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I would like to thank the editors for the invitation to comment 
on “Projecting Individualized Probabilities of Developing Breast 
Cancer for White Females Who Are Being Examined Annually” 
(1) and to recognize coauthors of that article, Louise A. Brinton, 
David P.  Byar, Donald K.  Corle, Sylvan B.  Green, Catherine 
Schairer, and John J. Mulvihill, who contributed key insights and 
analyses.

Several features may explain the frequent citations to this 
paper. 1) It focused on a clinically crucial quantity, absolute risk, 
namely the probability that a woman with specific risk factors 
will develop breast cancer over a defined age interval, with allow-
ance for competing risks. 2) Breast cancer is a common cancer 
for which preventive interventions have been developed. Risk 
models are most useful in connection with interventions because 
the absolute risk of breast cancer can be compared with that of 
other health outcomes in the presence and absence of interven-
tion. 3) The model is simple: only age and answers to five ques-
tions about reproductive, family, and medical history are needed. 
4) The model (sometimes called the “Gail model”) has been taken 
up by practitioners and is available at http://www.cancer.gov/
bcrisktool/ as the National Cancer Institute’s (NCI’s) Breast Cancer 
Risk Assessment Tool (BCRAT). Currently this site is visited over 
three million times a year. I shall elaborate on the first two points, 
mention alternative models, and discuss prospects for improving 
risk models and other applications of absolute risk.

Absolute Risk

Absolute risk is the probability that a woman with specific risk 
factors but without breast cancer at age a will be diagnosed with 
breast cancer in the age interval a T a< ≤ + τ, where τ is the 
duration of the risk projection interval. Consider a 40-year-old 
white woman who began menstruating at age 12 years, whose 
first live birth was at age 25  years, who has had no biopsies, 
and whose mother developed breast cancer. From BCRAT, her 
absolute risk of breast cancer in five years is 1.1% and her risk 

to age 90 years (“lifetime risk”) is 18.8%. In contrast, the aver-
age absolute risks for a 40-year-old white woman in the NCI’s 
Surveillance, Epidemiology and End Results (SEER) Program are, 
respectively, 0.6% and 12.4%. These absolute risk estimates are 
reduced by the chance that the woman might die from a com-
peting cause of mortality before breast cancer develops. In the 
competing risks literature, the terms “crude risk” (2) and “cumu-
lative incidence” (3) are sometimes used instead of absolute risk.

Absolute risk is not the same as the “pure” cumulative risk 
that is often used for risk models, such as genetic models of 
breast cancer risk (4,5). Pure risk is the hypothetical risk of devel-
oping breast cancer over a defined time interval if there were no 
competing causes of mortality. Pure risk is therefore higher than 
absolute risk. For example, based on SEER rates in white women 
from 2007 to 2011, the absolute risk to age 90 years is 12.28%, but 
the pure risk is 15.74%, which is 28% higher. For short projection 
intervals, such as five years, competing mortality typically has 
little effect and pure risks are only slightly higher than absolute 
risks. But for longer intervals, absolute risk is the relevant quan-
tity, because in fact women are subject to competing mortality 
risk. One minus the Kaplan-Meier estimate of the probability of 
remaining breast cancer–free estimates pure risk. Special calcu-
lations (1,6) are needed to estimate absolute risk.

Uses of Absolute Risk Models in Counseling 
and Public Health

Risk models are used for counseling individual women and 
for developing and implementing public health prevention 
strategies.

Counseling

One of the most valuable uses of risk models is to give a woman 
a realistic risk estimate and perspective on how large this risk 
is in comparison with other risks. Indeed, BCRAT was initially 
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developed for this purpose. Dr. Mulvihill, one of the authors of 
the 1989 article, thought that many of the women he was advis-
ing in a high-risk breast cancer clinic had unrealistically high 
perceptions of risk that could lead to ill-advised procedures, 
such as prophylactic mastectomy.

