtus maximowiczii 1 1 (100.0) 1 1 (100.0) 1
Myodes rutilus 46 25 (54.3) 43 22 (51.2) 19
Apodemus agrarius 11 4 (36.4) 11 5 (45.5) 2
Eutamias sibiricus 1 0 1 1 (100) 0
Apodemus peninsulae 6 3 (50) 6 2 (33.3) 2

Total 70 34 (48.6) 67 32 (47.8) 25
a There were no significant differences in the rates of Bartonella isolate recovery from
liver and spleen (P � 0.05).

FIG 1 Distribution of sampling sites. The map shows the locations of the
geographic sites where the rodents were collected on Heixiazi Island, China,
during 2011. Map created using ArcGis v10.2 (ESRI, Redland, CA).
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of three isolates from A. agrarius (AA95HXZ, AA86HXZ, and
AA123HXZ) were identical to each other and had the most simi-
larity with the sequences of B. coopersplainsensis obtained from
Rattus leucopus in Australia (EU111803). The B. grahamii clade
(clade V) included 5 genetically distinct Chinese isolates recovered
from A. agrarius (2 isolates), M. rutilus (2 isolates), and M. fortis (1
isolate). A single isolate, ES132HXZ from E. sibiricus, was grouped
with B. washoensis subsp. cynomysii in cluster VI. Twelve isolates
from M. rutilus had the same sequences and were most related to
B. doshiae. Seven isolates from 6 M. rutilus and one from M. maxi-
mowiczii were identical to each other and were included in cluster
VII, which represented a unique lineage within the trees evaluated.
The nucleotide sequences of these isolates exhibited 4.6% nucle-
otide divergence from the homologous sequences of its closest
neighbor, B. washoensis subsp. cynomysii. One isolate from A.
agrarius formed cluster IV and had 4.5% genetic divergence from
its nearest neighbor, B. rattimassiliensis. Based on these genetic
differences, Bartonella isolates from M. rutilus and M. maximow-
iczii and an isolate from A. agrarius closest to B. rattimassiliensis
represent novel species.

Scanning of multiple sequence alignments for intragenic and
intergenic mosaicism and effects of recombination on phyloge-
netic relationships. Individual DNA alignments of gltA, the 16S
rRNA gene, ftsZ, and rpoB were analyzed with RDPv.3.44 pro-
grams to detect putative interspecies recombinant sequences. Po-
tential mosaic regions were considered likely recombinants only if
they were detected by at least two programs. There were no signif-
icant interspecies recombination events detected in the individual
DNA alignments. Accordingly, there was no interference from
recombination for the phylogenetic trees constructed based on the
four individual gene fragments.

To include more informative sites, the concatenated sequences
of four genes were analyzed for occurrence of possible interspecies
recombination events using the same method. Three significant
recombinations were detected, which affected mostly the two dif-
ferent genotypes of B. taylorii. The recombination breakpoint po-
sition was located between nt 153 and 392 of the concatenated
sequences of the Myodes-type isolates of B. taylorii, while the mi-
nor parental sequence originated from CR84HXZ of B. grahamii.
These parts of the concatenated fragment were from the hyper-
variable 3= end of the gltA fragment (nt 153 to 326) and 16S rRNA
gene fragment (nt 1 to 67). The topology of the phylogenetic tree
was not changed upon exclusion of those nucleotides from the
analysis. Furthermore, the split network also supported the same
relationship among the isolates, and this was not reflected in the
recombination breakpoint pattern. The fit, quite high at 98.2%,
indicates that the data are very tree-like, further suggesting that
the bootstrap split tree (Fig. 3) was congruent with the clustering
in the phylogenetic binary tree (Fig. 2).

