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The aim of this study was to perform a meta-analysis of the effects of sanitizing treatments of fresh produce on Salmonella spp.,
Escherichia coli O157:H7, and Listeria monocytogenes. From 55 primary studies found to report on such effects, 40 were selected
based on specific criteria, leading to more than 1,000 data on mean log reductions of these three bacterial pathogens impairing
the safety of fresh produce. Data were partitioned to build three meta-analytical models that could allow the assessment of dif-
ferences in mean log reductions among pathogens, fresh produce, and sanitizers. Moderating variables assessed in the meta-ana-
lytical models included type of fresh produce, type of sanitizer, concentration, and treatment time and temperature. Further, a
proposal was done to classify the sanitizers according to bactericidal efficacy by means of a meta-analytical dendrogram. The
results indicated that both time and temperature significantly affected the mean log reductions of the sanitizing treatment (P <
0.0001). In general, sanitizer treatments led to lower mean log reductions when applied to leafy greens (for example, 0.68 log re-
ductions [0.00 to 1.37] achieved in lettuce) compared to other, nonleafy vegetables (for example, 3.04 mean log reductions [2.32
to 3.76] obtained for carrots). Among the pathogens, E. coli O157:H7 was more resistant to ozone (1.6 mean log reductions),
while L. monocytogenes and Salmonella presented high resistance to organic acids, such as citric acid, acetic acid, and lactic acid
(�3.0 mean log reductions). With regard to the sanitizers, it has been found that slightly acidic electrolyzed water, acidified so-
dium chlorite, and the gaseous chlorine dioxide clustered together, indicating that they possessed the strongest bactericidal ef-
fect. The results reported seem to be an important achievement for advancing the global understanding of the effectiveness of
sanitizers for microbial safety of fresh produce.

The consumption of fresh fruits and vegetables comprises an
essential element of a healthy diet and a protective factor

against several chronic diseases (1, 2). Even though the ingestion
of these products is highly recommended by health authorities,
guaranteeing fresh, safe, and high-quality fruits and vegetables
remains an enormous challenge for fresh-produce industries.

In order to deliver the health benefits (2), fruits and vegetables
must be safe. One of the chief concerns related to the safety of
these products is their recurrent and increased association with
disease outbreaks (3–6). Epidemiological investigations indicate
that Salmonella, pathogenic Escherichia coli, and Listeria monocy-
togenes stand out as the most important bacterial agents linked to
fresh-produce disease outbreaks (3, 5–7). Recent studies have re-
ported the occurrence and high diversity of these microorganisms
in the environment or in close areas of produce farming areas
(8–13).

Given the above, fresh-produce industries have been imple-
menting measures at pre- and postharvest steps to reduce or avoid
the contamination of these products and, consequently, to dimin-
ish the burden of disease outbreaks. At postharvest steps, disinfec-
tion is the critical step for reduction of microbial contamination
(14, 15). During disinfection, fresh produce is allowed to stay in
contact with sanitizers added to the washing tanks aiming to re-
duce their microbial load. Finally, yet importantly, during disin-
fection, washing water should not become a point of cross-con-
tamination (15, 16). The phenomenon of cross-contamination
during produce washing has been indicated as the potential cause
of the spinach E. coli O157:H7 outbreak that resulted in 205 ill-
nesses and three deaths in the fall of 2006 in the United States (17,

18). As disinfection of fresh produce constitutes a critical control
point, several reports quantify the pathogens’ concentrations in
these foods before and after disinfection with different sanitizers
(19–26). However, because the log reductions of pathogens at-
tained by the sanitizers are affected by the particular conditions or
study characteristics (protocols for washing, type of fruit and veg-
etable, whole or cut fresh produce, type of sanitizer and concen-
tration, washing time and temperature, pathogenic strains, micro-
biological essays, etc.) under which the measurements were
obtained, variability in the effect size reported in the primary stud-
ies is expected to occur. This variability can be observed even
among studies investigating the same type of fresh produce and
sanitizer. Nonetheless, by means of a posteriori analysis and iden-
tification of the sources of variability likely to affect the log reduc-
tion of the pathogenic flora due to disinfection, it may be possible
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to explain, at least to some extent, the differences found among the
study outcomes. Most importantly, it may be realistic to build a
model that can be generalized to different types of fresh produce.

Meta-analysis has been defined as a statistical analysis of a col-
lection of analytic results for the purpose of integrating the find-
ings from a large amount of primary studies (27). Meta-analysis
allows the explanation of the divergences in the study outcomes by
the codification of moderating variables representing study char-
acteristics related to research design features, data collection pro-
cedures, type of samples, etc., aiming to reduce the between-study
heterogeneity or variability (28). Through meta-analysis, it may
also be possible to accurately estimate the overall outcome mea-
sure, with increased statistical power, than is possible using only a
single study (29).

Considering the capabilities of the meta-analysis and the sig-
nificance of Salmonella, pathogenic E. coli, and L. monocytogenes
for the microbial safety of fresh produce and for the public health
(3, 5–7), the objective of this study is 4-fold: (i) first, to compile all
publicly accessible published findings on the effects of sanitizers
on the mean reduction in the log counts of Salmonella spp., E. coli
O157:H7, and L. monocytogenes on fresh produce and quantita-
tively summarize the outcomes by means of meta-analytical mod-
els based on mixed-effects linear regressions; (ii) second, to ex-
plain a proportion of the total between-study heterogeneity in the
reduction of the pathogens’ populations by incorporating avail-
able study characteristics, such as type of fresh produce, type of
sanitizer, concentration, and treatment time and temperature,
into the basic meta-analysis model; (iii) third, to assess possible
differences in the susceptibilities of Salmonella spp., E. coli O157:
H7, and L. monocytogenes to selected sanitizers, as well as differ-
ences in the overall microbial log reduction among fresh produce
for a given disinfectant treatment; and (iv) finally, to evaluate the
effectiveness of the sanitizers to reduce each of the pathogen’s
populations using a common disinfectant treatment and to pro-
pose a classification of sanitizers according to their bactericidal
efficacies by means of a meta-analytical dendrogram. The result-
ing meta-analysis models have the capability to provide overall log
reduction estimates for a particular pathogen when using a given
sanitizer and sanitizing treatment.

MATERIALS AND METHODS
Data collection and effect size parameterization. Before commencing
any meta-analysis study, the research problem must be stated and three
important facets should be defined: population, intervention or treat-
ment, and measured outcome. In this meta-analysis, the problem state-
ment was the estimation of the overall effect of disinfecting fresh and
minimally processed fruits and vegetables with aqueous and gaseous
chemicals on the final microbial concentration (number of log reduc-
tions) of three pathogens (i.e., Salmonella spp., L. monocytogenes, and E.
coli O157:H7). The population was specified as fresh produce, fruits and
vegetables, prior to the sanitizing treatment, while the intervention or
treatment was represented by the disinfection unit operation using aque-
ous or gaseous sanitizers. The measured outcome is derived from the
pathogen’s concentration on the fruits or vegetables before and after treat-
ment, giving the number of log reductions.

The next step of literature identification was conducted using elec-
tronic search through Google with key terms, both in English and in
Portuguese, encompassing the following: “Salmonella,” “Escherichia coli
O157:H7,” “Listeria monocytogenes,” “pathogens,” “sanitizers,” “chemi-
cals,” “solutions,” “organic acids,” “detergents,” “washing,” “inactiva-
tion,” “antibacterial effect,” “reduction,” “fruits,” “vegetables,” and “pro-
duce.” Electronic searches were conducted using sensible combinations of

at least three of the above-listed terms. Also, literature for inclusion in the
study was identified from bibliographic databases such as PubMed, Sci-
ence Direct, and Scopus using the same key words. Data included consid-
ered studies available in scientific journals and electronically from 1990 to
2014. After an initial screening for research quality, a total of 55 studies
were found to report on the effect of sanitizers on the concentration of
pathogens in fresh produce. However, these encompassed also studies
using ultrasound and irradiation treatments, which were disregarded, as
only conventional washing with sanitizers was considered for inclusion in
the meta-analysis. A second criterion used in the screening was the need
for the primary study to report the concentration of either of the patho-
gens (Salmonella spp., E. coli O157:H7, and L. monocytogenes) in fresh
produce both before (i.e., control) and after the disinfection treatment or,
alternatively, the microbial log reduction attained by the disinfection
treatment. As a third criterion for inclusion, the primary study had to
clearly specify the type of sanitizer and its concentration, washing or ex-
posure time and temperature, and sample size and/or standard deviations.
As a fourth criterion, an approved microbiological method for pathogen
enumeration had to be employed. Considering all of those requirements,
40 primary studies were regarded as appropriate for inclusion in the pres-
ent meta-analysis study (19–26, 30–62).