Such perspective can also affect less drastic but nonetheless 
important management decisions. There has been disagree-
ment over whether women in their forties should have rou-
tine mammographic screening. The American Cancer Society 
recommended it (7), whereas the US Preventive Services Task 
Force (USPSTF) wrote (8), “USPSTF recommends against rou-
tine screening mammography in women aged 40 to 49  years. 
The decision to start regular, biennial screening mammogra-
phy before the age of 50 years should be an individual one and 
take into account patient context, including the patient’s values 
regarding specific benefits and harms.” This report disregarded 
risk assessment based on “demographic, physical, or historical 
risk factors,” stating that, “none conveys clinically important 
absolute increased risk for cancer” (8). Risk assessment can help 
women who are confused by these conflicting recommenda-
tions. Although age is the most important risk factor over wide 
age ranges, many women in their forties with elevated risk fac-
tors in BCRAT have higher risks than a 50-year-old woman with-
out such risk factors. Gail and Rimer (9) and Gail and Schairer 
(10) argued that such women should consider screening, 
because they have a similar benefit-to-risk ratio as the 50-year-
old women for whom screening mammography has been widely 
recommended. Indeed, 73.6% of non-Hispanic white US women 
in their forties and 30.9% of non-Hispanic black US women have 
risks above the 50-year-old baseline risk (11).

More formal risk-benefit analyses based on absolute risk 
can help a woman decide whether to take a preventive inter-
vention, such as tamoxifen, that has both favorable and adverse 
health effects (12). These analyses require estimates of the 
absolute risks not only of breast cancer but also of the other 
events affected by the intervention, both in the presence and 
absence of the intervention. Suppose a 40-year-old woman 
has a projected five-year invasive breast cancer absolute risk 
of 2% and that she has a uterus. Table 1 presents the numbers 
of events of various types expected in five years in a popula-
tion of 10 000 such women who do not take tamoxifen and who 
do take tamoxifen, as well as the numbers of various types of 
events that would be expected to be prevented (or caused if a 
minus number is shown) by tamoxifen. These calculations are 
based on the randomized placebo-controlled Breast Cancer 
Prevention Trial that estimated the various effects of tamoxifen 
(13). Among “life-threatening events,” tamoxifen is expected to 
reduce the number of invasive breast cancers by 97 and to elimi-
nate one hip fracture but to cause an additional 16 endometrial 

cancers, 13 strokes, and 15 pulmonary emboli. Tamoxifen is also 
expected to reduce in situ breast cancers by 53 but to increase 
deep vein thrombosis by 15 (“serious events”). Overall tamoxifen 
is expected to eliminate 54 life-threatening events and 38 seri-
ous events. By assigning life-threatening events a weight of 1 
and serious events a weight of 0.5, one can calculate a net ben-
efit index of 54 +0.5 x 38 = 73, which favors the use of tamoxifen 
in this woman. Using this index, one can show that younger 
women with high breast cancer risk tend to benefit most (12). 
Moreover, there is no single five-year breast cancer risk thresh-
old (such as ≥1.67% on the Food and Drug Administration indica-
tion label) above which tamoxifen has a net benefit. The required 
benefit threshold depends on the absolute risks of the other 
factors, such as stroke and endometrial cancer, which increase 
with age (12). A  recent extension for women aged 50 years or 
older showed that raloxifene had a more favorable net benefit 
index profile than tamoxifen among women with a uterus, but a 
similar profile among women without a uterus (14).

Public Health

Absolute risk models have several potential applications in 
public health. One is designing preventive intervention tri-
als. For example, BCRAT was used to design the Breast Cancer 
Prevention Trial. The statistical power depends on the number 
of breast cancers that develop during the trial, which is propor-
tional to the average absolute risk of trial participants. BCRAT 
accurately predicted the number of breast cancers that devel-
oped in the Breast Cancer Prevention Trial (13) and in the Study 
of Tamoxifen and Raloxifene Trial (15). Risk models are also use-
ful for determining who has a high enough risk to be likely to 
benefit from the trial intervention and therefore be eligible for 
the trial. For example, women younger than 60 years old needed 
to have a projected five-year risk of at least 1.67% (the risk of 
an average 60-year-old woman) to enter the Breast Cancer 
Prevention Trial.

