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Abstract

Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms 

(SNPs) in six genes that are associated with childhood acute lymphoblastic leukemia (ALL). A 

lead SNP was found to occur on chromosome 9p21.3, a region that is deleted in 30% of childhood 

ALLs, suggesting the presence of causal polymorphisms linked to ALL risk. We used SNP 

genotyping and imputation-based fine-mapping of a multiethnic ALL case-control population 

(Ncases=1464, Ncontrols=3279) to identify variants of large effect within 9p21.3. We identified a 
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CDKN2A missense variant (rs3731249) with 2% allele frequency in controls that confers three-

fold increased risk of ALL in children of European-ancestry (OR=2.99; P=1.51×10−9) and 

Hispanic children (OR=2.77; P=3.78×10−4). Moreover, of 17 patients whose tumors displayed 

allelic imbalance at CDKN2A, 14 preferentially retained the risk allele and lost the protective 

allele (PBinomial=0.006), suggesting that the risk allele provides a selective advantage during tumor 

growth. Notably, the CDKN2A variant was not significantly associated with melanoma, 

glioblastoma, or pancreatic cancer risk, implying that this polymorphism specifically confers ALL 

risk but not general cancer risk. Taken together, our findings demonstrate that coding 

polymorphisms of large effect can underlie GWAS “hits” and that inherited polymorphisms may 

undergo directional selection during clonal expansion of tumors.

INTRODUCTION

The etiology of childhood acute lymphoblastic leukemia (ALL) is multifactorial, influenced 

by environmental stimuli, immune development, and genetic factors (1). Recent genome-

wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) 

in six genes that modify ALL risk, including ARID5B, IKZF1, CEBPE, CDKN2A, PIP4K2A 

and GATA3 (2, 3). With the exception of rs3824662 in GATA3, which confers 3-fold 

increased risk of Philadelphia chromosome-like ALL (4), GWAS of ALL have not identified 

variants of large effect sizes (odds ratio range: 1.30-1.86)(2).

The lead SNP on 9p21.3 from previous ALL GWAS, rs3731217, is located in intron 1 of the 

tumor suppressor gene CDKN2A within a linkage block containing another tumor suppressor 

gene (CDKN2B) and a functional non-coding RNA (CDKN2B-AS1)(5). Inherited SNPs in 

this linkage block are associated with several additional cancers, including: melanoma, 

glioblastoma, nasopharyngeal carcinoma, and squamous cell lung cancer (6-9). Somatic 

alteration of 9p21.3 via focal and whole-arm deletions, as well as copy-neutral loss of 

heterozygosity (LOH), occurs in many cancers and in ~30% of childhood ALL cases (10). 

The co-occurrence of inherited (i.e. germline) and acquired (i.e. somatic) cancer-associated 

variants on 9p21.3 suggests that heritable risk alleles in this region may undergo selection 

during tumor evolution, a phenomenon known as preferential allelic imbalance (PAI).

We sought to identify causal polymorphisms underlying the childhood ALL association 

peak near CDKN2A by performing SNP genotyping and imputation-based fine-mapping of 

the region in a multi-ethnic case-control population. The discovery sample for our fine-

mapping analysis included 321 Hispanic children with ALL and 454 Hispanic control 

children from the California Childhood Leukemia Study (CCLS). Validation fine-mapping 

was performed in an independent set of 980 European-ancestry children with ALL and 2624 

control children from the Children's Oncology Group (COG) and the Wellcome Trust Case-

Control Consortium (WTCCC). Following association testing and bioinformatics analyses 

of SNP function, the top SNP underwent validation genotyping in a third independent ALL 

case-control set. Using a novel application of droplet-digital PCR (ddPCR), we further 

assessed whether the newly identified risk allele underwent PAI in ALL tumor samples.
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MATERIALS AND METHODS

Figure 1 and Supplementary Table 1 summarize the study design and study populations, 

respectively. This study was approved and reviewed by all collaborating institutions, 

including the institutional review committees at the California Department of Public Health 

(CDPH) and the University of California, Berkeley.

Subjects

CCLS Hispanic ALL discovery set—The discovery sample includes 321 Hispanic 

participants with ALL and 454 Hispanic controls from CCLS, whose recruitment has been 

described in detail previously (11). This population-based case-control study includes 

subjects from 35 California counties recruited from 1995-2008. Birth certificate information 

obtained from the CDPH was used to select 1-2 controls for each case, matching on date of 

birth, sex, Hispanic ethnicity, and maternal race.

COG/WTCCC ALL validation set—The ALL fine-mapping validation sample includes 

980 European-ancestry children from COG protocols P9904 and P9905. Data were obtained 

from dbGaP study accession phs000638.v1.p1 (Genome-Wide Association Study of Relapse 

of Childhood Acute Lymphoblastic Leukemia), and have been described in detail (12, 13). 

Case-control comparisons were made with 2624 European-ancestry individuals accessed 

from the WTCCC (14). Demographic characteristics of COG cases and WTCCC controls 

appear in Supplementary Table 1.

CCLS multi-ethnic ALL validation set—An additional 111 African-American cases, 

52 Hispanic cases, 154 African-American controls, and 47 Hispanic controls from CCLS 

were genotyped at rs3731249 using a TaqMan assay. These CCLS study participants do not 

overlap with individuals in the discovery sample or the COG/WTCCC validation set.