As a next step, a parameterization of the intervention’s effect size
should be determined. The effect size (�) refers to the degree to which the
hypothetical phenomenon (i.e., reduction in the concentration of patho-
gens on fresh produce due to disinfection treatment) is present in the
population. For the studies’ outcomes to be compatible and meaningful
for analysis, such effect size should be converted to a common scale that
permits direct comparison and summation of the primary studies. Be-
cause the data generated by the primary studies are the means of a con-
tinuous variable (i.e., microbial concentration in or on fresh produce), the
possible parameters to measure effect size or treatment difference are raw
(unstandardized) mean difference, standardized mean difference, and re-
sponse ratios (63). The most suitable parameter to measure effect size was
the raw mean difference between control and treatment means, because
all the primary studies reported in the same log CFU scale and it is an
intuitively meaningful parameter. That is, referring in terms of, say, a 2- or
3-log microbial reduction is of widespread use among food microbiolo-
gists.

Consider a primary study j that reports means for two groups (control,
or before disinfection treatment, and treated, or after disinfection treat-
ment). Let x�C and x�T be the sample means of the two independent groups;
hence, the effect size estimate �̂, which, in our case, is the difference in
sample means or mean log reduction R, is defined as

�̂j � Rj � x� cj � x� rj (1)

Now, let sC and sT be the sample standard deviations of the two groups and
nC and nT be the sample sizes in the two groups, control and treated,
respectively. If we assume that the two population standard deviations are
different, then the SE of the mean log reduction R can be estimated as

SE�Rj� �� sC
2

nC
�

sT
2

nT
(2)

Mean log reductions (R) and their standard errors (SE) for the three
pathogens were estimated from the primary studies whose results were
reported separately for the control and treated groups. Nonetheless, in
some primary studies, mean log reductions and their standard errors were
provided as such, so none of the above formulas needed to be applied, and
their values were extracted directly from tables or charts.

Description of meta-analytical data set. The microbial mean log re-
duction values for the three pathogens, whether estimated using equa-
tions 1 and 2 or directly extracted from the primary studies, were the
outcomes of experiments carried out with a specific fresh produce under
a certain disinfection treatment. Hence, all this additional information
was also annotated from the primary studies in the form of study charac-
teristics or moderating variables. The study characteristics considered
were bacteria (a categorical variable), type of sanitizer (a categorical vari-
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able), sanitizer concentration (a continuous variable), type of produce (a
categorical variable), treatment or washing time (a continuous variable),
and treatment or washing temperature (a continuous variable). As ex-
plained above, sample sizes (nC and nT) and standard deviations (sC and
sT) of the control (predisinfection) and treated (postdisinfection) groups
were also extracted. Depending upon the sanitizer, a specific concentra-
tion unit was used in a primary study. For instance, for gaseous chlorine
dioxide, the concentration was often expressed in parts per million, while
for sodium chlorite, it was in grams per liter. In order to facilitate com-
parisons among sanitizers, all concentrations were converted to grams per
100 ml. For the 27 sanitizers recovered (namely, acetic acid [AA], acidified
sodium chlorite [ASC], benzalkonium chloride [Bzc], citric acid [CA],
calcined oyster shell [Ca-Oy], calcined Sakhalin surf clam [Ca-SS], cal-
cium hypochlorite [CH], Citrox, chlorine dioxide gas [CD], dodecyl-ben-
zenesulfonic acid [DA], sodium 2-ethylhexyl-sulfate [EHS], hydrogen
peroxide [HP], lactic acid [LA], malic acid [MA], nisin, ozonized water
[OW], ozone gas [Oz], pediocin, peroxyacetic acid [PAA], phytic acid
[Phy], slightly acidic electrolysed water [SAEW], sodium chlorite [SC],
sodium-dodecyl sulfate [SDS], sodium hypochlorite [SH], tartaric acid
[TA], trisodium phosphate [TSP], and Tsunami 100), the concentrations
ranged from 0.0001 to 4.8 g/100 ml, although it is important to bear in
mind that every sanitizer is associated with a specific concentration range.
For instance, in the primary studies, fresh fruits and vegetables are treated
with chlorine dioxide gas in concentrations from 0.00015 to 0.00030 g/100
ml, while they are washed with lactic acid in higher concentrations, from
0.003 to 2.0 g/100 ml. In addition to the 27 sanitizers identified, primary
studies also provided microbial mean log reductions from washing using
only water (i.e., a blank treatment). The water types were tap water (W),
distilled water (DisW), and deionized water (DioW), which were catego-
rized within sanitizers, although a solute concentration of 0 g/100 ml was
assigned to all water types. Washing times were in the range of 0.15 to 180
min, yet the longer times belonged to chlorine dioxide gas treatments.
Temperatures for washing were mostly ambient, although overall they
were in the interval from 4 to 55°C.

To get some insight into the spread of the microbial log reduction data
among the categorical study characteristics, Table 1 compiles the number
of mean log reduction observations partitioned by sanitizer, pathogen,
and fresh produce. It should be noticed that the meta-analytical data are
highly sparse, meaning that for some sanitizers, fewer data are available.
For instance, for SAEW, microbial mean log reduction observations were
reported for the three pathogens, while for ozone gas, data were limited to
E. coli O17:H7 only. Moreover, the heterogeneity in the distribution of
fresh produce across pathogens and sanitizers caused further sparseness.
Said otherwise, for a given sanitizer, the types of produce studied did not
coincide for all pathogens. From the 27 sanitizers whose microbial mean
log reduction information was available in the literature, 9 were excluded
from the meta-analyses (i.e., Bzc, Ca-Oy, Ca-SS, DA, EHS, nisin, pedi-
ocin, Phy, and SC) because too few observations were available (the
threshold was set as equal to or less than four observations per sanitizer)
(Table 1).

Thus, for the 18 sanitizers remaining for the meta-analyses plus the
three water types (i.e., 21 sanitizers), a total of 1,025 microbial mean log
reduction values were brought together. In the primary studies, those
values were obtained by measuring the effects of disinfectant treatment in
30 types of fresh produce: apple, baby spinach, blueberry, broccoli, buck-
wheat, cabbage, cantaloupe, carrot, cherry tomato, Chinese cabbage, Chi-
nese celery, cilantro, cucumber, daikon, green onion, honeydew, lettuce,
mung bean, mung bean sprouts, onion, peach, pepper, rocket leaves, ro-
maine lettuce, sesame leaf, spinach, spring onion, strawberry, tatsoi, and
tomato. For space reasons, the meta-analytical raw data are not presented
here, but they can be found in the supplemental material in Tables S1, S2,
and S3, separately for E. coli O157:H7, L. monocytogenes, and Salmonella
spp., respectively. Such tables compile the microbial mean log reductions
and standard errors when available, sanitizer agents, sanitizer concentra-

tions, treatment times and temperatures, types of fresh produce, sample
size, and primary studies.

The sparseness of the data has some implications in the choice and the
design of the meta-analysis mixed-effect models. Because of the consid-
erable dispersion in the number of microbial mean log reduction values
among the sanitizer-pathogen combinations (Table 1), a general meta-
analysis model encompassing all data could not be adjusted. Hence, sep-
arate meta-analysis studies were conducted, first on data partitioned by
sanitizer—in order to make comparisons among pathogens and fresh
produce—and, subsequently, on data partitioned by pathogen—in order
to make comparisons among the bactericidal efficacies of sanitizers. This
is explained in detail in the following subsections.

