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Abstract
Lysine is the most limiting essential amino acid for animal nutrition in maize grains. Expres-

sion of naturally lysine-rich protein genes can increase the lysine and protein contents in

maize seeds. AtMAP18 from Arabidopsis thaliana encoding a microtubule-associated pro-

tein with high-lysine content was introduced into the maize genome with the seed-specific

promoter F128. The protein and lysine contents of different transgenic offspring were

increased prominently in the six continuous generations investigated. Expression of

AtMAP18 increased both zein and non-zein protein in the transgenic endosperm. Com-

pared with the wild type, more protein bodies were observed in the endosperm of transgenic

maize. These results implied that, as a cytoskeleton binding protein, AtMAP18 facilitated

the formation of protein bodies, which led to accumulation of both zein and non-zein pro-

teins in the transgenic maize grains. Furthermore, F1 hybrid lines with high lysine, high pro-

tein and excellent agronomic traits were obtained by hybridizing T6 transgenic offspring with

other wild type inbred lines. This article provides evidence supporting the use of cytoskele-

ton-associated proteins to improve the nutritional value of maize.

Introduction
Maize (Zea mays L.) is one of the most important cereal foods for both humans and animals,
but its nutritional value is limited because it lacks some essential amino acids in the kernel, spe-
cifically lysine [1, 2]. Efforts to improve the essential amino acid contents in maize were initi-
ated in the mid-20th century and significant accomplishments have been made.

Many high-lysine maize varieties have been identified by genetic approaches. The most
well-known mutant opaque2 has higher lysine content than normal maize seeds [3]. The con-
tent of the Lys-poor seed storage protein zein is reduced in o2 because the O2 gene encodes a
bZIP transcription factor that regulates zein transcription [4]. Other mutants, opaque-7 (o7),
floury-2 (fl2) and shrunken-4 (sh4), have increased proportions of lysine because of reduced
zein as well [5]. O7 encodes an acyl-activating enzyme-like protein that affects storage protein
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synthesis, particularly the 19- and 22-kD α-zeins [6], while fl2 encodes a defective 22-kD α-
zein, thus improving lysine content in a different way [7].

Although the o2mutant has high lysine content, its inferior agronomic characteristics
including reduced protein content and soft endosperm are a barrier to commercial utilization
[2]. Subsequently, opaque2-derived quality protein maize (QPM) lines appeared to overcome
this drawback. QPM has the kernel properties and yield potential of normal maize and main-
tains the increased lysine content of o2 [8]. Effective o2modifier genes, such as the 27-kD γ-
zein gene, which suppresses the soft and starchy endosperm characteristics and preserves the
high-lysine content, usually provide the background for QPM [9, 10].

The development of transgenic techniques has offered new opportunities for further studies
on high-lysine maize [2]. RNA interference (RNAi) is a useful technology to down-regulate
dominant endogenous genes [11]. High-lysine maize lines can be created with α-zein RNAi
mutants to improve the lysine content of transgenic lines by reducing α-zein mRNA and
increasing the non-zein fraction [12, 13]. One study showed that the lysine content was
increased more than 25% in vitreous kernels from α-zein RNAi mutants crossed with a QPM
line [13].

Manipulating the regulatory steps that control lysine synthesis and metabolism has long
been considered an alternative strategy for producing high-lysine plants. Aspartate kinase
(AK) and dihydrodipicolinate synthase (DHDPS), two key enzymes in the lysine synthesis
pathway, are both feedback inhibited by lysine [2]. There are two common methods to increase
lysine content: one is expression of the lysine-insensitive AK or DHDPS genes in transgenic
plants, the other is inducing mutations using mutagens [14–16]. Lysine accumulation can also
be enhanced by reducing the activity of Lys-ketoglutarate reductase/saccharopine dehydroge-
nase (LKR/SDH), a bifunctional enzyme in the lysine catabolism pathway. Generally, the deg-
radation of lysine is blocked by knockout mutation or seed-specific RNAi-mediated
suppression of the LKR/SDH gene [11, 15, 17–18].

Cultivating valuable maize germplasm with the high protein, high lysine and hard endo-
sperm traits is still a breeding challenge [1]. Recent progress in enhancing the nutritional value
of maize was made through the introduction of heterologous genes encoding proteins rich in
essential amino acids. Expressing Sb401, a pollen-specific protein with high lysine content
from Solanum berthaultii, in maize kernels resulted in prominent increases in the total protein
and lysine contents [19]. SBgLR, a homolog of Sb401, was introduced into maize, and the pro-
tein and lysine contents of SBgLR transgenic plants showed more than 30% increases compared
with untransformed plants [20]. When SBgLR and TSRF1 (an ethylene responsive transcription
factor gene from tomato) were co-transformed into maize, the protein and lysine contents of
transgenic maize seeds also increased significantly [21]. In addition, Yue et al. [22] cloned a
lysine-rich protein gene, GhLRP, from cotton and seed-specifically expressed it in maize,
clearly increasing the lysine content of transgenic maize seeds relative to the wild-type.

MICROTUBULE-ASSOCIATED PROTEIN 18 (AtMAP18) is located on chromosome 5 of
the Arabidopsis genome (At5g44610). It encodes a polypeptide of 168 amino acid residues that
contains seven repeated motifs of V-E-E-K-K. The encoded protein has high lysine content
(20.3%, w/w). It has been demonstrated that AtMAP18 has a destabilizing effect on cortical
microtubules (MTs) and influences actin organization. AtMAP18 plays an important role in
regulating directional cell growth by modulating actin filaments [23, 24].

To investigate whether AtMAP18 could increase the lysine content in maize kernels, it was
introduced into the maize genome with a seed-specific promoter, F128 [25]. Accumulation of
AtMAP18 resulted in simultaneous increases of lysine and protein contents in transgenic
maize seeds. Through further study, we found that the expression of AtMAP18 promoted pro-
tein body (PB) formation and increased the accumulation of both zein and non-zein proteins
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in maize grains, which might be a possible reason for the enhancement of the nutritional value
of transgenic maize.

Materials and Methods

Plasmid construction and maize transformation
AtMAP18 was isolated from Arabidopsis thaliana by RT-PCR, and then sub-cloned into the
PstI/EcoRI site of the double T-DNA binary vector pSB130 (kindly provided by Prof. Sai-Ming
Samuel Sun, The Chinese University of Hong Kong) to yield the expression vector pSB130-
AtMAP18. In this construct, the AtMAP18 coding sequence was transcriptionally fused to the
F128 promoter and nos region of T-DNA1, and the selectable marker gene hygromycin phos-
photransferase (hpt) driven by the CaMV35S promoter was contained in T-DNA2 (Fig 1A).
For plant transformation, this plasmid was transferred into A. tumefaciens strain LBA4404.
The inbred maize lines 08 and 178 were cross-pollinated to produce the hybrid line 08×178,
and immature embryos (1.5–2.0 mm) of this hybrid line at 10–12 DAP (days after pollination)
were used for Agrobacterium-mediated transformation as previously described [26].