FIG 2 Phylogenetic relationships of the Bartonella type strains and the Barto-
nella isolates from Heixiazi Island based on the concatenation of fragments of
gltA, the 16S rRNA gene, ftsZ, and rpoB. The phylogenetic tree was inferred
using the neighbor-joining method based on the Kimura 2-parameter model
in MEGA6 (13). The percentages of replicate trees (�70%) in which the asso-
ciated taxa clustered together in the bootstrap test (1,000 replicates) are shown
next to the branches. The analysis involved 3,110 concatenated nucleotides
from 68 isolates. Roman numerals I to VIII on the right side of the tree corre-
spond to different Bartonella genetic groups. Homologous sequences of Bru-
cella abortus were used as an outgroup. All sequences were trimmed to the
same size, and gaps were excluded from the analysis.
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For assessing the relative contributions of recombination and
mutation in the delineation of various Bartonella genotypes from
a common ancestor, we calculated the ratio of recombination to
mutation value (r/m and 	/
 ratio) using ClonalFrame v1.1 (21).
The inferred outputs were estimated at 0.83286 (r/m) (95% con-
fidence interval [CI95] � 0.507585 to 1.269109) and 0.036913
(	/
) (CI95 � 0.021735 to 0.058028), suggesting that nucleotide
changes in these conserved genes occur more frequently by de
novo mutation than by recombination.

Genetic polymorphism of rodent-adapted Bartonella spe-
cies. Overall, the extent of the intraspecies variation within the
different Bartonella clades was different and closely linked to their
host associations based on the 4 conserved gene fragments. Twelve
B. doshiae isolates from M. rutilus had an identical genotype. Sim-
ilarly, three isolates of B. coopersplainsensis from Apodemus spp.
exhibited the same genotype. In contrast, B. taylorii, B. grahamii,
and B. washoensis-like isolates from Heixiazi Island exhibited no-
ticeable intraspecies genetic diversity. Therefore, we examined the
nucleotide polymorphisms of the 4 conserved genes in these iso-
lates recovered from Heixiazi Island compared to the levels of
inter- and intraspecies genetic variation among isolates of B. tay-
lorii, B. grahamii and B. washoensis circulating in different parts of

the world, using sequences from GenBank. The level of nucleotide
polymorphism differed between two groups, and the nucleotide
diversities varied with the different alleles (Table 3). The 16S
rRNA gene exhibited the lowest genetic diversity in each popula-
tion of Bartonella isolates analyzed and had the lowest calculated
genetic distance (D) and nucleotide diversity (�) values. The nu-
cleotide diversity and genetic distance for the gltA, ftsZ, and rpoB
gene fragments varied among the B. taylorii, B. grahamii, and B.
washoensis-like isolates from Heixiazi Island. Analysis of the D and
� parameters calculated for all Bartonella isolates from Heixiazi
Island suggested that the highest polymorphism was within gltA
and rpoB, similar to the conclusions derived when similar param-
eters were calculated for sequences of known Bartonella species.
Our observations suggest that these two genes have more signifi-
cant impact for defining species of Bartonella than the other two
genes.

Isolates identified as B. taylorii belong to two genotypes which
exhibit estimated genetic distances of 0.008: the Apodemus-asso-
ciated-genotype and the Myodes-associated genotype. The Apode-
mus-associated B. taylorii isolates were from two sympatric species
of wood mice, A. agrarius and A. peninsulae. These isolates had
identical nucleotide sequences for all four gene fragments se-

FIG 3 Neighbor-Net tree of associations of Bartonella isolates obtained from different rodents inhabiting Heixiazi Island, China, and the Bartonella type strains
based on concatenated conserved genes (gltA, 16S rRNA gene, ftsZ, and rpoB) representing a total of 3,110 nucleotides using SplitsTree4. The numbers in
parentheses represent the number of isolates at each branch. The percentages of replicate trees in which the associated taxa clustered together in the bootstrap test
(1,000 replicates) are shown next to the branches; only bootstrap values of �70% are indicated. Different colors refer to individual Bartonella genetic groups.
Recombination is illustrated by the reticulation structures in the center among Bartonella strains. Bartonella tamiae was used as an outgroup. The fit parameter
values were 98.2% in all cases, indicating that a substantial fraction of the phylogenetic signals could be depicted on the graph. The bar in the upper left corner
of the network graph indicates the scale of branches.
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quenced, but these sequences were different from the sequences of
the homologous genes of M. rutilus-associated B. taylorii isolates.
No indel was found within the four gene fragments sequenced for
all B. taylorii isolates from Heixiazi Island examined here; how-
ever, 53 polymorphic and parsimony informative sites were iden-
tified within 3,110 nt of concatenated gltA-16S rRNA gene-ftsZ-
rpoB sequences of 11 B. taylorii isolates from the island. In
particular, gltA, the 16S rRNA gene, ftsZ and rpoB contained 23, 5,
10 and 15 polymorphic sites, respectively, which accounted for
0.74%, 0.16%, 0.32%, and 0.48%, respectively, of the entire
3,110-nt concatenated fragment. The haplotype diversity (Hd), �
value, and average number of nucleotide differences (k) are esti-
mated to be 0.436, 0.00744, and 23.127, respectively. In compari-
son, analysis of the 258-nt sequence of gltA from the 108 entries
listed as B. taylorii sequences in NCBI GenBank detected 63 poly-
morphic sites. Among them, there were 13 single nucleotide poly-
morphism (SNP) sites and 49 parsimony-informative sites; ac-
cordingly, the calculated � value per site was 0.03881, and the k
value was 10.013. Furthermore, it was estimated that 53 haplo-
types exist among previously identified isolates of B. taylorii; their
predicted Hd value was 0.971.