Another potential use of models of absolute risk is assessing 
the effects of a preventive intervention on absolute risk in the 
population. For example, Petracci et al. (16) developed a model 
for absolute breast cancer risk in Italian women that included 
modifiable risk factors (alcohol consumption, lack of exercise, 
and body mass index [BMI] ≥ 25 kg/m2) in addition to risk factors 
in BCRAT. Assuming that these modifiable factors could be set 
to baseline levels in the population and that the associations 
from observational studies would translate into absolute risk 
reductions, Petracci et  al. calculated that the absolute 20-year 
risk among 55-year-old women would fall from 6.5% to 4.9%. 
This is a relative reduction of 24%, but the reduction in abso-
lute risk is only 1.6%. (One should not forget, however, that a 

Table 1. Numbers of events expected in five years with and without tamoxifen in a population of 10 000 white 40-year-old women with uteri 
and with a projected breast cancer risk of 2%

Health events No tamoxifen All get tamoxifen Prevented by tamoxifen

Invasive breast cancer 200 103 97
Hip fracture 2 1 1
Endometrial cancer 10 26 -16*
Stroke 22 35 -13
Pulmonary emboli 7 22 -15
 Net life-threatening events 241 187 54
In situ breast cancer 106 53 53
Deep vein thrombosis 24 39 -15
 Net serious events 130 92 38

* A negative number means that tamoxifen increases the number of events.
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1.6% reduction in absolute 20-year risk in one million women 
amounts to 16 000 breast cancers.) For women with a positive 
family history of breast cancer, the absolute risk is reduced from 
13.7% to 10.5%, which is a relative reduction of 23% but a reduc-
tion in absolute risk of 3.2%. Epidemiologists often calculate the 
population attributable risk, which is a measure of relative risk 
reduction. As these examples illustrate, estimates of the reduc-
tion in absolute risk give a different perspective on the potential 
benefit of the intervention.

The four previously discussed applications of risk models 
require that the models be well calibrated, which means that 
the number of breast cancers predicted for women with certain 
combinations of risk factors is close to the number of breast can-
cers observed in such women in independent validation cohorts. 
The following two applications require, in addition to good cali-
bration, that the risks among women destined to become cases 
be higher and well separated from the risks among women 
not destined to develop breast cancer. This feature, called “dis-
ciminatory accuracy,” is often measured by the area under the 
receiver operator characteristic curve (AUC) (17,18).

Risk models are needed to implement a “high risk” preven-
tion strategy in which women with high breast cancer risk, who 
might benefit from the intervention, are identified and treated. 
It is preferable to find an intervention with few adverse effects 
that could be applied to the entire population, rather than to 
treat a high-risk subset (19). For example, if one could lower 
salt consumption in the general population and thereby reduce 
diastolic blood pressure by 1  mmHg throughout the popula-
tion, one could prevent more heart attacks than by identifying 
and treating “high-risk” people with very high blood pressure. 
However, this “general population” strategy cannot be used if 
the intervention has serious adverse effects, like tamoxifen. 
Instead, one is forced to intervene only for those with high 
enough breast cancer risk that the benefits of intervention out-
weigh the risks. Consider life-threatening events in one year 
(Table 2) among 100 000 white women age 50 to 59 years (20). 
In the absence of tamoxifen, one expects 589.6 life-threatening 
events (246.6 invasive breast cancers, 101.6 hip fractures, 81.4 
endometrial cancers, 110.0 strokes, and 50.0 pulmonary embo-
lisms). If all women get tamoxifen, breast cancers and hip 
fractures are reduced, but the increases in stroke, endometrial 
cancer, and pulmonary embolisms are so great that there is a 
net increase of 243.9 life-threatening events. The five-year inva-
sive breast cancer risk must exceed 3.80% for tamoxifen to have 
a net benefit in this age group, and only about 1% of the popula-
tion has a risk this high (20). It is not surprising that restricting 
intervention to this small high-risk subset limits the potential 
for prevention. If only those with BCRAT risk greater than 3.80% 
are given tamoxifen, there is a net reduction of 1.4 events in one 
year (Table 2). Using a slightly more discriminating model that 