Meta-analysis models by sanitizer. When constructing separate
meta-analysis models by sanitizer, it is possible to assess both whether
there are differences in the levels of resistance to the sanitizer agent among
the three pathogens and whether there are differences among produce in
the microbial log-reduction attained by a disinfection treatment.

Assessing differences among pathogens. To assess the bactericidal
efficacy of fresh produce disinfection among pathogens, nine sanitizing
agents with the least sparseness in the number of observations across
pathogens were selected. These were acetic acid, acidified sodium chlorite,
chlorine dioxide gas, citric acid, hydrogen peroxide, malic acid, peroxy-
acetic acid, slightly acidic electrolyzed water, and sodium hypochlorite.
Tap water was also selected for comparison, as it can be regarded as a blank
treatment for washing (i.e., washing without sanitizer).

A meta-analysis model can be considered a special case of a multilevel
analysis using hierarchical linear models, with subjects between studies at
the first level and studies at the second level. In a multilevel meta-analysis,
one usually starts from the random-effects model, and if the between-
study variance is shown to be noteworthy, study characteristics can be
added to the model to account for at least part of the heterogeneity in the
true effect size � (in our case, the mean log reduction R). Thus, for each of
the 10 selected sanitizers (including tap water), the microbial mean log
reduction R was modeled as

Rijk � �0i � �1log C � �2T � �3t � ujk � �ijk (3)

where �0 is the fixed effect of the pathogen i, �1 the mean effect of the
increment in the logarithm of the sanitizer concentration C, �2 the mean
effect of a 1°C increment in disinfection temperature T, and �3 the mean
effect of a 1-min increment in disinfection time t. The wide range (0.00005
to 2.0 g/100 ml) of the sanitizer concentration was reduced by log trans-
formation in order to stabilize the parameter estimation of the regression
models.

Because of the sparse nature of the data structure, whereby in many
cases one primary study reported results for only one or two types of fresh
produce, for this meta-analysis it was not feasible either to separate the
between-produce variability from the between-study variability or to
build a nested covariance of primary studies within a type of fresh pro-
duce. To overcome this problem and still be able to account for the evi-
dent variability due to the different primary studies j and the different
fresh produce k, both variables were merged into an interaction variable
(jk). Such interaction was assumed to be the subject of variation of the
intercept random effects ujk placed in equation 3. The random effects ujk

are assumed to be normally distributed with mean zero and variance s2
u.

The errors or residuals εijk are also assumed to follow a normal distribu-
tion with mean zero and variance s2. Using this model design, the esti-
mated value of Rijk represents therefore the overall mean microbial log
reduction for the pathogen i attained by a particular sanitizing treatment
(C, T, and t), applicable to the entire population of fresh produce and
primary studies. Nonetheless, if we wished to estimate the mean microbial
log reduction for a particular fresh produce, it can still be done extracting
its corresponding random effect ujk and replacing in equation 3.

Since primary studies are expected to differ from each other in the
reliability of estimating the true effect of disinfection on the pathogens’
numbers on fresh produce, for instance, due to differences in study sizes,
analytical methods or experimental designs, a weighted linear mixed
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model was preferred, with weights representing the precision in estimat-
ing the true microbial log reduction. In meta-analysis, it is common prac-
tice to use the standard error of the effect size as a measure of precision to
assign weights to each of the primary studies. However, in the present
meta-analysis, it was not possible to obtain the standard errors of the log
reductions R for all primary studies; and consequently, the precision was
instead redefined as some measure proportional to the sample size N used
in every primary study. Hence, the weight—the level of confidence on
each of the measured log reductions R—was given by the sample size. A
weighted mixed-effects linear model (equation 3) was adjusted to each of
the 10 selected sanitizers.

Assessing differences among fresh produce. By partitioning data by
sanitizer, it is also possible to appraise whether the same disinfection treat-
ment would achieve variable effects depending upon the type of fresh
produce. However, to carry out this assessment, we need to choose sani-
tizers that have been tested in a wide range of fresh produce, and we
needed to ensure that these types of fresh produce are roughly the same at
least across two pathogens. For instance, observing the data dispersion
shown in Table 1, using the data from the gaseous chlorine dioxide (CD)
is a good option because it was tested on cabbage, cantaloupe, lettuce, and
strawberry for the three pathogens and tested on spinach for E. coli
O157:H7 and Salmonella. Following this reasoning, the sanitizers ASC,

TABLE 1 Microbial mean log reduction observations found in the literature according to type of fresh produce, pathogen, and sanitizer, extracted
from published studies

Sanitizera

Type of produce (no. of observations of mean log reduction of indicated organism[s])

E. coli O157:H7 L. monocytogenes Salmonella spp.

AA Baby spinach (6) Blueberry (4), rocket leaves (8), spring onion (8)
ASC Carrot (6), cilantro (4), tatsoi (9) Carrot (7), cherry tomato (1), cucumber (1) Carrot (3), cherry tomato (1), cucumber (1),

tomato (6)
Bzc Lettuce (2), tomato (2)
CA Baby spinach (9), cilantro (1), lettuce (20),

spinach (1)
Lettuce (20), spinach (1) Blueberry (2), lettuce (20), rocket leaves (8),

spring onion (8)
Ca-Oy Tomato (4)
Ca-SS Tomato (4)
CH Broccoli (11), lettuce (12), spinach (1) Spinach (1)
Citrox Lettuce (9)
CD Cabbage (3), cantaloupe (10), carrot (3), lettuce

(6), spinach (2), strawberry (6)
Cabbage (3), cantaloupe (10), carrot (3),

lettuce (6), strawberry (5)
Apple (3), cabbage (3), carrot (3), cantaloupe

(9), lettuce (6), onion (3), peach (3), spinach
(2), strawberry (6), tomato (29)

DA Romaine lettuce (2)
DioW Baby spinach (6), broccoli (3), lettuce (6), mung

bean (4), mung bean sprouts (4), romaine
lettuce (2), spinach (1)

Lettuce (2), spinach (1) Blueberry (2), lettuce (2), mung bean (4), mung
bean sprouts (4), pepper (2)

DisW Buckwheat (1), Chinese cabbage (3), lettuce (5),
sesame (1), spinach (4), tomato (6), cabbage
(2), apple (3), mung bean sprouts (2)

Broccoli (1), cabbage (1), mung bean
sprouts (3), Chinese cabbage (1), lettuce
(4), sesame leaf (1), spinach (1),
cucumber (1)

Buckwheat (1), apple (3), blueberry (3), spinach
(1), mung bean sprouts (2), lettuce (1),
cucumber (3)

EHS Romaine lettuce (2)
HP Baby spinach (9) Cucumber (1) Blueberry (5), cantaloupe (2), honeydew (2)
LA Apple (2), baby spinach (9), lettuce (33),

spinach (1), tomato (4)
Lettuce (20) Apple (2), blueberry (2), lettuce (20), spinach

(1)
MA Baby spinach (9), lettuce (20) Lettuce (20) Lettuce (20)
Nisin Broccoli (1), cabbage (1), mung bean

sprouts (1)
OW Cabbage (2), Chinese cabbage (2), lettuce (2),

spinach (5)
Spinach (1) Spinach (2)

Oz Cabbage (2), Chinese cabbage (2), lettuce (2),
spinach (2)

PAA Carrot (4), lettuce (4), mung bean sprouts (7),
rocket leaves (1), spinach (1), tomato (3)

Carrot (4), mung bean sprouts (7) Carrot (4), green onion (4), lettuce (4), mung
bean sprouts (7), spinach (1), tomato (8)

Pediocin Broccoli (1), cabbage (1), mung bean
sprouts (1)

Phy Tomato (4)
SAEW Chinese cabbage (2), lettuce (2), daikon lettuce

(2), mung bean (16), mung bean sprouts
(16), sesame leaf (2), spinach (4)