Five Heixiazi Island isolates, including two isolates from M.
rutilus (CR84HXZ and CR127HXZ), one isolate from M. fortis
(MF74HXZ), and two isolates from A. agrarius (AA97HXZ and
AA131HXZ) were clustered with B. grahamii, but all had distinct
genotypes with an overall genetic distance of 0.011. Sequences of

four conserved genes compared for these isolates of B. grahamii
had 57 polymorphic sites, no indels were present. There were 17
SNP and 40 parsimony-informative sites; they were found in gltA,
the 16S rRNA gene, ftsZ and rpoB and accounted for 0.22% (7 nt),
0.03% (1 nt), 0.48% (15 nt), and 1.09% (34 nt), respectively, of the
entire 3,109-nt concatenated fragment. The Hd, �, and k values
were estimated to be 1.000, 0.00991, and 30.8, respectively. In
comparison, analysis of the 307-nt sequence of gltA of the 64 en-
tries identified as B. grahamii sequences found in GenBank de-
tected 54 polymorphic sites. Among them, there were 27 SNP and
were 27 parsimony-informative sites; the estimated � value per
site was 0.02241, and the k value was 6.880. It was estimated that
there are at least 36 haplotypes among previously identified iso-
lates of B. grahamii; the predicted Hd value among known B.
grahamii isolates was estimated to be 0.961.

Seven Bartonella isolates from Heixiazi Island, including six
isolates from M. rutilus and one isolate from M. maximowiczii,
exhibited two distinct genetic types, and both were clustered with
B. washoensis as a nearest neighbor. Indel and parsimony-infor-
mative sites were not found in sequences generated for these iso-
lates. The 16S rRNA gene sequences were conserved among all
seven isolates. Eight SNP sites were found in the gltA, ftsZ, and
rpoB sequences, which accounted for 0.06% (2 nt), 0.16% (5 nt),
and 0.03% (1 nt) of the entire 3,107-nt concatenated fragment,
respectively. The Hd, �, and k values among the two genotypes
were 0.286, 0.00074, and 2.286, respectively. In comparison, anal-

TABLE 3 Nucleotide polymorphism and nucleotide diversity of rodent-associated isolates from Heixiazi Island (China) and type strains of
Bartonella speciesa

Bartonella sp. (no. of isolates) Gene Size (bp) D S PI � (mean � SD) Hd (mean � SD) k

B. taylorii (11) gltA 326 0.033 0 23 0.03079 � 0.01050 0.436 � 0.133 10.036
16S rRNA gene 1,247 0.002 0 5 0.00175 � 0.00078 0.436 � 0.133 2.182
ftsZ 766 0.006 0 10 0.00570 � 0.00217 0.436 � 0.133 4.364
rpoB 771 0.009 0 15 0.00847 � 0.00303 0.436 � 0.133 6.545
Concatenate 3,110 0.008 0 53 0.00744 � 0.00239 0.436 � 0.133 23.127

B. grahamii (5) gltA 326 0.007 1 6 0.01227 � 0.00359 0.700 � 0.218 4.000
16S rRNA gene 1,245 0.000 0 1 0.00048 � 0.00014 0.600 � 0.175 0.600
ftsZ 766 0.011 4 11 0.01069 � 0.00260 1.000 � 0.126 8.200
rpoB 771 0.009 12 22 0.02335 � 0.00480 1.000 � 0.126 18.000
Concatenate 3,108 0.010 17 40 0.00991 � 0.00219 1.000 � 0.126 30.800