DNA extraction and PCR analysis
Transgene insertion in regenerated plants was confirmed by PCR amplification. Genomic
DNA was isolated from fresh leaves using a cetyltrimethyl ammonium bromide (CTAB)
method [27]. PCR was carried out using 50 ng DNA, 10 μL of 2× PCR mix buffer (GenStar,
Beijing, China) and 0.5 μL of each primer (10 μM/L) in a 20 μL volume. The forward (50-
ATGGGTTATTGGAAGTCGAAGG-30) and reverse (50-TCAAGCCTTTTGTGGCGCAGCC-30)
primers corresponding to the AtMAP18 sequence amplified a fragment of 500 bp. The forward
(50-TCGGCTCCAACAATGTCCTG-30) and reverse (50-CGGTCGGCATCTACTCTATTCC-30)
primers corresponding to the hpt sequence amplified a fragment of 480 bp. The amplification
included 30 cycles of 94°C for 30 s, 54°C for 30 s and 72°C for 30 s. The PCR products were
analyzed on 0.8% agarose gels.

Dot blot
A total of 10 μg genomic DNA was denatured by heating and blotted onto a Hybond TM-XL
membrane (Amersham, Bath, UK) soaked with 2× SSC. The membrane was then dried and
baked at 80°C for 2 h. Hybridization was performed according to the manufacturer’s protocol
for the Dig High Primer DNA Labeling and Detection Starter Kit I (Roche, Basel, Switzerland)

RT-PCR and real-time PCR
Total mRNA was isolated from T1 immature endosperm at 20 DAP using Trizol Reagent
(CWBIO, Beijing, China). The RNA was treated with RNase-free DNase I (TaKaRa, Otsu,
Japan) and purified. For RT-PCR, 3 μg of total mRNA was used for cDNA synthesis according
to the manufacturer's protocol (Promega A3500, Madison, WI, USA). Amplifications were per-
formed in a total volume of 20 μL containing 100 ng cDNA, 2× PCR mix buffer (GenStar, Bei-
jing, China) and 0.5 μM specific primers (forward 50-ATGGGTTATTGGAAGTCGAAGG-30;
reverse (50-TCAAGCCTTTTGTGGCGCAGCC-30) corresponding to the AtMAP18 sequence; a
fragment of 500 bp was amplified.

qRT-PCR was performed using 100 ng cDNA, 10 μL of 2× UltraSYBR Mixture (CWBIO,
Beijing, China) and 0.5 μM of each primer in a 20 μL volume. Specific forward (5’-
AGGAGGTCGTCGTGAAAAC-3’) and reverse (5’- GCTTCTTCTCCTCCGCAGC-3’) primers
were used to amplify a 162 bp internal fragment of AtMAP18. Additionally, forward (5’-
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GAGCATGGCATTCAGGCTGACG-3’) and reverse (5’-TCAACAAAAACAGCACGGGGCA-3’)
primers were designed to amplify a region of the actin transcript as an internal control.

Western blot
Dried kernels were ground and about 0.1 g of powder was defatted with 1 mL hexane for 1 h.
Then, 1 mL extraction buffer (20 mM Tris-HCl, pH 8.0, 5 mM EDTA, 0.05% SDS, 10 mM
DTT, 1 mM PMSF) was added and the sample was vortexed for 10 min. After centrifugation at
13,000× g for 10 min, 10 μL of the supernatant was separated on 12% SDS-PAGE and trans-
ferred onto a PVDF membrane (Millipore Corporation, Darmstadt, Germany). The membrane
was blocked with 3% BSA, and incubated with anti-AtMAP18 antibody (1:5000) and then a
goat anti-rabbit alkaline phosphatase-conjugated IgG antibody as a secondary antibody
(1:5000 Promega, Madison, WI, USA). Protein bands were visualized using a NBT/BCIP reac-
tion kit (Promega S380C; S381C, Madison, WI, USA).

Preparation of the anti-AtMAP18 antibody
The anti-AtMAP18 antibody was obtained by the following program. The recombinant
AtMAP18 protein was purified as previously described [28] and injected into a rabbit to elicit
antiserum. The antiserum was purified using the Protein A resin column and the cyanogen

Fig 1. Molecular analysis of transgenic events. (A) Binary vector pSB130-AtMAP18. (B) PCR analysis of
T0 transgenic lines. PCR was carried out using primers corresponding to the AtMAP18 sequence (top) and
hpt sequence (bottom). M: DNAmarkers, CK−: wild-type (hybrid 08×178), CK+: plasmid pSB130-AtMAP18.
(C) PCR analysis of T1 transgenic lines. PCR was carried out using primers corresponding to the AtMAP18
sequence (top) and hpt sequence (bottom). (D) Dot blot analysis of transgenic lines. Blot 1–5: FA7; blot 6–11:
FA8; blot 12–18: FA9; blot 19–28: FA12. FA1–FA13: transgenic lines. (E) RT-PCR analysis of the AtMAP18
transcript in the transgenic lines. (F) Western blot analysis. CK+: AtMAP18 protein in Escherichia coli.

doi:10.1371/journal.pone.0142952.g001
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bromide resin column (Amersham, WI, USA). The anti-AtMAP18 antibody was used as a pri-
mary antibody in Western blot.

Protein, lysine, zein and non-zein contents analysis
Total protein content analysis was based on Kjeldahl determination. About 5 g of mature ker-
nels were ground to powder for total nitrogen detection (national standard GB2905-82, Beijing
Academy of Agriculture and Forestry Science). The conversion factor between nitrogen con-
tent and protein content is 6.25. Lysine content was analyzed by the ninhydrin method as
described previously [22]. All measurements were replicated at least three times.

Zein and non-zein proteins were extracted from 50 mg endosperm flour according to a pre-
viously described method [22]. Quantitative protein determination of the total extract, zein
and non-zein fractions was performed with a BCA protein assay kit (Pierce, Rockford, IL,
USA). Protein samples (10 μL) were used for SDS-PAGE analysis with 12% polyacrylamide
gels, and the gels were stained with Coomassie brilliant blue R250 (Amresco, Solon, OH, USA).

Transmission electron microscopy and scanning electron microscopy
For transmission electron microscopy (TEM), 20-DAP transgenic T6 and wild-type kernels
were fixed with potassium phosphate buffer (1% glutaraldehyde, 4% paraformaldehyde and 5
mM EGTA, pH 6.8) at 4°C overnight and post-fixed in fixation buffer containing 1% osmium
tetroxide at 4°C overnight. Fixed slices were dehydrated in an ethanol gradient up to 100%.
The samples were embedded in Spurr and LRWhite resin for ultrathin sectioning. The thin
sections (90 nm) were collected on formvar-coated nickel grids, stained with 2% uranyl acetate
and 2.66% lead citrate, and rinsed three times in ddH2O. The sections were visualized using a
Hitachi 7500 electron microscope (Hitachi, Tokyo, Japan) operated at 80 kV.

For scanning electron microscopy (SEM), Mature transgenic T6 and wild-type kernels were
dissected, fixed on a brass disk, and covered with gold/palladium by an ion coater (EIKO IB.3,
Japan) The central region of the starchy endosperm was observed by SEM (JEOL, Tokyo,
Japan).