Chinese cabagge (2), lettuce (2), sesame leaf
(2), spinach (4)

Chinese celery (1), daikon lettuce (1), lettuce
(1), mung bean (16), mung bean sprouts (16)

SC Cilantro (1)
SDS Blueberry (11)
SH Baby spinach (3), cabbage (2), carrot (4),

Chinese cabbage (2), Chinese celery (1),
cilantro (1), daikon lettuce (1), lettuce (12),
mung bean sprouts (7), romaine lettuce (4),
rocket leaves (1), spinach (3), tatsoi (1),
tomato (9)

Carrot (6), cherry tomato (2), cucumber
(3), lettuce (2), mung bean sprouts (7),
spinach (1)

Blueberry (7), carrot (6), cherry tomato (2),
Chinese celery (1), cucumber (2), daikon
lettuce (1), green onion (4), lettuce (7), mung
bean sprouts (7), pepper (2), tomato (20)

TA Baby spinach (6)
TSP Lettuce (4) Lettuce (4), pepper (4)
Tsunami 100 Lettuce (6)
Water Carrot (4), daikon lettuce (1), lettuce (3), tatsoi

(1), tomato (1)
Carrot (4), cucumber (1) Cantaloupe (1), carrot (4), Chinese celery (1),

daikon honeydew (1), lettuce (2), tomato (8)
a Abbreviations: AA, acetic acid; ASC, acidified sodium chlorite; Bzc, benzalkonium chloride; CA, citric acid; Ca-Oy, calcined oyster shell; Ca-SS, calcined Sakhalin surf clam; CH,
calcium hypochlorite; CD, chlorine dioxide gas; DA, dodecyl-benzenesulfonic acid; DioW, deionized water; DisW, distilled water; EHS, sodium 2-ethylhexyl-sulfate; HP, hydrogen
peroxide; LA, lactic acid; MA, malic acid; OW, ozonized water; Oz, ozone gas; PAA, peroxyacetic acid; Phy, phytic acid; SAEW, slightly acidic electrolyzed water; SC, sodium
chlorite; SDS, sodium dodecyl sulfate; SH, sodium hypochlorite; TA, tartaric acid; TSP, trisodium phosphate.
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CD, SAEW, and SH were considered suitable for this analysis, and the
following meta-analysis model was adjusted to each of the four data sets:

Rijk � �0k � �1log C � �2T � �3t � ui�j� � �ijk (4)

Now, �0 is the fixed effect of the type of fresh produce k, and ui(j) are the
intercept random effects with subject of variation pathogen i nested in the
primary study j. The nested random effects ui(j) are assumed to be nor-
mally distributed with means zero and variances s2

i and s2
j. With such a

model design, the variability due to pathogens is extracted, and the re-
sponse variable Rijk can be thought of the overall mean log reduction in the
entire population of pathogens, from treating a fresh produce k by a par-
ticular sanitizing treatment (C, T, and t). In a similar fashion, a weighted
regression was opted for, in order to account for the differences in preci-
sion among primary studies. The sample size N was used as the weight of
each log reduction observation.

Meta-analysis models by pathogen. The microbial data were also par-
titioned by pathogen, producing three data sets for E. coli O157:H7, L.
monocytogenes, and Salmonella spp. Separate meta-analyses were then
performed by pathogen, so as to compare the bactericidal efficacies of
sanitizers for a common treatment (C, T, and t). For each of the patho-
gen’s data sets, a mixed-effects linear model of the type

Rjkl � �0l � �1log C � �2T � �3t � ujk � �jkl (5)

was fitted, where �0 now represents the fixed effect of the type of sanitizer
l and ujk are intercept random effects, whose subject of variation is the
interaction study � fresh produce, which account for the variability due
to both the different primary studies j and the different fresh produce k.
The regression models were fitted using the sample size N as the weight of
each of the observations.

For each of the models explained above (equations 3 to 5), the regres-
sion’s basic assumption of data normality was verified: the normality of
residuals was first assessed, and then the studentized residuals were exam-
ined for identifying spurious data points lower than �3.0 and higher than
3.0 (i.e., outliers). In the case that outliers were present, they were re-
moved from the data and regression models refitted. In addition, for the
regression models, a measure of between-study heterogeneity, I2, was cal-
culated. The I2 statistics, or intraclass correlation, estimates the propor-
tion of between-study variance from the total variance. If the intraclass
variance is higher than 25% of the total variance, the variance between
studies can be deemed large enough to attempt to model it using available
study characteristics. Measures of goodness of fit such as Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC) were also
computed for each of the meta-analysis models.

The mixed-effects linear models were also used to construct meta-
analytical forest plots (63), in order to allow a better visualization of the
difference in the effect of a given sanitizer and disinfection treatment
among fresh produce (from equation 4) and the difference among sani-
tizers for a given disinfection treatment (from equation 5). The weighted
mixed-effects linear models were fitted in R version 2.14.2 (R Develop-
ment Core Team) using the “lme” function from the “nlme” package (64).
Forest plots were built using the “metafor” package (65).

Cluster analysis of sanitizers. In order to examine similarities and
dissimilarities among sanitizers in their bactericidal effects, so that clus-
ters of sanitizers could be identified and separated from others, a hierar-
chical cluster analysis was performed on the microbial data from selected
sanitizers. Since cluster analysis is a multivariate data analysis technique—
hence, it requires continuous variables as inputs—it is necessary to first
obtain some measurements of the characteristics of each sanitizer in the
form of a continuous variable. In a regression analysis of the type

Rijk � �0 � �1log C � �2T � �3t � ujk � �ijk (6)

adjusted to the whole data from a given sanitizer, the parameter estimates
�0, �1, �2, and �3 can be thought of as the continuous variables charac-
terizing the disinfectant capacity of the sanitizer. This is because for a
sanitizer, the higher the intercept �0 (representing the mean log reduction
R at the mean log concentration C, the mean temperature T, and the mean

time t), the higher the microbial mean log reduction R. Similarly, a sani-
tizer with higher slopes �1, �2, and �3 will produce a greater mean log
reduction R for a given log concentration C, temperature T, and time t,
respectively. Thus, for the cluster analysis, the sanitizers selected needed to
be those presenting microbial log reduction observations measured over a
wide range of temperatures, concentrations, and times so that precise
slope estimates could be computed. Suitable sanitizers for analysis were
AA, ASC, CA, CD, CH, HP, LA, MA, PAA, SAEW, and SH. The water
types, W, DisW and DioW, were also included in the list of sanitizers as a
mechanism for testing the performance of the clustering algorithm to
build meaningful groups (said otherwise, because it is known a priori that
the water types are not sanitizers and their bactericidal effect is the lowest
of all, they should be grouped together by the clustering method chosen).

Equation 6 was then fitted to each of the sanitizers l, and the parameter
estimates �0l, �1l, �2l, and �3l for l � {1, 2, . . .14} were organized in an
14-by-4 matrix, where the rows corresponded to the sanitizers and the
columns to the four parameter estimates. As the next step, the Euclidean
distance between each pair of sanitizers was computed and arranged in a
distance matrix. The clustering was performed using a hierarchical algo-
rithm whereby the partition with the cluster in which k � 1 (all sanitizers
are together in the same cluster) is part of the output, and also the situa-
tion with k � j (each sanitizer forms a separate cluster with only a single
element). In between, all values of k � 2, 3, . . . j � 1 are covered in a kind
of gradual transition: the only difference between k � r and k � r � 1 is
that one of the r clusters splits up in order to obtain r � 1 clusters (i.e., two
of the r � 1 clusters combine to yield r clusters). The clustering method
chosen was Ward’s method, which is a minimum-variance method aim-
ing at finding compact and spherical clusters (for further information on
hierarchical clustering and clustering methods, see reference 66). The dis-
tance matrix was computed using the “dist” function, and the agglomer-
ative hierarchical cluster analysis producing the dendrogram was using
the “hclus” function, both from the R “stats” package.