B. heixiaziensis (7) gltA 326 0.002 2 0 0.00175 � 0.00120 0.286 � 0.196 0.571
16S rRNA gene 1,245 0.000 0 0 0.00000 0.000 0.000
ftsZ 766 0.002 5 0 0.00186 � 0.00128 0.286 � 0.196 1.429
rpoB 771 0.000 1 0 0.00037 � 0.00026 0.286 � 0.039 0.286
Concatenate 3,107 0.001 8 0 0.00074 � 0.00051 0.286 � 0.196 2.286

All HXZ isolates (41) gltA 326 0.110 15 78 0.09707 � 0.00390 0.856 � 0.033 31.645
16S rRNA gene 1,245 0.006 6 26 0.00567 � 0.00085 0.848 � 0.032 7.040
ftsZ 766 0.080 12 143 0.07373 � 0.00327 0.860 � 0.034 56.554
rpoB 771 0.073 21 172 0.09479 � 0.00339 0.860 � 0.034 73.083
Concatenate 3,106 0.057 54 419 0.05419 � 0.00223 0.860 � 0.034 168.322

All type strains (26) gltA 326 0.145 49 104 0.12614 � 0.00836 1.000 � 0.011 41.123
16S rRNA gene 1,236 0.015 52 43 0.01515 � 0.00202 1.000 � 0.011 18.723
ftsZ 765 0.121 80 191 0.10947 � 0.00837 1.000 � 0.011 83.745
rpoB 771 0.132 48 224 0.11947 � 0.00560 1.000 � 0.011 92.108
Concatenate 3,097 0.081 230 560 0.07553 � 0.00494 1.000 � 0.011 233.609

a HXZ, Heixiazi Island; D, genetic distance; S, singleton variable sites; PI, parsimony-informative sites; �, nucleotide diversity; Hd, haplotype diversity; k, average number of
nucleotide differences.
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ysis of the 306-nt sequence of gltA of the 82 of B. washoensis se-
quences found in GenBank detected 56 polymorphic sites. Among
them, there were 17 SNP and 39 parsimony-informative sites; the
estimated � value per site was 0.02984, and the k value was 9.132.
Overall, there were 53 haplotypes among previously identified
isolates of B. washoensis, and their predicted Hd is 0.9584.

Relationship of Bartonella, hosts, and geographic distribu-
tions. Since isolates of B. taylorii, B. grahamii, and B. washoensis
are known for their ubiquitous distribution, the phylogenetic net-
work of these Bartonella species was analyzed in the context of
their geographic relationship and their host associations in order
to define their influence on the Bartonella population genetic
structure. Our analysis revealed that Bartonella isolates from Asia,
Europe, and North America do not exhibit any obvious geo-
graphic clustering pattern; however, they could be easily grouped
based on their host associations (Fig. 4).

The genetically different isolates of B. taylorii from voles and
mice in Heixiazi Island belong to two different clades of Barto-
nella; one includes B. taylorii from Japan, and the other includes B.
taylorii isolates from France, Greece, Japan, Lithuania, Poland, the
Russian Far East, and Thailand (Fig. 4A1). This grouping of B.
taylorii isolates matched the grouping based on their host associ-
ations (Fig. 4A2). Three Apodemus genotype isolates (AA139HXZ,
AP119HXZ, and AP124HXZ) from Heixiazi Island were in the
same cluster group as B. taylorii from Europe and the Apodemus-
and Myodes-associated B. taylorii isolates from Japan. The eight
Myodes genotype isolates (CR87HXZ, CR89HXZ, CR112HXZ,
CR115HXZ, CR116HXZ, CR117HXZ, CR128HXZ, and CR142HXZ)
grouped with the isolates from Asia and Europe, which have dif-
ferent animal species as hosts. Four isolates of B. taylorii from
Ctenophthalmus lushuiensis, one isolate from Eothenomys miletus
trapped in Yunnan Province, China, and an isolate from Japanese
Microtus motebelli clustered separately from the Heixiazi Island
isolates (Fig. 4A1 and A2).

Five Heixiazi Island isolates of B. grahamii formed two clusters;
one included 2 isolates (AA131HXZ and AA97HXZ) from A.
agrarius and isolates from Apodemus spp. trapped in Japan and the
Russian Far East (Fig. 4B1). The second cluster consisted of iso-
lates originating from a variety of different hosts, including one
from M. fortis (MF74HXZ) and two from M. rutilus (CR84HXZ
and CR127HXZ) trapped on Heixiazi Island and four Bartonella
strains isolated from a human, A. agrarius, and M. ochrogaster in
Finland, the Russian Far East, and North America (Fig. 4B2).