Agronomic quality measurement
For agronomic quality analysis, ear length, bald tip length, ear diameter, numbers of ear rows
and 100-kernel weight were measured. Each agronomic trait was measured three times in
mature maize of the transgenic lines and WT (08×178). The kernel phenotypes of FA7, FA9,
FA12 and the WT were observed with a stereoscopic microscope (OLYMPUS SZ61, Tokyo,
Japan).

Ethics Statement
The Committee of Experiment Animals of China Agricultural University approved the proto-
cols we used in our study for antibody production. The rabbit was raised in standardized path-
ogen-free conditions in the Animal Care Facility at Beijing B&M Biotech Co., Ltd. Blood was
drawn from the marginal ear vein under anesthesia to ameliorate suffering.

Results

Maize transformation and molecular analysis
AtMAP18 was isolated from A. thaliana by RT-PCR. It encoded a polypeptide of 168 amino
acid residues containing seven repeated motifs of V-E-E-K-K. Immature embryos of the maize
hybrid 08×178 were used as recipient materials for transformation, and the double T-DNA

AtMAP18 Improves the Nutritional Value of Transgenic Maize

PLOS ONE | DOI:10.1371/journal.pone.0142952 November 18, 2015 5 / 18



expression vector pSB130-AtMAP18 containing AtMAP18 and hpt was used for Agrobacter-
ium-mediated transformation. AtMAP18 was driven by the seed-specific promoter F128 (Fig
1A). A total of 108 regenerated plants were obtained after hygromycin selection and induced
redifferentiation. Among these plants, 35 contained the target gene AtMAP18 and the select-
able marker gene hpt according to PCR detection (Fig 1B). The T0 transgenic plants were self-
pollinated to obtain T1 progeny. PCR results showed that 13 lines contained the AtMAP18
gene and lacked the hpt gene after gene separation in the T1 transgenic lines (Fig 1C). These
results indicated that double T-DNA application was an effective way to obtain marker-free
transgenic plants. In addition, PCR analysis of the T1 plants also showed that 20 T0 transgenic
lines exhibited segregation at a ratio of approximately 3:1 (data not shown), implying a single
copy of AtMAP18 gene was integrated in these lines. The copy number of some homozygous
transgenic lines also have been confirmed by real-time PCR assay (S1 Table). Moreover, signals
were also detected in the T1 transgenic lines by dot blot assay (Fig 1D). To determine whether
AtMAP18 was transcribed in the transgenic lines, we amplified the coding region of the
AtMAP18 gene using RT-PCR. An amplified product of the expected size (500 bp) was
detected from T1 transgenic endosperms, but not from the wild type (Fig 1E), which indicated
the AtMAP18 gene was successfully transcribed in maize seeds. Furthermore, AtMAP18 accu-
mulation in maize seeds was analyzed by Western blotting. Specific protein bands were
detected from T1 mature kernels, while no bands were present in WT kernels (Fig 1F). These
results demonstrated that AtMAP18 was integrated into the maize genome and the protein
could be expressed in maize seeds.

Improved lysine and total protein contents of transgenic kernels
To explore whether AtMAP18 could improve the nutritional value of maize, the total protein
and lysine contents were analyzed in different transgenic offspring. In the kernels of 31 T1

plants, the protein content was improved by 1.60–33.60%, with nine plants showing more than
20% improvement, while the lysine content was improved by 3.30–32.30%, with nine plants
showing more than 20% improvement (Table 1). Three lines (FA7, FA9, FA12) in which the
protein and lysine contents were both increased more than 20% were selected to generate sub-
sequent generations. We continued until the T6 generation; both the protein and lysine con-
tents were increased significantly relative to the WT in the following generations (Tables 2 and
3). The protein contents of FA7, FA9 and FA12 were increased by 17.83%, 16.97% and 22.72%,
respectively, in T2, by 20.92%, 22.24% and 17.96%, respectively, in T3, by 26.45%, 14.05% and
17.77%, respectively, in T4, by 26.18%, 28.73% and 26.37%, respectively, in T5, and by 26.40%,
27.97% and 27.18%, respectively, in T6. The lysine contents of FA7, FA9 and FA12 were
increased by 15.63%, 18.75% and 9.38%, respectively, in T2, by 16.13%, 19.35% and 22.58%,
respectively, in T3, by 20.00%, 16.67% and 23.33%, respectively, in T4, by 10.00%, 33.33% and
23.33%, respectively, in T5, and by 18.75%, 21.88% and 25.00%, respectively, in T6. These
results indicated that AtMAP18 improved the protein and lysine contents in transgenic maize
plants and that the high-lysine and high-protein characters were heritable.

In addition, the transcriptional levels of AtMAP18 in three transgenic lines were quantified
by quantitative real-time PCR (qRT-PCR). The result indicate that the transcriptional level of
AtMAP18 in the F9 and F12 lines were higher than that in the F7 line, while the level was the
highest in the F9 line (Fig 2). However, the lysine increase rate was the highest in the F12 line,
this contradiction implied that the increase of lysine content did not only depend on expression
level of AtMAP18 gene in transgenic maize, some other factors such as genetic background
may also have effects.
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Increased accumulation of both zein and non-zein protein in transgenic
maize
Ordinarily, maize seeds contain about 10% protein and approximately 70% of this comprises
storage proteins. More than 60% of these storage proteins are classified as zeins; the others are
non-zeins [1]. To determine whether the expression of AtMAP18 changed the level of each
protein fraction in transgenic kernels, we quantified the zein, non-zein and total proteins in T6

mature kernels. Compared with the WT total extract, proteins with different molecular weights
were increased on the SDS-PAGE gel in T6 endosperm (Fig 3C). The protein contents of the
total extracts from the WT, FA7, FA9 and FA12 were 5.03, 5.52, 5.70 and 6.25 mg/50 mg flour,

Table 1. Lysine and total protein contents of T1 kernels.

Line Protein content (g/100 g seed) Protein increase rate (%) Lysine content (g/100 g seed) Lysine increase rate (%)