RESULTS
Meta-analysis models by sanitizer. Table 2 shows the results
from fitting equation 3 to nine sanitizers plus water (n � 10)
studied. These are the overall mean log reductions for the specific
pathogens caused by each sanitizer treatment applied to fruits and
vegetables. From Table 2, it can be seen that for most sanitizers,
concentration, temperature, and time have direct effects on the
microbial log reduction, even though for water and ASC a qua-
dratic effect of temperature on mean log reduction was also iden-
tified. The covariate was not included for temperature when the
treatment was SAEW, as data were available only for ambient tem-
perature. The concentration covariate was not included when
treatment was water, as it had no meaning for this treatment.

Through the meta-analytical model, it was possible to find that
the pathogens studied may differ in terms of their resistance de-
pending on the sanitizers. L. monocytogenes presented the lower
intercept, meaning that it may be more resistant to CA, PA, and
ASC treatments. On the other hand, pathogenic E. coli seems to be
more resistant to MA, CD, AA, and HP treatments (Table 2).
Salmonella presented the lowest intercepts (higher resistance)
only when the treatment was done with water, while L. monocyto-
genes and pathogenic E. coli presented similar resistances to this
treatment (Table 2). SH had a similar impact on L. monocytogenes
and pathogenic E. coli inactivation, whereas L. monocytogenes and
Salmonella were equally resistant to CD. SAEW was the only san-
itizer for which no differences in inactivation resistance were
found for the three pathogens studied (Table 2). It should be high-
lighted that for some sanitizers, such as AA and HP, no data on L.
monocytogenes inactivation was available. Therefore, for these
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sanitizers, only Salmonella and pathogenic E. coli were considered,
with the latter being more resistant than the former (Table 2).

The I2 intraclass correlation values obtained were generally
	48%, except for the treatment with MA (12%) (Table 2), which
suggest that for most sanitizers, there may be other moderating
variables explaining the remaining between-study variability that
were not codified in the present meta-analysis study. Despite the
above, for each of the sanitizers, a reasonable agreement was
shown between the observed mean log reduction values extracted
from the primary studies, and those fitted by the models from
Table 2, with coefficients of correlation ranging from 0.842 to
0.986 (Fig. 1).

TABLE 2 Parameter estimates of the individual meta-analysis mixed-
effects linear models by sanitizer, predicting the microbial mean log
reduction in fresh produce as a function of microorganism, sanitizer
concentration, and washing time and temperaturea

Sanitizer Parameters Mean SE Pr 	 |t| AIC/BIC

AA Predictors of R
E. coli 1.234 X 0.909 0.307 27/31
Listeriab — — —
Salmonella 1.325 Y 0.565 0.143
Concn 0.103 0.072 0.181
Temp 0.022 0.004 
0.0001
Time 0.029 0.007 
0.0001

Variances
s2

u (intercept) 0.705 I2 � 99%
s2 (residual) 0.004

CA Predictors of R
E. coli 2.576 Y 0.429 
0.0001 102/121
Listeria 2.337 X 0.430 
0.0001
Salmonella 2.868 Z 0.425 
0.0001
Concn 0.500 0.057 
0.0001
Temp 0.032 0.008 
0.0001
Time 0.043 0.003 
0.0001

Variances
s2

u (intercept) 0.436 I2 � 82%
s2 (residual) 0.095

MA Predictors of R
E. coli 4.223 X 0.207 
0.0001 5/18
Listeria 4.538 Z 0.212 
0.0001
Salmonella 4.444 Y 0.207 
0.0001
Concn 0.692 0.041 
0.0001
Tempc — — —
Time 0.051 0.003 
0.0001

Variances
s2

u (intercept) 0.0007 I2 � 12%
s2 (residual) 0.0053

SAEW Predictors of R
E. coli 11.34 X 0.340 
.00001 32/49
Listeria 11.45 X 0.359 
0.0001
Salmonella 11.31 X 0.341 
0.0001
Concn 1.573 0.039 
0.0001
Tempc — — —
Time 0.019 0.005 
0.0001

Variances
s2

u (intercept) 0.591 I2 � 94%
s2 (residual) 0.037

PAA Predictors of R
E. coli 3.843 Z 0.655 
0.0001 62/74
Listeria 3.295 X 0.658 
0.0001
Salmonella 3.535 Y 0.653 
0.0001
Concn 0.491 0.116 
0.0001
Temp NS —
Time 0.057 0.030 0.067

Variances
s2

u (intercept) 0.568 I2 � 89%
s2 (residual) 0.067

SH Predictors of R
E. coli 3.143 X 0.712 
0.0001 289/307
Listeria 3.233 X 0.719 
0.0001
Salmonella 3.861 Y 0.719 
0.0001
Concn 0.383 0.148 0.012
Temp NS
Time 0.097 0.047 0.043

Variances
s2

u (intercept) 1.040 I2 � 94%
s2 (residual) 0.061

TABLE 2 (Continued)

Sanitizer Parameters Mean SE Pr 	 |t| AIC/BIC

CD Predictors of R
E. coli 8.450 X 1.085 
0.0001 359/378
Listeria 8.914 Y 1.084 
0.0001
Salmonella 8.855 Y 1.066 
0.0001
Concn 0.854 0.115 
0.0001
Temp NS
Time 0.054 0.010 
0.0001

Variances
s2

u (intercept) 1.413 I2 � 92%
s2 (residual) 0.119

Water Predictors of R
E. coli 1.765 Y 0.318 
0.0001 27/40
Listeria 1.754 Y 0.331 
0.0001
Salmonella 1.653 X 0.322 
0.0001
Concnd — — —
Temp �0.080 0.022 0.001
Temp (quadratic

effect)c
0.001 0.000 
0.0001

Time �0.003 0.005 0.600
Variances

s2
u (intercept) 0.181 I2 � 98%

s2 (residual) 0.003

ASC Predictors of R
E. coli 2.053 Y 0.525 
0.0001 88/100
Listeria 1.625 X 0.628 0.015
Salmonella 2.686 Z 0.682 
0.0001
Concn 0.493 0.119 
0.0001
Temp 0.472 0.059 0.001
Temp (quadratic

effect)c
�0.011 0.002 0.001

Time �0.254 0.046 
0.0001
Variances

s2
u (intercept) 0.052 I2 � 48%

s2 (residual) 0.056

HP Predictors of R
E. coli 1.739 X 0.751 0.146 8/14
Listeriab —
Salmonella 2.906 Y 0.601 0.040
Concn 0.348 0.137 0.027
Temp 0.031 0.007 0.001
Time 0.059 0.043 0.197

Variances
s2

u (intercept) 0.052 I2 � 66%
s2 (residual) 0.026

a Different letters (X, Y, and Z) indicate significant differences in log reduction among
microorganisms. NS, not significant. —, parameter not calculated.
b No data for L. monocytogenes were available.
c As data were available only for ambient temperature, a temperature covariate could
not be included.
d The concentration covariate was not included as it has no meaning for water.
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Taking into account that the inactivation of L. monocytogenes,
Salmonella, and pathogenic E. coli by four sanitizers (ASC, CD,
SAEW, and SH) was assessed in at least four different types of
produce (Table 1), equation 4 has been used to assess whether the
inactivation effectiveness of the same washing treatment would be
affected by the type of fresh produce. Forest plots were con-
structed for each of the four sanitizing treatments using realistic
sanitizer concentration and washing time as shown in Fig. 2, 3, 4,
and 5. Also, it should be highlighted that these forest plots were
constructed based on the meta-analytical model (equation 4) fit-
ted to ASC, CD, SAEW, and SH. For example, data on L. monocy-
togenes, Salmonella, and pathogenic E. coli inactivation by ASC
were available only for six types of fresh produce, namely, cucum-
ber, cherry tomato, tatsoi, cilantro, tomato, and carrots (Fig. 2).
Based on the model represented by equation 4, it can be seen that
different mean log reductions were achieved according to the type
of fresh produce studied. When ASC was the sanitizer used, mean
log reductions varied from 1.68 for cucumber to 5.38 for carrots

(Fig. 2), while log reductions varied from 0.68 to 3.61, 2.04 to 3.68,
and 0.91 to 3.38 for CD, SAEW, and SH treatments, respectively
(Fig. 3 to 5). The data obtained suggest, in general, that sanitizing
treatments were less effective (achieved lower log reductions of
pathogens) when applied in leafy vegetables than for other fresh
produce (Fig. 2, 3, 4, and 5).