also includes seven breast cancer–associated single nucleotide 
polymorphisms (SNPs) only prevents 1.8 life-threatening events. 
If one had a perfectly discriminating model that could pick out 
all 246.6 women destined to develop breast cancer without error, 
one could give the tamoxifen only to them, thereby reducing 
breast cancer by about half but incurring few adverse events, 
and leading to a net reduction of 119.9 events. It is, however, very 
difficult to increase the discriminatory accuracy of breast cancer 
risk models. A more promising approach is to find interventions 
with fewer side effects. Modest improvements might also be 
made by modeling the risks of other events, such as stroke, in 
addition to breast cancer (21).

Risk models can also be used to allocate scarce prevention 
resources. The American Cancer Society recommended breast 
cancer screening with magnetic resonance imaging (MRI) for 
women with certain genetic disorders and women with a pro-
jected lifetime breast cancer risk of at least 20% (7). The recom-
mendation was based on an assessment of risks and benefits 
rather than cost considerations, although it was noted that the 
cost per detected case was lower in high-risk women. For inter-
ventions such as MRI for which medical facilities are limited or 
where funds for prevention are limited, more health benefits can 
be derived by directing the intervention to those at highest risk. 
This approach can be beneficial if the cost of risk assessment is 
much smaller than the cost of the intervention. Suppose there 
were enough money to provide mammographic screening to half 
the female population. If mammograms were allocated at ran-
dom, only 50% of the mortality reduction from screening would 
be achieved compared with screening all women. However, if the 
women’s risks were first assessed with BCRAT, if the risk assess-
ment cost 2% as much as mammography, and if those at highest 
risk were given mammography in decreasing order of risk until 
the money ran out, then 63.2% of the maximal mortality benefit 
could be achieved (22). More discriminating risk models do even 
better. A model that adds seven SNPs to BCRAT achieves 66.7% 
of the maximal mortality reduction, provided the cost of the risk 
assessment is 2% of the cost of mammography, which is cur-
rently unrealistic (22). Pashayan et al. (23) argue that risk assess-
ment based on age and breast cancer–associated SNPs is superior 
to guidelines based on age alone, because risk assessment can 
identify younger women who benefit from mammography and 
reduce the total number of women requiring mammography 
with little reduction in the total number of cases detected.

Models of absolute risk estimate the chance that disease 
will develop in the future. For many screening applications, 
one needs a model that predicts the prevalence of detectable 
disease toward which an intervention can be directed. In the 
preceding paragraph, the “intervention” was screening mam-
mography, which can identify detectable breast cancer and lead 
to further treatment. Provided the prevalence of breast cancer 

Table 2. Life-threatening events prevented in one year among 100 000 white women based on high-risk prevention strategies with tamoxifen

Prevention strategy Expected life-threatening events Events prevented

No tamoxifen 589.6
All get tamoxifen 833.5 -243.9
Give tamoxifen if BCRAT risk >3.80%* 588.2 1.4
Give tamoxifen if BCRAT+7SNPs risk >3.80%* 587.8 1.8
Perfect model: give tamoxifen only to the 246.6 

women who will develop invasive breast 
cancer

469.7 119.9

* “BCRAT risk” is the five-year risk of breast cancer from National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT), and “BCRAT+7SNPs risk” is the five-

year risk from a model that also includes seven single nucleotide polymorphisms (20). BCRAT = National Cancer Institute’s Breast Cancer Risk Assessment Tool.
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is nearly proportional to short-term absolute risk, absolute risk 
models can be used as noted in the preceding paragraph (20). 
One typically requires high discriminatory accuracy to screen a 
population for people with prevalent disease. A valuable meas-
ure of such discriminatory accuracy is the “proportion of cases 
followed,” PCF q( ),which is the proportion of prevalent cases 
detected among the proportion q of the population at high-
est risk (24). For example, if the 100q  = 10% of the population 
at highest risk contains 100 0 1 90× =PCF( . ) %of the cases, 
the model is very discriminating. BCRAT approximately has 
100 0 1 18× =PCF( . ) %(24). Thus 82% of cases would be missed 
by restriction to women in the top 10% of BCRAT risks.