Previously characterized isolates of B. washoensis associate with
various species of squirrels in Asia and North America (25). The B.
washoensis isolates from Hebei, Zhejiang Province, and Heixiazi
Island in China belong to three groups, one of which also includes
the Heixiazi Island isolates from E. sibiricus (Fig. 4C1). The other
two clusters include 17 isolates of B. washoensis from Spermophilus
dauricus, one isolate from A. chevrieri, and one isolate from a tick,
Haemaphysalis longicornis (Fig. 4C2). B. washoensis isolates from
North America exhibited a similar clustering pattern based on
their host associations (Fig. 4C2).

Host specificity of Bartonella isolates. Overall, 28 Bartonella
isolates of 4 different species were obtained from M. rutilus (Table
4). There were 12 isolates of B. doshiae, 8 of B. taylorii, 6 of B.
washoensis, and 2 of B. grahamii. Eleven isolates of B. taylorii were
established from M. rutilus (8 isolates; 72.7%), A. peninsulae (2
isolates, 18.2%), and A. agrarius (1 isolate, 9.1%). The vole was the
predominant host of B. taylorii. Genetic variation among individ-

ual isolates of B. taylorii from Heixiazi Island separated the Apode-
mus genotype and the Myodes rutilus genotype. The majority of B.
washoensis-like isolates originated from M. rutilus and M. fortis
voles. B. grahamii isolates were recovered from M. rutilus, A.
agrarius, and M. fortis. Except for E. sibiricus, five species of ro-
dents trapped on the island harbored more than one species of
Bartonella. Only one strain of B. washoensis was isolated from E.
sibiricus from Heixiazi Island. A new genotype (VII) of Bartonella
spp., which was isolated from 6 M. rutilus animals and 1 M. maxi-
mowiczii animal, appears to be predominantly associated with
voles.

Characterization of novel Bartonella isolates. Light micros-
copy examination of the two isolates CR90HXZ and AA137HXZ
revealed short, straight, or slightly curved Gram-negative bacilli.
Electron microscopy with negative staining of isolate AA137HXZ
detected small rods with unipolar surface pili; in contrast, pili were
not observed for isolate CR90HXZ (Fig. 5).

Isolates CR90HXZ and AA137HXZ were catalase and oxi-
dase negative and had no urease activity, similar to the case for
other Bartonella isolates. Tests for �-glucosidase, �-L-fucosidase,
�-L-arabinofuranosidase, mannose, raffinose, and nitrate reduc-
tion and spot indole tests using both stains were negative. Amino
acidarylamidase activity was observed with the following amino
acids: arginine (Arg), phenylalanine (Phe), leucine (Leu), tyrosine
(Tyr), alanine (Ala), glycine (Gly), histidine (His), and serine
(Ser).

To further confirm that these novel isolates were typical of
Bartonella species, their fatty acid profiles were determined. The
common cellular fatty acid proportions of C18:1
7c, C18:0, C16:0,
and C18:1
7c were, respectively, 62.39%, 18.7%, 10.82%, and
1.01% for isolate CR90HXZ and 56.29%, 12.66%, 22.79%, and
2.16% for isolate AA137HXZ. C18:1
9c and C20:1
7c accounted for,
respectively, 1.71% and 2.06% in isolate CR90HXZ; C17:0 ac-
counted for 4.02% of total fatty acids in isolate AA137HXZ, while
C18:1
9c and C20:1
7c were absent.

DISCUSSION

On Heixiazi Island, six species of rodents harbored eight Barto-
nella spp., including six known Bartonella species and two poten-
tially novel Bartonella species. In particular, Apodemus rodents
harbored the largest variety of Bartonella spp. (B. coopersplainsen-
sis, B. grahamii, B. taylorii, B. japonica, and a novel species close to
B. rattimassiliensis), M. rutilus harbored B. taylorii, B. doshiae, B.
grahamii, and a novel species closely related to B. washoensis, M.
maximowiczii harbored B. grahamii and the same novel species,
and one E. sibiricus animal and one M. fortis animal harbored B.
washoensis and B. grahamii, respectively. Since rodent species cap-
tured in our study widely inhabit the Sanjiang Plain (26), it is very
likely that circulation of the same Bartonella spp. may be expected
in areas surrounding the river and associated mainland territories.