Meta-analysis models by pathogen. A further approach taken
was to build separate meta-analytical inactivation models for each
of the pathogens studied, i.e., L. monocytogenes, Salmonella, and
pathogenic E. coli. This was done with the aim to comparing the
bactericidal effects of sanitizers for a common treatment (C, T,
and t). Tables 3, 4 and 5 show the parameter estimates obtained
using equation 5 fitted to each of the pathogens predicting their
log reductions. The I2 values were 	60% for the three models
predicting the inactivation of E. coli O157:H7, L. monocytogenes,
and Salmonella, suggesting significant remaining heterogeneity in
the outcomes from the primary studies (Tables 3, 4, and 5). Con-
sidering that the meta-analysis models were fitted by pathogen, it

FIG 1 Scatter plots of mean microbial log reduction values fitted by the independent meta-analysis linear mixed models by sanitizer (from Table 2) in
comparison with the observed data.
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is now possible to see the differences among sanitizers and rank
them from the lowest to the highest effects on pathogens inactiva-
tion (log reduction) (Tables 3, 4, and 5). It should be underlined
that the sanitizers listed in these tables are not the same for the
three pathogens because of the data sparseness. Totals of 15, 12,
and 8 different sanitizers were used for E. coli O157:H7, L. mono-
cytogenes, and Salmonella, respectively. Despite this, it was possi-
ble to find some similarity regarding the log reductions caused by
the sanitizers over the three pathogens studied. Comparing the
sanitizers’ intercept values, SAEW, ASC, and CD appeared as the
most effective sanitizers against E. coli O157:H7, L. monocytogenes,
and Salmonella (Tables 3, 4, and 5). On the other hand, Oz, HP,
and AA, CA, SH, and LA caused lower log reductions in E. coli
O157:H7 and Salmonella (Tables 3 and 5), while, AA, LA, and SDS
caused lower log reductions in L. monocytogenes (Table 4). The
fitted intercepts presented in Tables 3, 4, and 5 also suggest that E.
coli O157:H7 seems to be more resistant to the most effective
sanitizers. While SAEW, ASC, and CD caused 3.4, 5.1, and 3.6
mean log reductions in E. coli O157:H7 (Table 3), the numbers of
log reductions caused in L. monocytogenes and Salmonella were
6.9, 8.0, and 7.0 and 5.1, 5.4, and 7.0, respectively (Tables 4 and 5).
Among these three sanitizers, ASC and CD were more effective
against L. monocytogenes and Salmonella, while SAEW was the
least effective against E. coli O157:H7 (Tables 3, 4, and 5).

A way to visualize the effect of type of sanitizer on microbial log
reduction is through the construction of forest plots. To this end,
the fitted meta-analysis models from Tables 3, 4, and 5 were solved
for a hypothetical treatment with sanitizer concentration of 0.001
g/100 ml and exposure time of 3 min at ambient temperature in
order to predict the mean log reductions of E. coli O157:H7, L.
monocytogenes, and Salmonella. These predicted values are illus-
trated as forest plots in Fig. 6, 7, and 8. Under the hypothetical
treatment conditions, it was found that Oz and ASC resulted in the
lowest (0.14 [�0.50, 0.78]) and highest (3.86 [3.24, 4.49]) log
reductions of E. coli O157:H7, respectively (Fig. 6). For L. mono-
cytogenes, the lowest and highest log reductions would be obtained
with the use of CA (0.37 [�0.77, 1.50]) and ASC (2.47 [1.41,
3.53]) as sanitizers (Fig. 7), while for Salmonella, AA and ASC led
to the lowest (0.49 [�0.58, 1.57]) and highest (4.40 [3.40, 5.40)]
log reductions, respectively (Fig. 8).

Cluster analysis of sanitizers. Through a hierarchical cluster-
ing analysis, the sanitizers were grouped in four clusters according

FIG 2 Forest plot of the overall mean log reduction of pathogens (E. coli
O157:H7, L. monocytogenes, and Salmonella spp.) on different fresh produce
achieved by sanitizing washing with 0.04 g/100 ml of acidified sodium chloride
(ASC) at a time and temperature of 3 min and 25°C. CI, confidence interval.

FIG 3 Forest plot of the overall mean log reduction of pathogens (E. coli
O157:H7, L. monocytogenes, and Salmonella spp.) on different fresh produce
achieved by sanitizing treatment with 0.00033 g/100 ml of gaseous chlorine
dioxide (CD) at a time and temperature of 10 min and 25°C.

FIG 4 Forest plot of the overall mean log reduction of pathogens (E. coli
O157:H7, L. monocytogenes, and Salmonella spp.) on different fresh produce
achieved by sanitizing washing with 0.005 g/100 ml of slightly acidic electro-
lyzed water (SAEW) at a time and temperature of 3 min and 25°C. CI, confi-
dence interval.

FIG 5 Forest plot of the overall mean log reduction of pathogens (E. coli
O157:H7, L. monocytogenes, and Salmonella spp.) on different fresh produce
achieved by sanitizing washing with 0.012 g/100 ml of sodium hypochlorite
(SH) at a time and temperature of 3 min and 25°C.
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to their bactericidal efficacies. The meta-analytical dendrogram of
sanitizers is shown in Fig. 9. Through this approach it was possible
to find four groups: waters (blanks) and groups with low bacteri-
cidal efficacy, medium bactericidal efficacy, and high bactericidal
efficacy.

DISCUSSION

Microbial safety is a major concern for fresh produce industry
because of the recurrent implication of fruits and vegetables in

foodborne disease outbreaks (3, 5, 6). The use of sanitizers during
the washing step comprises the main measure aiming to safeguard
the safety of fruits and vegetables at postharvest steps. It is recog-
nized that the effectiveness of washing procedures applied during
processing of ready-to-eat fruits and vegetables is affected by sev-
eral factors, such as washing conditions (temperature, time, water
circulation, etc.), type of produce (whole, pieces, leafy, etc.) and
sanitizers (chemical principle, concentration, etc.) (15). In view of
this, models predicting the global effectiveness of sanitizers used
in washing treatments of minimally processed vegetables are not

TABLE 3 Parameter estimates of the meta-analysis model predicting the
mean log reduction of E. coli O157:H7 in fresh produce as a function of
sanitizer, sanitizer concentration, and washing time and temperature

Parameter Meana SE Pr 	 |t| AIC/BIC

Predictors of R
Sanitizer

AA 2.094 B 0.535 
0.0001 742/816
ASC 5.103 G 0.419 
0.0001
CA 2.362 C 0.440 
0.0001
CH 3.192 E 0.526 
0.0001
CD 3.555 F 0.615 
0.0001
HP 1.987 B 0.507 
0.0001
LA 2.537 D 0.425 
0.0001
MA 2.429 CD 0.445 
0.0001
OW 2.060 B 0.436 
0.0001
Oz 1.628 A 0.490 0.001
PAA 3.167 E 0.441 
0.0001
SAEW 3.455 F 0.485 
0.0001
SH 2.677 D 0.393 
0.0001
TA 2.369 C 0.535 
0.0001
Tsunami 100 2.976 E 0.472 
0.0001

Log concn 0.367 0.053 
0.0001
Temp 0.019 0.009 0.049
Time 0.071 0.007 
0.0001

Variances
s2

u (intercept) 0.689 I2 � 64%
s2 (residual) 0.392

a Different letters indicate that sanitizers have significantly different effects.