FA7-6 11.88±0.21* 14.90 0.32±0.01 3.20

FA7-7 11.58±0.13* 12.00 0.30±0.02 -3.20

FA7-8 11.06±0.12 7.00 0.37±0.02* 19.40

FA7-10 11.62±0.23* 12.40 0.37±0.03* 19.40

FA7-12 11.51±0.51 11.30 0.32±0.01 3.20

FA8-1 10.51±0.35 1.60 0.35±0.03 12.90

FA8-2 10.10±0.26 -2.30 0.30±0.01 -3.20

FA8-4 12.18±0.42* 17.80 0.32±0.02 3.20

FA8-5 11.20±0.32 8.30 0.33±0.03 6.50

FA8-7 12.04±0.67 16.40 0.36±0.01* 16.10

FA9-1 13.81±0.31** 33.60 0.39±0.02** 25.80

FA9-2 13.33±0.71** 28.90 0.35±0.01 12.90

FA9-3 13.70±0.63** 32.50 0.40±0.01** 29.00

FA9-4 12.99±0.15** 25.60 0.36±0.02* 16.10

FA9-5 12.91±0.20** 24.90 0.37±0.03* 19.40

FA9-6 11.57±0.34 11.90 0.39±0.02** 25.80

FA9-7 13.05±0.30** 26.20 0.38±0.01* 22.60

FA9-8 12.59±0.26** 21.80 0.40±0.03** 29.00

FA9-9 12.52±0.47** 21.10 0.38±0.03* 22.60

FA9-10 12.82±0.70** 24.00 0.39±0.02** 25.80

FA9-12 10.08±0.41 -2.50 0.36±0.03* 16.10

FA9-13 11.18±0.22 8.10 0.41±0.01** 32.30

FA12-3 12.10±0.54* 17.00 0.34±0.02 9.70

FA12-4 12.05±0.15* 16.50 0.33±0.01 6.50

FA12-5 10.56±0.31 2.10 0.37±0.01* 19.40

FA12-6 10.72±0.27 3.70 0.37±0.02* 19.40

FA12-7 11.76±0.60* 13.70 0.39±0.02** 25.80

FA12-8 10.72±0.44 3.70 0.33±0.01 6.50

FA12-9 11.42±0.19 10.40 0.32±0.03 3.20

FA12-13 11.55±0.29 11.70 0.36±0.01* 16.10

FA12-14 10.74±0.53 3.90 0.37±0.02* 19.40

WT a 10.34±0.18 / 0.31±0.01 /

Values are means ± SD from three experiments on the same line.
a WT: Hybrid 08×178 in the T1 generation as a control.

* Significant difference between the transgenic lines and WT by Student’s t-test (* p < 0.05; ** p < 0.01).

doi:10.1371/journal.pone.0142952.t001
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respectively (Fig 3F). The total protein contents of the three transgenic lines were all higher
than the WT.

Zeins can be divided into four subfamilies: 19- and 22-kDa α-zein, 16-, 27- and 50-kDa γ-
zein, 15-kDa β-zein, and 10- and 18-kDa δ-zein [1]. Compared with theWT, the 19- and
22-kDa α-zein, 27-kDa γ-zein, 15-kDa β-zein and 10-kDa δ-zein contents were increased in the
mature endosperm of FA7, FA9 and FA12 according to SDS-PAGE analysis (Fig 3A). The aver-
age contents of the zein fractions in FA7, FA9 and FA12 kernels were 3.71, 4.08 and 4.38 mg/50
mg flour, respectively, which were higher than in theWT (3.58 mg/50 mg flour) (Fig 3D).

Similar results were found in non-zein protein analysis. The non-zein protein contents of
the transgenic endosperms also increased on the SDS-PAGE gel (Fig 3B). The non-zein frac-
tion of the WT endosperm was 1.54 mg/50 mg flour, compared with 1.72, 1.78 and 1.72 mg/50
mg flour in the three transgenic lines, respectively (Fig 3E). These results suggested that seed-
specific expression of AtMAP18 increased both the zein and non-zein content in transgenic
endosperm.

Table 2. Protein content of T2, T3, T4, T5 and T6 kernels in three transgenic lines.

Line T2 T3 T4 T5 T6

Protein
content (g/

100 g
seed)

Protein
increase
rate (%)

Protein
content (g/
100 g seed)

Protein
increase
rate (%)

Protein
content (g/
100 g seed)

Protein
increase
rate (%)

Protein
content (g/

100 g
seed)

Protein
increase
rate (%)

Protein
content (g/

100 g
seed)

Protein
increase
rate (%)

FA7 12.29
±0.70*

17.83% 11.85
±0.52***

20.92% 12.24
±0.29***

26.45% 12.87
±0.33**

26.18% 12.88
±0.47**

26.40%

FA9 12.20
±0.73**

16.97% 11.98
±0.67**

22.24% 11.04±0.57* 14.05% 13.13
±0.54**

28.73% 13.04
±0.59**

27.97%

FA12 12.8±0.75* 22.72% 11.56
±0.33**

17.96% 11.40
±0.40**

17.77% 12.89
±0.37**

26.37% 12.96
±0.39**

27.18%

WT a 10.43±0.21 / 9.8±0.35 / 9.68±0.33 / 10.20±0.16 / 10.19±0.22 /

Values are means ± SD from the same lines in different generations.
a WT: Hybrid 08×178 in different generations as a control.

* Significant difference between the transgenic lines and WT by Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).

doi:10.1371/journal.pone.0142952.t002

Table 3. Lysine content of T2, T3, T4, T5 and T6 kernels in three transgenic lines.

Line T2 T3 T4 T5 T6

Lysine
content (g/
100 g seed)

Lysine
increase
rate (%)

Lysine
content (g/
100 g seed)

Lysine
increase
rate (%)

Lysine
content (g/
100 g seed)

Lysine
increase
rate (%)

Lysine
content (g/
100 g seed)

Lysine
increase
rate (%)

Lysine
content (g/
100 g seed)

Lysine
increase
rate (%)

FA7 0.37±0.02* 15.63% 0.36±0.02* 16.13% 0.36±0.03* 20.00% 0.33
±0.02**

10.00% 0.38±0.02* 18.75%

FA9 0.38
±0.03**

18.75% 0.37±0.02* 19.35% 0.35
±0.01**

16.67% 0.40±0.02* 33.33% 0.39±0.03* 21.88%

FA12 0.35±0.02* 9.38% 0.38
±0.01**

22.58% 0.37±0.03* 23.33% 0.37±0.01* 23.33% 0.40
±0.01**

25.00%

WT a 0.32±0.01 / 0.31±0.01 / 0.30±0.02 / 0.30±0.01 / 0.32±0.01 /

Values are means ± SD from the same lines in different generations.
a WT: Hybrid 08×178 in different generations as a control.

* Significant difference between the transgenic lines and WT by Student’s t-test (* p < 0.05; ** p < 0.01).

doi:10.1371/journal.pone.0142952.t003
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Fig 2. Relative expression levels of AtMAP18 in T6 kernels of three transgenic lines. The transcriptional
levels of AtMAP18 in F7, F9, and F12 transgenic lines (20 days after pollination) in T6 were quantified by real-
time PCR.

doi:10.1371/journal.pone.0142952.g002

Fig 3. SDS-PAGE and protein content quantification assay of zein, non-zein and total protein
extracted frommature kernels. (A–C) SDS-PAGE assay of zein (A), non-zein (B) and total protein (C)
contents in WT, FA7, FA9 and FA12 mature kernels. (D–E) Quantification of zein (D), non-zein (E) and total
protein (F) contents in WT, FA7, FA9 and FA12 mature kernels. Significant differences between the
transgenic lines andWT were evaluated by Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).

doi:10.1371/journal.pone.0142952.g003
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Increased protein bodies in transgenic endosperms
To investigate the mechanism by which AtMAP18 affected the protein contents in FA7, FA9
and FA12, we compared the ultrastructure of endosperm cells at 20 DAP using TEM. In WT
endosperm cells, PBs were spherical and surrounded by rough endoplasmic reticulum (RER)
(Fig 4A and 4B). In T6 transgenic maize endosperms, the shape of PBs did not change but the
number of PBs was significantly increased, and starch granules were reduced (Fig 4C and 4D).
This implied that AtMAP18 increased PB formation in developing endosperms.