Livers and spleens of infected animals had similar burdens of
Bartonella as determined by the isolation results. These and pre-
vious observations suggest that these organs may act as deposito-
ries of harbored Bartonella, although they may be damaged as a
result of a long-term Bartonella persistence in these tissues (27).
These interactions underlie the primary etiology of Bartonella-
caused hepatosplenomegaly and tissue inflammation in humans
and some animals, including dogs (28–30). Nevertheless, the
spleen is regarded as an organ for retaining and filtering infected
erythrocytes rather than to be a sanctuary for persisting Bartonella,
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as suggested by observations of chronic B. birtlesii infection in an
in vivo mouse model (31); however, the precise mechanisms of
Bartonella persistence in animals are not well understood.

Previous studies suggested that genes of rodent-borne Barto-
nella exhibit more frequent recombination events than those of
the species typically associated with humans and cats (32, 33).
Since any recombination event affecting housekeeping genes will
compromise the accuracy of the phylogenetic trees (34), we exam-
ined both fragments of the individual genes and multigene con-
catenated sequences for occurrence of recombination events. No
recombination events were found upon analyzing sequences of
the four individual gene fragments, suggesting that these genes are
suitable for the phylogenetic analysis of binary trees. Detection of
recombination events in the multigene concatenated sequences is
suggestive of an artifact due to concatenation or an indication of
recombination in the regions adjacent to the primer annealing
sites and external to the PCR fragments (15). Since the topology of
the trees remained the same upon exclusion of these putative re-
combined portions of the fragments, it is unlikely that the phylo-
genetic relationship within this group of Bartonella species is
affected by their inclusion in the concatenated fragments.
Furthermore, the split-tree analysis also confirmed that the topol-
ogy of the binary tree tends to be a tree, not a network. Although
the multigene concatenation did not influence the results of phy-
logenetic tree construction in the present study, considering the
illusion of recombination, owing to artificial connection of the
multiple locus genes, could cause an inaccurate phylogenetic esti-
mation of taxonomic relationships.

The extent of the genetic divergence established for different
Bartonella populations matched the diversity of their associated
hosts present on Heixiazi Island. Genetic diversity estimated for B.
grahamii on Heixiazi Island is greater than the genetic diversity

established for B. taylorii from the same area (1 and 0.436); how-
ever, our findings are in contrast to the results of comparative
analysis of B. grahamii and B. taylorii isolates of European and
American origin (35). Furthermore, the information available for
gltA fragment suggests that the genetic diversity of B. taylorii iso-
lates (Hd � 0.971, � � 0.03881) is slightly greater than that of B.
grahamii isolates (Hd � 0.961, � � 0.02241). Clear genetic diver-
sity of gltA was demonstrated for B. grahamii upon comparison of
36 strains from Asia (Hd � 0.943, � � 0.02154) and 27 strains
from Europe and North America (Hd � 0.889, � � 0.01427). The
nucleotide diversity of gltA is consistent with the result of Ber-
glund et al., who analyzed 26 strains from 11 species of wild ro-
dents in seven countries (32, 36). Therefore, our analysis corrob-
orates previous speculation that the European and American
lineages of Bartonella strains evolved as an expansion of the genet-
ically diverse Asian clade. Further in-depth spatial and temporal
sampling with evenly distributed statistical sampling will be re-
quired to demonstrate the ecological significance and value of
these observations. Multigene locus analysis targeting genes with
different levels of genetic conservation at the population, species,
and genus levels or whole-genome level comparisons would be
ideal for such an approach, but this will require substantial com-
putational effort and multicenter cooperation to assemble data for
a representative collection of isolates.