TABLE 4 Parameter estimates of the meta-analysis model predicting the
mean log reduction of L. monocytogenes in fresh produce as a function
of sanitizer, sanitizer concentration, and washing time and temperature

Parameter Meana SE Pr 	 |t| AIC/BIC

Predictors of R
Sanitizer

ASC 5.442 F 0.493 
0.0001 327/361
CA 3.282 A 0.696 
0.0001
CD 7.058 G 0.857 
0.0001
LA 3.620 B 0.711 
0.0001
MA 4.218 D 0.711 
0.0001
PAA 3.980 C 0.622 
0.0001
SAEW 5.147 E 0.678 
0.0001
SH 3.594 B 0.502 
0.0001

Log concn 0.617 0.091 
0.0001
Temp ND
Time 0.081 0.008 
0.0001

Variances
s2

u (intercept) 0.613 I2 � 60%
s2 (residual) 0.397

a Different letters indicate that sanitizers have significantly different effects. ND, not
determined. Temperature effect could not be estimated, as log reduction values for L.
monocytogenes were mostly obtained at ambient temperature (mean � 21.0°C).

TABLE 5 Parameter estimates of the meta-analysis model predicting the
mean log reduction of Salmonella spp. in fresh produce as a function of
sanitizer, sanitizer concentration, and washing time and temperature

Parameter Meana SE Pr 	 |t| AIC/BIC

Predictors of R
Sanitizer

AA 3.622 A 0.504 
0.0001 850/908
ASC 8.095 G 0.517 
0.0001
CA 4.010 B 0.500 
0.0001
CD 8.225 G 0.672 
0.0001
HP 4.451 C 0.553 
0.0001
LA 3.797 A 0.515 
0.0001
MA 4.000 B 0.532 
0.0001
PAA 6.675 EF 0.504 
0.0001
SAEW 6.901 F 0.755 
0.0001
SDS 3.779 A 0.582 
0.0001
SH 5.980 D 0.436 
0.0001
TSP 6.315 E 0.535 
0.0001

Log concn 0.771 0.070 
0.0001
Temp ND
Time 0.049 0.007 
0.0001

Variances
s2

u (intercept) 1.269 I2 � 80%
s2 (residual) 0.313

a Different letters indicate that sanitizers have significantly-different effects. ND, not
determined. Temperature effect could not be estimated, as log reduction values for
Salmonella spp. were mostly obtained at ambient temperature (mean � 22.5°C).

FIG 6 Forest plot of the overall mean log reduction of E. coli O157:H7 on a
population of fresh fruits and vegetables that would be achieved by different
sanitizers using a common hypothetical treatment at a concentration of 0.001
g/100 ml and a washing or exposure time and temperature of 3 min and 25°C.
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available in the literature. In order to contribute to the field, in this
study we applied a meta-analysis approach to assess E. coli O157:
H7, L. monocytogenes, and Salmonella inactivation by sanitizers
during washing of fresh produce. We were able to collect data on
the microbial log reduction achieved by the sanitizers used during
washing treatment of minimally processed fruits and vegetables
from 55 primary studies. This first resulted in data on inactivation
of E. coli O157:H7, L. monocytogenes, and Salmonella by 27 sani-
tizers. These records were further refined, leading to data for 18
sanitizers, 30 types of fruits and vegetables, and 1,025 microbial
log reduction values (Table 1).

Meta-analysis models by sanitizer. Our first approach in this
study was to construct a meta-analysis model by sanitizer, which
allowed us to compare the effectivenesses of treatments among
pathogens and fruits and vegetables (Table 2). From Table 2 it can
be seen that log reduction for pathogens was affected by the sani-
tizer concentration, washing water temperature, and increase in
time. This is particularly true for treatments with AA, CA, water,
ASC, and HP, but the opposite was found for treatments with SH

and CD (Table 2). The higher sensitivity of chlorine-based solu-
tions to the increase of washing water temperature is well known
and is deemed one of the major limitations for a wider application
of these compounds during sanitation of fresh produce (14, 15,
67).

A major finding of the meta-analytical model by sanitizer
(equation 3) is that we found the susceptibility of the three patho-
gens studied to the treatments (Table 2). The pathogens tend to be
more resistant when lower intercepts are obtained in a specific
treatment, while when higher intercepts are attained the patho-
gens tend to be less resistant. The fact that E. coli O157:H7 and L.
monocytogenes presented the lower intercepts for treatments such
AA, CA, MA, SAEW, PAA, SH, CD, ASC, and HP indicates that
these pathogens are the most resistant to sanitizing treatments
applied during washing of fruits and vegetables (Table 2). The
higher global resistance of E. coli O157:H7 to sanitizers widely
used by the fresh-produce industry, such as SH and CD, can pro-
vide further insights on the reasons why this pathogen is com-
monly involved in fresh-produce disease outbreaks (68). Despite
the fact that L. monocytogenes presented similar resistances to al-
most all the sanitizers deemed also ineffective against E. coli
O157:H7 (Table 2), it is known that the former pathogen is more
susceptible to inhibition in vegetables (69, 70). Salmonella was
found to be more resistant than E. coli O157:H7 and L. monocyto-
genes only when water was assessed as a washing treatment (Table
2). Nonetheless, as we used water (tap water [W], distilled water
[DisW], and deionized water [DioW]) as blanks (concentration of
0 g/100 ml), the inactivation effect, even low, is due to factors such
as temperature and time. If one considers the application of water
at increasing time and temperature (Table 1), the inactivation of
Salmonella and other pathogens will be higher. SAEW seemed to
be the most effective sanitizer for the inactivation of the three
pathogens studied (Table 2). The fact that temperature and con-
centration covariates were not included in the meta-analysis
model for some sanitizing treatments indicates the need for these
data to be generated. This will further allow the improvement of
meta-analysis predictions (equation 3) (Table 2).

Despite the fact that data were gathered from different primary
studies (Table 1), scatter plots show that there is still a reasonable
agreement between observed and predicted values for each of the
sanitizers (Fig. 1). The fitted versus observed plots highlight how

FIG 7 Forest plot of the overall mean log reduction of L. monocytogenes on a
population of fresh fruits and vegetables that would be achieved by different
sanitizers using a common hypothetical treatment at a concentration of 0.001
g/100 ml and a washing or exposure time and temperature of 3 min and 21.0°C.

FIG 8 Forest plot of the overall mean log reduction of Salmonella spp. on a
population of fresh fruits and vegetables that would be achieved by different
sanitizers using a common hypothetical treatment at a concentration of 0.001
g/100 ml and a washing or exposure time and temperature of 3 min and 22.5°C.

FIG 9 Dendrogram of sanitizers clustered hierarchically showing four main
groups according to bactericidal efficacy.
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good the meta-analysis models represented the data. This is a great
accomplishment of this study, as we were able to combine data
from 40 primary studies (Table 1).

Further, when the impact of a realistic sanitizing treatment
(equal sanitizer concentration and washing time) was assessed, we
found that the same sanitizing treatment would achieve a different
log reduction, which is dependent upon the type of produce (Fig.
2 to 5). The fact that sanitizing treatments applied to leafy greens
seemed to result in lower log reductions than for other types of
produce (for instance, carrot, tomato, and cantaloupe) might be
related to the physicochemical nature of leafy green surfaces (71).
Besides, when leafy vegetables are diced, chopped, or shredded,
plant tissue damage takes place, which may result in their in-
creased attachment (72, 73) and even growth in vegetable tissues
(74). Another possible reason for the differences obtained be-
tween the inactivation of pathogens during washing of leafy greens
and other produce, such as carrot, tomato, and cantaloupe, could
be related to the different mechanics during washing (brushing
can be applied) or even the physicochemical nature of plant sur-
faces (71, 75, 76).

Meta-analysis models by pathogen. Data partitioned by
pathogen were used to make comparisons among the bactericidal
efficacy of sanitizers (Tables 3 to 5). It should be highlighted that
sanitizers listed in these tables are not the same for the three patho-
gens considering these data were not available. Thus, because of
data sparseness, we fitted the model to data available. The fact that
more sanitizing treatment data (n � 15) on the inactivation of E.
coli O157:H7 during fresh-produce washing were available, fol-
lowed by their effects on Salmonella (n � 12) and L. monocytogenes
(n � 8), can reflect the relative concern of commodity-pathogen
combinations. It is noteworthy that E. coli O157:H7 and Salmo-
nella are the pathogens most frequently associated with foodborne
disease outbreaks linked to fresh produce (3, 5, 6, 68). Therefore,
one would expect to find more sanitizer options to be applied
during washing aiming to ensure effective disinfection of fresh
produce and safeguard public health.