Mature transgenic T6 and WT endosperms were also analyzed by SEM. In the WT, cells in
the central region of the starchy endosperm contained smooth starch grains with little protein-
aceous matrix (Fig 5A and 5E). However, there was more proteinaceous matrix around the
polygonal starch granules in the mature starchy endosperms of FA7, FA9 and FA12 (Fig 5B–
5D and 5F–5H). These proteinaceous matrices, which mainly consisted of PBs, were increased
in the mature transgenic endosperms compared with the WT.

These results suggested that AtMAP18 improved the protein content by increasing PB
numbers.

Agronomic quality analysis
Kernel qualities and agronomic traits are very important in QPM breeding; thus, selected mor-
phological features were analyzed in FA7, FA9, FA12 and the WT. Ear characters of the T5 and
T6 homozygous transgenic generations were measured and no significant difference was found
between the transgenic lines and WT (Tables 4 and 5). Kernel vitrification is a critical agro-
nomic trait in maize. The vitreous phenotype of T6 transgenic maize kernels was observed
using incandescent and transmitted light; kernel appearance was similar to the WT (Fig 6A).
These results indicated that the increased protein and lysine contents in the transgenic lines
did not affect the agronomic characters or kernel qualities. Additionally, the germination rate
of transgenic seeds was also similar to WT (Fig 6B), implying the increased protein accumula-
tion did not affected the seed development and maturation.

To explore the potential use of AtMAP18 transgenic maize, we obtained F1 hybrid lines by
cross-breeding T6 transgenic maize with different wild type inbred lines. F1 maize inherited
high lysine and protein contents from the transgenic maize. The protein content was increased
up to 24.45% and the lysine content of three lines was also increased by more than 20%
(Table 6). Additionally, the F1 hybrid lines showed good agronomic traits appropriate for pro-
duction and application (Table 7). These results suggested that AtMAP18 had the potential for
commercial application in QPM breeding.

Discussion and Conclusions
Based on the discovery of the high-lysine maize mutant o2, various approaches have been used
to produce commercial high-yield, high-lysine maize. Genetic engineering is an effective way
of obtaining high-lysine maize and should reduce the time needed to obtain commercial lines.
Selectable marker genes are essential for plant genetic engineering and provide a powerful tool
to determine the success of identify transformation events. However, several marker genes can
impair the stability of the genetically engineered trait and induce unforeseen biosafety effects
when left in the plant [29]. Therefore, the efficient production of ‘clean’marker-free transgenic
plants is necessary. There are several strategies to exclude selection genes to obtain marker-free
plants in transgenic generations, such as co-transformation, site-specific recombination, multi-
auto-transformation vectors, transposition systems and homologous recombination [29]. A
binary vector with two T-DNAs containing the target gene and selection gene can also be used
to get marker-free plants [22, 30]. In our study, a double T-DNA expression vector was used
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for the transformation and selection of transgenic plants. The AtMAP18 and hpt genes were
successfully separated in T1 plants and transgenic plants containing only the target gene (with-
out the marker gene) were selected to generate progeny. This confirms that the double T-DNA
vector system is an efficient way to get marker-free transgenic plants, and that it could be used
in future research.

Fig 4. Transmission electronmicroscopy analysis of developing endosperm. (A–D) Endosperm cells
(20 DAP) of the WT (A), FA7 (B), FA9 (C) and FA12 (D). Bar = 5 μm. PB: protein body, S: starch granule.

doi:10.1371/journal.pone.0142952.g004

AtMAP18 Improves the Nutritional Value of Transgenic Maize

PLOS ONE | DOI:10.1371/journal.pone.0142952 November 18, 2015 11 / 18



Fig 5. Scanning electron microscopy analysis of the central region of mature endosperm. (A, E) WT
mature endosperm. (B, F) FA7 mature endosperm. (C, G) FA9 mature endosperm. (D, H) FA12 mature
endosperm. Bar = 40 μm in (A)–(D), Bar = 20 μm in (E)–(H). PB: protein body, S: starch granule.

doi:10.1371/journal.pone.0142952.g005
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In previous research, seed-specific expression of the lysine-rich protein genes Sb401 and
SBgLR increased both the lysine and protein contents of maize seeds [19, 20]. AtMAP18 is a
microtubule-associated protein with high-lysine content that contains the same K-K-E-E
repeats as Sb401 and SBgLR. We expected that AtMAP18 could also increase the protein and
lysine contents of transgenic maize like Sb401 and SBgLR. The results presented in this study
show that the protein and lysine contents were obviously increased in transgenic lines contain-
ing AtMAP18. In T1 transgenic maize, the protein content was increased by 33.6% and the
lysine content was also increased by 32.3% (Table 2). The protein and lysine contents of six T1

lines were improved by more than 20%, all of which were derived from parents with high lysine
and protein contents. The lines with high protein and lysine contents (>20%) were selected to
sow the next generation. So far, we have obtained three lines of T6 transgenic maize (FA7, FA9
and FA12). The protein contents were both increased by more than 20% in the (T5 and T6);
kernels (Tables 2 and 3). Kernel qualities and agronomic traits are very important in QPM
breeding. We also estimated the agronomic and quality traits of homozygous transgenic maize
(T5 and T6); no significant differences were observed between the transgenic maize andWT
(Tables 4 and 5, Fig 6). This evidence suggested that AtMAP18 had a positive effect on the pro-
tein and lysine contents and that these characters were heritable in subsequent generations.
Additionally, the increase of protein and lysine content in the transgenic lines had no effect on
the agronomic characters or kernel qualities. This implied that AtMAP18 transgenic maize had
potential application in QPM breeding. Furthermore, we obtained F1 progeny by cross-breed-
ing transgenic maize with different wild type inbred lines. Most of them inherited the high-
lysine and high-protein characters and obtained features for commercial application, implying
potential for future use.

Table 4. Agronomic traits of T5 kernels in three transgenic lines.

Line EL(cm) BTL(cm) ED(cm) KW(g) ER

FA7 11.24±1.45 0.97±0.54 36.15±0.92 24.23±1.81 12, 14

FA9 12.84±0.71 1.11±0.65 42.07±2.49 26.56±1.59 12, 14

FA12 10.33±1.52 0.68±0.38 31.68±2.49 23.83±2.67 12, 14

WT a 11.29±1.21 1.34±0.63 33.38±2.77 23.72±5.24 12, 14

Values are means ± SD from the same lines in different generations. EL, ear length; BTL, bald tip length;

ED, ear diameter; KW, 100-kernel weight; ER, numbers of ear rows.
a WT: Hybrid 08×178 in the T5 generation as a control.

doi:10.1371/journal.pone.0142952.t004

Table 5. Agronomic traits of T6 kernels in three transgenic lines.

Line EL(cm) BTL(cm) ED(cm) KW(g) ER

FA7 11.00±1.36 0.73±0.16 39.49±1.39 27.43±2.16 12, 14

FA9 12.93±0.93 0.40±0.23 33.38±1.45 26.50±2.46 12, 14

FA12 10.43±0.67 0.66±0.57 35.70±2.23 26.92±0.82 12, 14

WT a 11.48±2.27 0.60±0.33 34.62±0.67 25.09±1.62 12

Values are means ± SD from the same lines in different generations.