Previous investigations of Bartonella infections of small mam-
mals and their ectoparasites were conducted in southeast and
southwest China, including Zhejiang (37), Fujian (38), and Yun-
nan (22, 23, 39, 40) Provinces. In the present study, we determined
the prevalence of Bartonella in wild rodents under the undisturbed
natural ecological conditions on an unpopulated sedimentary is-
land at the Chinese-Russian border in northeast China. Analysis
of the geographical distribution pattern of Bartonella isolates from

FIG 4 Median-joining networks of gltA genotypes established based on maximum-parsimony calculation for Bartonella isolates from Heixiazi Island and all
other isolates of homologous species whose nucleotide sequences are available in the NCBI GenBank database. Genotypes are colored according to their
geographical origins and host species. The smallest colored circle corresponds to a single isolate. Isolates from Heixiazi Island are indicated by a secondary
dashed-line circle. A1, network of B. taylorii according to its geographic distribution; A2, network of B. taylorii according to its host species associations; B1,
network of B. grahamii according to its geographic distribution; B2, network of B. grahamii according to its host species associations; C1, network of B. washoensis
according to its geographic distribution; C2, network of B. washoensis according to its host species associations.

TABLE 4 Rodent species from which the Bartonella isolates were established and their habitats on Heixiazi Island, China

Host Nearest known Bartonella sp.
Similarity for
3,109 bp (%)

No. of isolates
Constituent
ratio (%)Grassland Woodland Total

Apodemus agrarius B. coopersplainsensis 99.6 2 1 3 42.9
B. grahamii 98.4 2 0 2 28.6
B. rattimassiliensis 95.5 1 0 1 14.3
B. taylorii 97.6 1 0 1 14.3

Apodemus peninsulae B. taylorii 97.6 0 2 2 66.7
B. japonica 99.9 1 0 1 33.3

Myodes rutilus B. taylorii 97.8 4 4 8 28.6
B. doshiae 99.5 1 11 12 42.9
B. grahamii 99.7 2 0 2 7.1
B. washoensis subsp. cynomysii 95.4 5 1 6 21.4

Eutamias sibiricus B. washoensis subsp. cynomysii 97.1 1 0 1 100.0
Microtus fortis B. grahamii 99.5 0 1 1 50.0
Microtus maximowiczii B. washoensis subsp. cynomysii 95.4 1 0 1 50.0
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Heixiazi Island compared to that of Bartonella from other geo-
graphic regions determined that the occurrence of various geno-
types of least three species of Bartonella (B. grahamii, B. taylorii,
and B. washoensis) was associated with the geographic locations of
their animal hosts. The impacts of host availability at each partic-
ular geographic location were different among different species of
Bartonella. Furthermore, distribution patterns of different geno-
types in a given population were indeed related to the host species
and appeared to have a more critical role than the geographical
factors. This is confirmed by an observation that the isolates of B.
taylorii and B. grahamii on Heixiazi Island were not present in the
same phylogenetic clusters but instead were clustered together
with the strains detected in or isolated from the same animal hosts
in various geographic areas. Another example was the isolates of B.
grahamii from North America which did not belong to the same
cluster because of their different host origins. Obviously, the in-
ternal distribution pattern of genotypes originated from same
hosts was impacted by geographic locations. For instance, it was
easy to observe that all presently known isolates of B. grahamii
from Apodemus spp. are split into two clades; one clade includes
isolates from Asia, and another clade includes isolates from Eu-
rope and North America. Based on these observations, we specu-
late that hosts and environmental factors may have different ef-

fects on genetic variations observed among isolates of Bartonella
spp. at the strain and species levels. Consequently, to identify the
effects of geographical factors on Bartonella isolates in a given
population, analysis of intra- and interspecies variations should be
performed for isolates of the same genus or species of rodent hosts
collected in different geographic locations.

Since Bartonella spp. are facultative intracellular pathogens,
the reservoir animal hosts can be viewed as an ecological niche
which captures the range of environmental conditions enabling
isolated persistence of these species (41). In theory, the variation
of intracellular pathogens is low, and it likely to be the first im-
pacted by availability of hosts inhabiting specific niches within
certain geographic parameters; in contrast, it may be determined
by the particular effects of the infecting parasite on its vertebrate
host. Therefore, for Bartonella sp. diversity, host diversity appears
to play a more important role than geographic factors. This hy-
pothesis will need further evaluation and will require statistically
justified and supported sampling to ensure representative collec-
tion of the isolates.

To fulfill the rules of the International Code of Nomenclature
of Bacteria (42), we provide the following descriptions of the novel
Bartonella species characterized in this study.

Description of Bartonella heixiaziensis sp. nov. Bartonella
heixiaziensis (Hei.xia.zi.en.sis. N.L. gen. n. from Heixiazi Island
[Bolshoi Ussuriysky Island], a sedimentary island at the conflu-
ence of the Ussuri and Amur Rivers in northeast China’s Hei-
longjiang Province where the voles [Myodes rutilis and Microtus
maximowiczii] from which the first strains were isolated were
trapped).