Other Breast Cancer Risk Models and 
Prospects for Improved Models

Types of Available Breast Cancer Risk Models

Empirical estimates of pure cumulative breast cancer risk were 
obtained from life-tables for relatives of family members with 
breast cancer (25,26). BCRAT is called an “empirical model” 
because relative risks were estimated from case-control data 
by logistic regression without preconceived theory concern-
ing the risk factors. These relative risks were then combined 
with an estimate of attributable risk from the case-control data 
and with data on breast cancer incidence rates from the NCI’s 
SEER program to estimate absolute risk. Another recent empiri-
cal model used estimates of relative risks from large cohorts 
and also included potentially modifiable risk factors, such as 
alcohol consumption, BMI, and menopausal hormone use (27). 
Four commonly used models are based on genetic theories 
of breast cancer risk. The models by Claus (28) and BRCAPRO 
(29,30) assume that breast cancer is an autosomal dominant 
disease. Two other genetically-based models, BOADICEA (4) and 
IBIS (5), also allow for other genetic effects to account for the 
considerable residual familial correlation that is not explained 
by autosomal dominance. These genetically based models rely 
on extensive data on the family history of breast cancer, but 
only IBIS includes reproductive risk factors or data from biop-
sies (31,32). BRCAPRO, BOADICEA, and IBIS use information 
on mutations in the BRCA1 and BRCA2 genes to estimate risk, 
which is an important advantage when this information is 
available.

Other differences among these models are important. BCRAT 
and the model in Pfeiffer et  al. (27) take competing risks into 
account to compute absolute risk, whereas the genetically-
based models compute pure risk. BOADICEA and IBIS are cali-
brated to data from England and Wales, whereas the other 
models are calibrated to the US. The Claus and IBIS models pro-
ject the risk of invasive breast cancer and ductal carcinoma in 
situ, whereas the other models project invasive cancer risk only. 
Each of these analytic choices impacts estimates of risk. The 
website for BCRAT warns that the model is not appropriate for 
women with a personal history of breast cancer or lobular carci-
noma in situ and for several other conditions, such as previous 
chest irradiation for Hodgkin’s lymphoma, for which other risk 
models are more appropriate (33).

An important step in the validation of a risk model is to deter-
mine whether it is well calibrated, namely, whether it accurately 
predicts number of breast cancers that will develop in a cohort 
of women overall and in women with specific risk factor combi-
nations. BCRAT was shown to be well calibrated in the Nurse’s 
Health Study cohort (34), but needs to be monitored for calibra-
tion when US breast cancer incidence rates change (35) and may 

underpredict risk in women recruited as relatives of a woman 
with breast cancer (36). Partly to achieve good calibration, spe-
cial models have been developed and incorporated into BCRAT 
for African American women (37) and Asian American women 
(38), and BCRAT projections for Hispanic women are based on 
Hispanic SEER rates, which are lower than for non-Hispanic 
white women in the United States. There is comparatively little 
data on the calibration of genetically based models in high-risk 
clinics, where they are most in demand (31,32).