EL, ear length; BTL, bald tip length; EED, empty ear diameter; ER, numbers of ear rows; KW, 100-kernel

weight; GER, grain number of ear row; ED, ear diameter
a WT: Hybrid 08×178 in the T6 generation as a control.

doi:10.1371/journal.pone.0142952.t005
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Fig 6. Kernel phenotype of T6 seeds in WT, FA7, FA9 and FA12. (A) Photographs of kernels were taken
with incandescent light (Top and Bottom) and transmitted light (Middle). (B) Germination rate of T6 seeds.
Student’s t-test was used to evaluate differences between each transgenic line andWT.

doi:10.1371/journal.pone.0142952.g006
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We tried to explore the reason why AtMAP18 increased the protein content of transgenic
maize. AtMAP18 is a cytoskeleton-associated protein that has a destabilizing effect on cortical
microtubules and influences actin organization. It binds to microtubules as well as microfila-
ments in A. thaliana [23, 24]. Our research indicated that AtMAP18 increased both zein and
non-zein proteins in the transgenic endosperm (Fig 2). Through ultrastructure observation, we
also found that there were more PBs in the endosperm of transgenic maize than in the WT
(Figs 4 and 5).

The cytoskeleton provides a spatial concentration of the translation machinery for efficient
protein synthesis [31]. Many studies have proved that the cytoskeleton and associated proteins
play an important role in protein synthesis and PB formation. For example, the accumulation
of elongation factor 1A (eEF1A) contributed to a more extensive cytoskeletal network sur-
rounding the RER, promoted synthesis of cytoskeleton-associated proteins, and increased the
lysine content of the endosperm [32, 33]. eEF1A might also function in microtubule dynamics

Table 6. Lysine and total protein contents of F1 kernels.

Line Protein content (g/100 g seed) Protein increase rate (%) Lysine content (g/100 g seed) Lysine increase rate (%)

FA7/FS 11.03±0.55* 8.16% 0.35±0.02*** 12.49%

FA7/HBA58 11.06±0.77 8.46% 0.38±0.05** 22.82%

FA9/FS 11.21±0.77 9.93% 0.33±0.01** 7.26%

FA9/HBA58 12.69±0.34*** 24.45% 0.34±0.04 10.04%

FA9/G33 11.18±0.48** 9.61% 0.39±0.02* 26.33%

FA9/RX87 11.17±0.74 9.54% 0.34±0.00 10.46%

FA9/HBA40 11.48±0.72* 12.53% 0.35±0.00*** 14.18%

FA12/FS 11.30±0.51** 10.75% 0.37±0.01*** 20.90%

FA12/HBA58 11.86±0.48*** 16.25% 0.32±0.02 4.38%

WT a 10.20±0.05 / 0.31±0.00 /

Values are means ± SD from the same lines in different generations.
a WT: Hybrid 08×178 as a control.

* Significant difference between the transgenic lines and WT by Student’s t-test (* p < 0.05; ** p < 0.01; *** p < 0.001).

doi:10.1371/journal.pone.0142952.t006

Table 7. Agronomic traits of F1 kernels in three transgenic lines.

Line EL(cm) BTL(cm) ED(cm) KW(g) ER

FA7/FS 19.83±1.15 1.00±0.44 49.19±1.76 31.70±3.07 16,18

FA7/HBA58 21.13±0.83 0.55±0.54 52.33±0.63 37.68±2.91 16

FA9/FS 19.64±1.29 1.48±0.25 46.93±1.40 25.72±1.94 18,20

FA9/G86 18.92±0.14 1.02±0.14 53.14±1.66 35.40±2.26 16,18

FA9/HBA58 18.93±1.01 2.38±0.55 45.10±1.53 35.20±0.59 14

FA9/G33 18.67±1.01 2.38±0.55 49.14±1.53 28.65±0.59 18,20

FA9/RX87 17.48±2.40 1.95±0.52 47.60±1.24 32.21±2.52 16,18

FA9/HBA40 18.68±1.39 1.75±0.52 53.43±1.04 33.26±0.86 18,20

FA12/FS 19.62±2.12 2.50±0.49 46.55±2.01 28.13±1.90 18,20

FA12/HBA58 19.00±0.60 0.68±0.45 52.46±2.44 32.67±2.16 16,18,20

Values are means ± SD from the same lines in different generations.

EL, ear length; BTL, bald tip length; EED, empty ear diameter; ER, numbers of ear rows; KW, 100-kernel weight; GER, grain number of ear row; ED, ear

diameter.

doi:10.1371/journal.pone.0142952.t007
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[31]. The cytoskeleton protein GAPDH, as a high-lysine containing protein, contributes signif-
icantly to the elevated level of lysine in the o2mutant, and might be associated with the expres-
sion of eEF1A [34]. There is mounting evidence that the cytoskeleton plays a crucial role in
protein body biogenesis in plants [35].

Given all this, we hypothesize that AtMAP18 promotes microtubule activity and microfila-
ment organization in the transgenic endosperm. Subsequently, it plays a role in the synthesis
and organization of zeins, leading to PB assembly. At the early stage of endosperm develop-
ment, microtubules and microfilaments are organized into a dense network before starch and
storage protein deposition [36]. The cytoskeleton, in particular the microfilament system,
serves as an attachment site for polysomes [37]. Zeins are synthesized by these polysomes
bound to the RER [36]. Thus, AtMAP18 may connect polysomes more efficiently and increase
translational activity. When PBs and starch granules begin to accumulate, more PBs are formed
in the transgenic endosperm than in the WT, and the growth of PBs in the endosperm limits
the development of starch granules at this stage. This is a reasonable explanation for the
reduced starch granules in the transgenic endosperm (Fig 4). PBs comprise a large group of
zeins and are enmeshed in an extensive cytoskeleton network. Here, the starch granules were
surrounded by more PBs bound to the cytoskeleton (Fig 5), which led to increased zein content
in the transgenic endosperm (Fig 3). Increased expression of the high-lysine protein AtMAP18
resulted in elevated levels of lysine in the transgenic endosperm. However, it is impossible that
the lysine content increased by more than 20% merely through the accumulation of AtMAP18.
Cytoskeleton proteins are major contributors to the lysine content of maize [35]. AtMAP18
may increase the accumulation of cytoskeleton proteins, hence, improving the lysine content in
transgenic seeds. Moreover, a previous study showed that cytoskeleton-associated proteins
increased with the production of cytoskeleton proteins during development, and most of these
proteins were relatively high in lysine [35]. Thus, we conclude that AtMAP18 may contribute
to an increase of cytoskeleton-associated proteins. Consequently, the non-zein and total pro-
tein contents are increased as well (Fig 3). This is a possible explanation for the function of
AtMAP18. However, further investigation is necessary to understand the mechanism by which
AtMAP18 improves the lysine and protein contents in transgenic maize seeds.

AtMAP18, Sb401 and SBgLR are all microtubule-associated proteins with high-lysine con-
tent, but they have different roles in regulating microtubule organization. Sb401 and SBgLR are
homologous proteins from potato that bind to MTs and enhance tubulin polymerization [28,
38], while AtMAP18 has an inhibitory effect on tubulin polymerization, and severs and disas-
sembles microtubules in vivo [24]. This study and previous work indicates that the expression
of AtMAP18, Sb401 or SBgLR is correlated with increased levels of lysine and total protein in
maize seeds. However, the functional mechanism may be different between AtMAP18 and
SB401. Therefore, future research should be aimed at investigating this.