Following inoculation on blood TSA, small, off-white, trans-
lucent, smooth, round colonies about 1 to 2 mm in diameter ap-
peared at day 5 of incubation at 35°C in a 5% CO2 humidified
atmosphere. Best growth was observed on blood-enriched solid
medium or Schneider’s insect medium (liquid) with 10% fetal
bovine serum in a moist atmosphere containing 5% CO2. Electron
microscopic examination revealed small Gram-negative bacilli
without flagella or pili and approximately 1 to 2 �m long and 0.5
to 0.8 �m wide (Fig. 5A). Bacteria were oxidase and catalase neg-
ative, and exhibited no urease activity. Tests for �-glucosidase,
�-L-fucosidase, �-L-arabino-furanosidase, mannose, raffinose,
nitrate reduction, and spot indole were negative. Amino acidaryl-
amidase activity was observed with the following amino acids:
arginine (Arg), phenylalanine (Phe), leucine (Leu), tyrosine (Tyr),
alanine (Ala), glycine (Gly), histidine (His) and, serine (Ser). This
new species is distinguished from other Bartonella species by 16S
rRNA gene (KJ361623), gltA (KJ175047), ftsZ (KJ361705), and
rpoB (KJ361744) nucleotide sequences. The type strain CR90HXZ
was isolated from the blood of a red-backed vole (Myodes rutilus)
collected in May 2011; it was deposited in the Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell Cultures
as DSM 100695 and in the China General Microbiological Culture
Collection Center as CGMCC1.15048. Its closest known relative is
B. washoensis as determined by molecular comparison of the four
gene fragments (43).

Description of Bartonella fuyuanensis sp. nov. Bartonella
fuyuanensis (fu.yuan.en.sis. N.L. gen. n. from Fuyuan Delta, which
is the ancient name for Heixiazi Island in northeast China’s Hei-
longjiang Province, where the animals were trapped).

Following inoculation on blood TSA, small, off-white, trans-
lucent, smooth, round colonies about 1 to 2 mm in diameter ap-

FIG 5 Electron micrographs of the two novel Bartonella strains, CR90HXZ
without pili (A) and AA137HXZ showing the presence of polar pili (B). Bars,
0.5 �m.

Li et al.

7990 aem.asm.org December 2015 Volume 81 Number 23Applied and Environmental Microbiology

http://www.ncbi.nlm.nih.gov/nuccore?term=KJ361623
http://www.ncbi.nlm.nih.gov/nuccore?term=KJ175047
http://www.ncbi.nlm.nih.gov/nuccore?term=KJ361705
http://www.ncbi.nlm.nih.gov/nuccore?term=KJ361744
http://aem.asm.org


peared at day 5 of incubation at 35°C in a 5% CO2 humidified
atmosphere. Best growth was observed on blood-enriched solid
medium or Schneider’s insect medium (liquid) with 10% fetal
bovine serum in a moist atmosphere containing 5% CO2. Electron
microscopic examination revealed small Gram-negative bacilli,
approximately 1 to 2 �m long by 0.5 to 0.8 �m wide with polar pili
(Fig. 2B). Bacteria were oxidase and catalase negative and exhib-
ited no urease activity. Tests for �-glucosidase, �-L-fucosidase,
�-L-arabinofuranosidase, mannose, raffinose, nitrate reduction,
and spot indole were negative. Amino acidarylamidase activity
was observed with the following amino acids: arginine (Arg), phe-
nylalanine (Phe), leucine (Leu), tyrosine (Tyr), alanine(Ala), gly-
cine (Gly), histidine (His), and serine (Ser). This species is
distinguished from other Bartonella species by 16S rRNA gene
(KJ361607), gltA (KJ175033), ftsZ (KJ361689), and rpoB (KJ361730)
nucleotide sequences. The type strain AA137HXZ was isolated
from the blood of a wild striped field mouse (Apodemus agrarius)
collected in May 2011; it is deposited in the Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell Cultures
as DSM 100694 and in the China General Microbiological Culture
Collection Center as CGMCC1.15047. Its closest known relative is
B. rattimassiliensis as determined by molecular comparison of the
four gene fragments (43).
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