From Tables 3 to 5, it can be seen that weak organic acids, such
as CA, AA, and LA, presented the lowest effect on microbial log
reduction. The antimicrobial efficiency of weak organic acids is
highly dependent on the pH of the final solution applied for fresh
produce disinfection, as pH affects the concentration of undisso-
ciated acid formed (77, 78). Moreover, it is known that the anti-
microbial activity of organic acids is highly dependent on the type
of acid (77, 79). This limitation, plus the fact that depending on
the organic acid, there might be impact on food taste and flavor
and that high biochemical oxygen demand (BOD) and chemical
oxygen demand (COD) values may be found in wastewater, will
certainly limit their application in washing water of fresh produce
industry (78).

SH was another class of sanitizers that appeared among those
compounds with the lowest effects on microbial log reduction
(Tables 4 and 5). SH is a highly used chemical principle for sani-
tization of fresh produce, given its high cost benefit (14, 15), de-
spite the fact that SH solutions are highly affected by the organic
matter concentration and pH of the washing water (14, 15, 78).
Another weakness of SH application as a sanitizer for fresh pro-
duce is the concern with the formation of compounds with poten-
tially carcinogenic or mutagenic effects, such as chloramines and
trihalomethanes (14, 80, 81). Because of these risks, the use of SH
for fresh-produce sanitation has been prohibited in some parts of

the world, such as Europe (15, 77, 78). From the data presented in
Tables 3 to 5, it becomes clear that SH presented a higher effect on
microbial log reductions only for E. coli O157:H7 (Table 3). None-
theless, this should be carefully interpreted, as the mean effects of
all sanitizers tested against E. coli O157:H7 were lower than those
found for Salmonella and L. monocytogenes (Tables 4 and 5). This
may reinforce the hypothesis that E. coli O157:H7 presents an
intrinsic higher resistance to sanitizing agents commonly used for
fresh-produce sanitation.

In contrast to SH and organic acid sanitizers, SAEW, ASC, and
PAA were found to be the mostly highly efficient chemicals in
reducing microbial contamination during washing of fresh pro-
duce (Tables 3 to 5). PAA is a chemical successfully used in sani-
tation of equipment used in food industry (82, 83). PAA can be
applied in a wide range of temperature and water physicochemical
parameters (including pH and calcium and magnesium contents),
presence of organic matter (15, 77, 78). On the other hand, SAEW
is deemed highly effective in sanitizing and less inexpensive, with
ease of application and of handling (84). Nonetheless, SAEW has
some limitations concerning equipment corrosion and low stabil-
ity of the antimicrobial solution (15, 77, 78, 85, 86). ASC was
approved for application in fresh produce sanitation 15 years ago
(87). It has been proved to be a highly efficient antimicrobial treat-
ment when applied in the range of 0.5 to 1.2 g liter�1 (50, 88).
Nonetheless, ASC has been found to cause physiological damages
in fresh produce even when used at concentrations to 1.2 g liter�1,
allowed by the FDA (31, 89).

Although data presented in Tables 3 to 5 already suggest the
range of efficiencies of the assessed sanitizing treatments over the
three pathogens studied, we further established a hypothetical
treatment (0.001 g/100 ml; washing time and temperature of 3
min and 25°C, respectively) to be able to visualize, through forest
plots, the log reductions caused by each sanitizer for each patho-
gen. As seen in Fig. 6 to 8, Oz, CA, and AA would cause the lowest
log reductions on E. coli O157:H7, L. monocytogenes, and Salmo-
nella, respectively. Oz effects on the microbial log reductions for E.
coli O157:H7 were found to be lower than those of the other sani-
tizers (Table 3). The antimicrobial efficacy of Oz is known to be
highly influenced by the level of O3 soluble in the washing water,
contact time, water agitation, water pH, and organic matter con-
tent (78, 90–92). Although Oz has been reported as a highly anti-
microbial agent for fresh-produce washing applications (15), its
application in high concentrations (	1 ppm) is not feasible be-
cause of likely damages prone to be caused in fresh produce as well
as the corrosion potential of equipment (77, 78). This can rein-
force that the antimicrobial effectiveness of these compounds
seems to be highly dependent upon factors such as time and tem-
perature (78).

On the other hand, ASC was consistently the most effective
sanitizer for the three pathogens studied (Fig. 6 to 8). Nonetheless,
these findings should be interpreted with care because the rank-
ings given in Fig. 6 to 8 were created for a constant sanitizer con-
centration (0.001 g/100 ml; washing time and temperature of 3
min and 25°C), when in fact each sanitizer operates at a recom-
mended and proper concentration. These rankings are useful to
illustrate the power of sanitizers, but in practice, the use of some of
these sanitizers may require specific time and temperature condi-
tions and specific concentrations. For example, it is known that
chlorine-based sanitizers have a range of increased antimicrobial
activities and that above a certain pH, the increase in chlorine
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concentration will not result in any further gain from the antimi-
crobial point of view (14).

Cluster analysis of sanitizers. A further assessment of the
meta-analysis models was the use of cluster analysis to group the
sanitizers according to bactericidal efficacy by means of hierarchi-
cal clustering analysis (Fig. 9). This is a better approach than the
previous forest plots (Fig. 6, 7, and 8), because the clustering
method instead takes into account the slope of the sanitizer con-
centration (equation 6) and implicitly considers the specific range
of concentrations at which each sanitizer operates (viz., the sani-
tizer concentration is not assumed to be constant for all the chem-
icals). Moreover, the clustering method combines the log reduc-
tion data for all three pathogens. Because the clustering distance
(Fig. 9) is calculated from the variables �0, �1, �2, and �3, which
characterize the disinfectant capacity of the sanitizers, the ele-
ments will be grouped together based on similar antimicrobial
activity. From Fig. 9, four clusters can be identified. All the waters
(DioW, DisW, and W) have been grouped together, indicating
that their bactericidal power is comparable and the lowest of all. A
second group with slightly higher bactericidal efficacy is that
formed by HP, AA, and CH (for the concentrations recommended
for fresh produce washing), and we can label the group as having
low bactericidal efficacy. A second category,medium bactericidal
efficacy, is given by the organic acids CA, LA, MA, and PAA and
the inorganic SH. Although SH apparently should have a stronger
bactericidal effect, it is grouped with the organic acids because for
the low concentrations allowed for produce washing, its effect is
comparable to that of the organic acids. The fourth group can be
labeled as having high bactericidal efficacy and includes SAEW,
ASC and the gaseous CD. While ASC and CD have comparable
bactericidal effects, SAEW has the highest effect of all (Fig. 9).

Conclusions. Through a meta-analysis approach, we were able to
assess more than 1,000 data on log reduction of the three main bac-
terial pathogens impairing the safety of fresh produce. We were able
to build predictive models by sanitizer and by pathogen. The study is
the first to gather data from a great number of papers (n � 40) and
packed in such a way that the outputs could be compared. The diffi-
culties in doing such a comparison have been cited as one of the major
limitations of work in this field (15). Furthermore, through the hier-
archical clustering analysis performed, we were able to classify sani-
tizers by their bactericidal efficacies.

The findings of this study can be seen as an achievement of very
practical relevance, as they can serve regulators to rank sanitizers
based on their antimicrobial efficiencies. For example, depending
on pathogen of greatest concern in a specific produce item, a san-
itizer with the highest bactericidal power could be suggested as
preferential for use. Altogether, the outcomes of the present study
can serve as scientific information for decision-making (risk-ben-
efit analysis). Regulations can be further harmonized and devel-
oped taking into account the findings reported herein.
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