In conclusion, our results reveal that the lysine-rich gene AtMAP18 plays an obvious role in
enhancing the nutritional quality of maize. This also suggests a potential commercial applica-
tion for AtMAP18 in cultivating valuable maize with high protein, high lysine and hard endo-
sperm traits. We made a preliminary exploration into the reasons why AtMAP18 increased the
protein content of transgenic maize, and put forward a hypothesis for how AtMAP18 works in
maize endosperm cells. This article provides evidence to support the view that the cytoskeleton
and associated proteins play an important role in protein synthesis and PB formation.

Supporting Information
S1 Table. Copy number assay of T2 transgenic lines by relative quantitative PCR. Values are
means ± SD from three experiments. a A maize gene glutamic acid and Lysine rich (ZmGLR,

AtMAP18 Improves the Nutritional Value of Transgenic Maize

PLOS ONE | DOI:10.1371/journal.pone.0142952 November 18, 2015 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0142952.s001


GRMZM2G123558) was selected as a reference gene. ZmGLR was a single-copy endogenous
gene from maize.
(DOCX)

Acknowledgments
We thank Prof. Sai-Ming Samuel Sun (The Chinese University of Hong Kong) for providing
the vector pSB130. This work was supported by National Natural Science Foundation (Grant
No. 31171258) and the projects (No. 2014ZX08009-003) from the Ministry of Agriculture of
China for Transgenic Research.

Author Contributions
Conceived and designed the experiments: QZ. Performed the experiments: YC ES LW. Ana-
lyzed the data: YC ES. Contributed reagents/materials/analysis tools: QZ JY DZ. Wrote the
paper: YC QZ.

References
1. Wu Y, Messing J. Proteome balancing of the maize seed for higher nutritional value. Frontiers in Plant

Science 2014; 5:240. doi: 10.3389/fpls.2014.00240 PMID: 24910639

2. Azevedo RA, Arruda P. High-lysine maize: the key discoveries that have made it possible. Amino Acids
2010; 39(4):979–989. doi: 10.1007/s00726-010-0576-5 PMID: 20373119

3. Mertz ET, Bates LS, Nelson OE. Mutant gene that changes protein composition and increases lysine
content of maize endosperm. Science 1964; 145(3629):279–80. PMID: 14171571

4. Schmidt RJ, Burr FA, AukermanMJ, Burr B. Maize regulatory gene opaque-2 encodes a protein with a
"leucine-zipper" motif that binds to zein DNA. Proc Natl Acad Sci USA 1990; 87(1):46–50. PMID: 2296602

5. Tsai CY, Dalby A. Comparison of the effect of shrunken 4 opaque 2 opaque 7 and floury 2 genes on the
zein content of maize during endosperm development. American Association of Cereal Chemists 1974;
51:825–828.

6. Wang G, Sun X, Wang G, Wang F, Gao Q, Sun X, et al. Opaque7 Encodes an Acyl-Activating Enzyme-
Like Protein That Affects Storage Protein Synthesis in Maize Endosperm. Genetics 2011; 189
(4):1281–1295. doi: 10.1534/genetics.111.133967 PMID: 21954158

7. Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA, Larkins BA. Expression of a mutant alpha-
zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci USA 1997; 94(13):7094–7.
PMID: 9192697

8. Gibbon BC, Larkins BA. Molecular genetic approaches to developing quality protein maize. Trends
Genet 2005; 21(4):227–33. PMID: 15797618

9. Prasanna BM, Vasal SK, Kassahun B, Singh NN. Quality protein maize. Current Science 2001; 81:10, 25.

10. Yuan L, Dou Y, Kianian SF, Zhang C, Holding DR. Deletion Mutagenesis Identifies a Haploinsufficient
Role for gamma-Zein in opaque2 EndospermModification. Plant Physiology 2014; 164(1):119–130.

11. Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM. High-lysine corn generated by
endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnology Journal 2007; 5
(5):605–614. PMID: 17553105

12. Wu Y, Messing J. RNA Interference Can Rebalance the Nitrogen Sink of Maize Seeds without Losing
Hard Endosperm. PLoS ONE 2012; 7(2):e32850. doi: 10.1371/journal.pone.0032850 PMID: 22393455

13. Wu Y, Messing J. Novel Genetic Selection System for Quantitative Trait Loci of Quality Protein Maize.
Genetics 2011; 188(4):1019–1022. doi: 10.1534/genetics.111.131078 PMID: 21652527

14. Wenefrida I, Utomo HS, Linscombe SD. Mutational Breeding and Genetic Engineering in the Develop-
ment of High Grain Protein Content. Journal of Agricultural and Food Chemistry 2013; 61(48):11702–
11710. doi: 10.1021/jf4016812 PMID: 23869957

15. Galili G, Amir R. Fortifying plants with the essential amino acids lysine and methionine to improve nutri-
tional quality. Plant Biotechnology Journal 2013; 11(2):211–222. doi: 10.1111/pbi.12025 PMID: 23279001

16. Wenefrida I, Utomo HS, Blanche SB, Linscombe SD. Enhancing essential amino acids and health ben-
efit components in grain crops for improved nutritional values. Recent Pat DNA Gene Seq 2009; 3
(3):219–25. PMID: 19673700

AtMAP18 Improves the Nutritional Value of Transgenic Maize

PLOS ONE | DOI:10.1371/journal.pone.0142952 November 18, 2015 17 / 18

http://dx.doi.org/10.3389/fpls.2014.00240
http://www.ncbi.nlm.nih.gov/pubmed/24910639
http://dx.doi.org/10.1007/s00726-010-0576-5
http://www.ncbi.nlm.nih.gov/pubmed/20373119
http://www.ncbi.nlm.nih.gov/pubmed/14171571
http://www.ncbi.nlm.nih.gov/pubmed/2296602
http://dx.doi.org/10.1534/genetics.111.133967
http://www.ncbi.nlm.nih.gov/pubmed/21954158
http://www.ncbi.nlm.nih.gov/pubmed/9192697
http://www.ncbi.nlm.nih.gov/pubmed/15797618
http://www.ncbi.nlm.nih.gov/pubmed/17553105
http://dx.doi.org/10.1371/journal.pone.0032850
http://www.ncbi.nlm.nih.gov/pubmed/22393455
http://dx.doi.org/10.1534/genetics.111.131078
http://www.ncbi.nlm.nih.gov/pubmed/21652527
http://dx.doi.org/10.1021/jf4016812
http://www.ncbi.nlm.nih.gov/pubmed/23869957
http://dx.doi.org/10.1111/pbi.12025
http://www.ncbi.nlm.nih.gov/pubmed/23279001
http://www.ncbi.nlm.nih.gov/pubmed/19673700


17. Kirma M, Araujo WL, Fernie AR, Galili G. The multifaceted role of aspartate-family amino acids in plant
metabolism. Journal of Experimental Botany 2012; 63(14):4995–5001. doi: 10.1093/jxb/ers119 PMID:
22516796

18. Reyes AR, Bonin CP, Houmard NM, Huang S, Malvar TM. Genetic manipulation of lysine catabolism in
maize kernels. Plant Molecular Biology 2009; 69(1–2):81–89. doi: 10.1007/s11103-008-9409-2 PMID:
18839315

19. Yu J, Peng P, Zhang X, Zhao Q, Zhu D, Sun X, et al. Seed-specific expression of the lysine-rich protein
gene sb401 significantly increases both lysine and total protein content in maize seeds. Food Nutr Bull
2005; 26(4):427–31. PMID: 16465991

20. Lang Z, Zhao Q, Yu J, Zhu D, Ao G. Cloning of potato SBgLR gene and its intron splicing in transgenic
maize. Plant Science 2004; 166(5):1227–1233.