Prospects for Improving Risk Models

BCRAT has modest discriminatory accuracy (AUC near 0.60 for 
women of the same age but higher for women of various ages), 
as do the other available breast cancer risk models. In order to 
increase discriminatory accuracy, other strong risk factors need 
to be found. In women who have breast biopsies, potentially use-
ful prognostic features include atypical hyperplasia (39), lobular 
area, and acini count per lobule (40). Moreover, mammographic 
density, measured by BI-RADS (almost entirely fat, scattered 
fibroglandular densities, heterogeneously dense, extremely 
dense), and biopsy features (nonproliferative, proliferative with-
out atypia, atypical hyperplasia) act multiplicatively on risk (41), 
suggesting that AUC values near 0.7 will be achievable in women 
with biopsies. There may even be useful pathologic information 
from reduction mammoplasties (42).

For women without biopsies, mammographic density and 
SNPs will be useful. Indeed, models have already been devel-
oped that include mammographic density (43) or BI-RADS data 
(44) in addition to other risk factors. These models have AUCs 
near 0.65. Earlier work had estimated the potential for combin-
ing SNPs with BCRAT to improve discriminatory accuracy at a 
time when only seven SNPs had been proven to be associated 
with breast cancer (45). Recently, such methods were used to 
assess the usefulness of 76 such SNPs that have been identified 
from very large genome-wide association studies (46). Garcia-
Closas et  al. estimated that elaborate questionnaire data plus 
mammographic density data plus these SNPs would yield an 
AUC of 0.68. The authors note that such a model has not yet 
been built from women with data on all these risk factors, how-
ever. Although this AUC represents a substantial improvement 
compared with BCRAT, the more elaborate questionnaire and 
the mammographic density and SNP data would require more 
expense and effort. Moreover, while such a model could improve 
performance with respect to some applications mentioned 
above, such as directing the use of public health resources more 
efficiently, it does not achieve the high discriminatory accu-
racy needed to screen for prevalent breast cancer or to isolate a 
small high-risk portion of the population containing most of the 
breast cancer risk.

These calculations indicate how difficult it is to improve 
discriminatory accuracy. Much stronger risk factors need to be 
discovered.

Discussion

This commentary focused on models to project the risk of 
breast cancer incidence and their applications. All the applica-
tions require good calibration. Some applications, like screen-
ing for prevalent disease and identifying high-risk subsets that 
contain most of the population’s breast cancer risk require high 
discriminatory accuracy. Although improvements in discrimina-
tory accuracy are coming, they are unlikely to meet the needs 
of a “high-risk” prevention strategy in the foreseeable future. 
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They can be effective, however, in conjunction with improved 
interventions with fewer side effects that can be given safely 
to broad segments of the population. Certain lifestyle changes, 
such as reducing alcohol consumption, have promise but have 
yet to be tested in breast cancer prevention trials. Development 
of an agent like raloxifene, but with smaller risk of stroke and 
pulmonary embolism (14), or a drug like anastrozole (47), but 
with fewer side effects such as arthritis and arthralgia, could 
lead to wider chemoprevention. Risk modeling would still have 
a role, but the requirement for high discriminatory accuracy 
would be reduced because a larger portion of the population 
could be safely treated.

Absolute risk models can be useful not only in conjunction 
with preventive interventions but also as part of a program 
to screen for prevalent disease. Although short-term projec-
tions of absolute risk are likely to be nearly proportional to the 
prevalence of screen-detectable cancer and therefore useful 
for ranking women most likely to benefit from mammographic 
screening, it would be useful to develop and validate models to 
predict the prevalence of screen-detectable breast cancer. Age, 
family history (48), mammographic density (49), and history 
of previous screening results (50) predict the probability of a 
screen-detectable breast cancer, but no multivariable model for 
screen-detectable prevalence is available. Such a model could 
also be used to test the assumption that prevalence is propor-
tional to short-term absolute risk of breast cancer incidence.

Absolute risk also plays a key role in disease management fol-
lowing diagnosis. The absolute risk of dying of breast cancer is 
reduced by competing mortality from non-breast cancer causes 
(51). Thus it may be wise to treat some older women less aggres-
sively than younger women. As another example, trastuzumab 
treatment has adverse side effects and is only indicated for women 
with metastatic disease or with a substantial risk of recurrence.
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