21. WangM, Liu C, Li S, Zhu D, Zhao Q, Yu J. Improved Nutritive Quality and Salt Resistance in Transgenic
Maize by Simultaneously Overexpression of a Natural Lysine-Rich Protein Gene, SBgLR, and an ERF
Transcription Factor Gene, TSRF1. International Journal of Molecular Sciences 2013; 14(5):9459–
9474. doi: 10.3390/ijms14059459 PMID: 23629675

22. Yue J, Li C, Zhao Q, Zhu D, Yu J. Seed-Specific Expression of a Lysine-Rich Protein Gene, GhLRP,
from Cotton Significantly Increases the Lysine Content in Maize Seeds. International Journal of Molecu-
lar Sciences 2014; 15(4):5350–5365. doi: 10.3390/ijms15045350 PMID: 24681583

23. Wang X, Zhu L, Liu B, Wang C, Jin L, Zhao Q, et al. Arabidopsis MICROTUBULE-ASSOCIATED PRO-
TEIN18 Functions in Directional Cell Growth by Destabilizing Cortical Microtubules. The Plant Cell
2007; 19(3):877–889. PMID: 17337629

24. Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y, et al. MAP18 Regulates the Direction of Pollen Tube
Growth in Arabidopsis by Modulating F-Actin Organization. The Plant Cell 2013; 25(3):851–867. doi:
10.1105/tpc.113.110528 PMID: 23463774

25. Pan Y, Ma X, Liang H, Zhao Q, Zhu D, Yu J. Spatial and temporal activity of the foxtail millet (Setaria ita-
lica) seed-specific promoter pF128. Planta 2015; 241(1):57–67.

26. Frame BR. Agrobacterium tumefaciens-Mediated Transformation of Maize Embryos Using a Standard
Binary Vector System. Plant Physiology 2002; 129(1):13–22. PMID: 12011333

27. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymor-
phisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl
Acad Sci U S A 1984; 81(24):8014–8. PMID: 6096873

28. Liu C, Qi X, Zhao Q, Yu J. Characterization and Functional Analysis of the Potato Pollen-Specific Micro-
tubule-Associated Protein SBgLR in Tobacco. PLoS ONE 2013; 8(3):e60543. doi: 10.1371/journal.
pone.0060543 PMID: 23536914

29. Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy IN. Recent advances in development of marker-
free transgenic plants: regulation and biosafety concern. J Biosci 2012; 37(1):167–97. PMID:
22357214

30. Matheka JM, Anami S, Gethi J, Omer RA, Alakonya A, Machuka J, et al. A new double right border
binary vector for producing marker-free transgenic plants. BMC Res Notes 2013; 6:448. doi: 10.1186/
1756-0500-6-448 PMID: 24207020

31. Mateyak MK, Kinzy TG. eEF1A: Thinking Outside the Ribosome. Journal of Biological Chemistry 2010;
285(28):21209–21213. doi: 10.1074/jbc.R110.113795 PMID: 20444696

32. Lopez-Valenzuela JA. Cytoskeletal Proteins Are Coordinately Increased in Maize Genotypes with High
Levels of eEF1A. Plant Physiology 2004; 135(3):1784–1797. PMID: 15247373

33. Gross SR, Kinzy TG. Translation elongation factor 1A is essential for regulation of the actin cytoskele-
ton and cell morphology. Nature Structural & Molecular Biology 2005; 12(9):772–778.

34. Jia M, Wu H, Clay KL, Jung R, Larkins BA, Gibbon BC. Identification and characterization of lysine-rich
proteins and starch biosynthesis genes in the opaque2 mutant by transcriptional and proteomic analy-
sis. BMC Plant Biology 2013; 13(1):60.

35. Azama K, Abe S, Sugimoto H, Davies E. Lysine-containing proteins in maize endosperm: a major con-
tribution from cytoskeleton-associated carbohydrate-metabolizing enzymes. Planta 2003; 217(4):628–
638. PMID: 12684783

36. Clore AM. EF-1α Is Associated with a Cytoskeletal Network Surrounding Protein Bodies in Maize Endo-
sperm Cells. The Plant Cell 1996; 8(11):2003–2014.

37. Abe S, Azama K, Sugimoto H, Davies E. Protein accumulation in the maize endosperm: role of polyri-
bosomes and the cytoskeleton. Plant Physiology and Biochemistry 2003; 41(2):125–131.

38. Huang S, Jin L, Du J, Li H, Zhao Q, Ou G, et al. SB401, a pollen-specific protein from Solanum berthaul-
tii, binds to and bundles microtubules and F-actin. The Plant Journal 2007; 51(3):406–418. PMID:
17559515

AtMAP18 Improves the Nutritional Value of Transgenic Maize

PLOS ONE | DOI:10.1371/journal.pone.0142952 November 18, 2015 18 / 18

http://dx.doi.org/10.1093/jxb/ers119
http://www.ncbi.nlm.nih.gov/pubmed/22516796
http://dx.doi.org/10.1007/s11103-008-9409-2
http://www.ncbi.nlm.nih.gov/pubmed/18839315
http://www.ncbi.nlm.nih.gov/pubmed/16465991
http://dx.doi.org/10.3390/ijms14059459
http://www.ncbi.nlm.nih.gov/pubmed/23629675
http://dx.doi.org/10.3390/ijms15045350
http://www.ncbi.nlm.nih.gov/pubmed/24681583
http://www.ncbi.nlm.nih.gov/pubmed/17337629
http://dx.doi.org/10.1105/tpc.113.110528
http://www.ncbi.nlm.nih.gov/pubmed/23463774
http://www.ncbi.nlm.nih.gov/pubmed/12011333
http://www.ncbi.nlm.nih.gov/pubmed/6096873
http://dx.doi.org/10.1371/journal.pone.0060543
http://dx.doi.org/10.1371/journal.pone.0060543
http://www.ncbi.nlm.nih.gov/pubmed/23536914
http://www.ncbi.nlm.nih.gov/pubmed/22357214
http://dx.doi.org/10.1186/1756-0500-6-448
http://dx.doi.org/10.1186/1756-0500-6-448
http://www.ncbi.nlm.nih.gov/pubmed/24207020
http://dx.doi.org/10.1074/jbc.R110.113795
http://www.ncbi.nlm.nih.gov/pubmed/20444696
http://www.ncbi.nlm.nih.gov/pubmed/15247373
http://www.ncbi.nlm.nih.gov/pubmed/12684783
http://www.ncbi.nlm.nih.gov/pubmed/17559515