GENEVA melanoma case-control set—Melanoma case-control data were obtained 

from dbGaP Study Accession phs000187.v1.p1 (High Density SNP Association Analysis of 

Melanoma: Case-Control and Outcomes Investigation). Demographic characteristics of 

these 1969 adult melanoma cases and 1044 controls appear in Supplementary Table 1. These 

samples were genotyped as part of the Gene Environment Association Studies initiative 

(GENEVA) (15).

UCSF/Mayo glioblastoma case-control set—Glioblastoma data were generated via 

pooled deep-sequencing of 684 adults with glioblastoma and 821 controls from the UCSF 

Adult Glioma Study (AGS) and The Mayo Clinic. AGS cases were adults with incident 

histologically-confirmed glioblastoma. AGS controls were matched on age, sex and 

ethnicity (16). Mayo Clinic cases with incident glioblastoma were recruited from 

2005-2012. Mayo controls were consented individuals who had a general medical exam at 

the Mayo Clinic, matched on sex, date of birth (within 2.5 years), self-identified race and 

residence (17). Demographic characteristics of glioblastoma cases and controls appear in 

Supplementary Table 1.
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PanScan pancreatic cancer case-control set—Pancreatic cancer case-control data 

were obtained from dbGaP Study Accession phs000206.v4.p3 [Whole-Genome Scan for 

Pancreatic Cancer Risk in the Pancreatic Cancer Cohort Consortium (PanScan)]. 

Demographic characteristics of these 2273 pancreatic cancer cases and 2418 controls appear 

in Supplementary Table 1. These samples were genotyped as part of the Cancer Genetic 

Markers of Susceptibility (CGEMS) Project (18, 19).

Sample preparation and genotyping

Prediagnositic constitutive DNA for CCLS samples was extracted from neonatal bloodcards 

and genotyped using the Illumina Human OmniExpressV1 platform. DNA extraction was 

performed using the QIAamp DNA Mini Kit (QIAGEN, USA, Valencia, CA). Genotype 

reproducibility was verified using ten duplicate samples with average concordance 

>99.99%. Samples with genotyping call rates <98% were excluded. Samples were screened 

for cryptic relatedness using 10,000 unlinked SNPs and excluded if identity-by-descent was 

>0.15. Samples with discordant sex information (reported vs. genotyped sex) were excluded. 

SNPs with genotyping call rates <98% were excluded. Any SNP with a Hardy-Weinberg 

Equilibrium (HWE) P-value <1×10−5 in controls was excluded. DNA from an additional 

163 CCLS cases and 201 CCLS controls was genotyped for rs3731249 using a TaqMan 

assay (Applied Biosystems: C__25611114_10). These samples were randomized on 96-well 

plates, containing HapMap trios and 5 duplicate samples per plate. All trio genotypes 

displayed Mendelian consistency and duplicates showed genotype concordance. Cluster 

plots were visually inspected.

Constitutive DNA from COG samples was extracted from remission blood, as previously 

detailed (12). DNA samples were genotyped on the Affymetrix 6.0 array and genotype data 

were downloaded from dbGaP accession phs000638.v1.p1. Control genotype data for 

European-ancestry control samples genotyped on the Affymetrix 6.0 array were downloaded 

from the Wellcome Trust Case-Control Consortium (14). Genotyping quality-control 

procedures were conducted independently in cases and in controls. Samples with genotyping 

call rates <98% in cases or controls were excluded. SNPs with genotyping call rates <98% 

were excluded. We excluded subjects showing evidence of non-European ancestry, samples 

with mismatched reported versus genotypes sex, and related subjects (IBD>0.15). SNP data 

were used to ensure no overlap between ALL cases included in validation analyses and 

those included in discovery analyses. COG and WTCCC genotype data were merged to 

create a final set of 980 cases and 2624 European-ancestry controls.

DNA for GENEVA melanoma case-control samples were genotyped using the Illumina 

HumanOmni1-Quad_v1-0_B array. Genotype data were downloaded from dbGaP accession 

phs000187.v1.p1. Samples were filtered based on a pre-computed sample filter provided by 

dbGaP. Subsequently, subjects with genotyping call-rate <95%, discordant genotyped versus 

reported sex, non-European ancestry, or cryptic relatedness were removed from analyses. 

SNPs with genotyping call rates <98% or HWE P-value <1×10−5 (among controls) were 

excluded. The final European-ancestry dataset contained 1969 cases and 1044 controls.

The glioma GWAS association peak on 9p21.3, between 21.930–22.135 Mb, underwent 

targeted deep-sequencing using pooled constitutive DNA from UCSF and Mayo samples. 
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Four pools of DNA were prepared - two from glioblastoma cases (NUCSF=380; NMayo=304) 

and two from controls (NUCSF=547; NMayo=274). These DNA pools were subjected to long-

range PCR covering the association peak, followed by next-generation sequencing to a 

target depth of 2,000X. NGS was performed by deCODE Genetics and subjected to quality-

control measures as previously described (17). Variants were removed that had fewer than 

1000 reads in a sequencing pool. Variants whose allele frequency estimates differed more 

than 10% between the two case pools or between the two control pools were removed.

DNA for PanScan pancreatic cancer case-control samples was genotyped using either the 

Illumina Human550v3 array or the 610QuadV1B array. Genotype data were downloaded 

from dbGaP accession phs000206.v4.p3. Quality-control was conducted separately by array. 

Subjects with genotyping call-rate <98%, discordant genotyped versus reported sex, non-

European ancestry, or cryptic relatedness were removed. SNPs with genotyping call rates 

<98% or HWE P-value <1×10−5 (among controls) were excluded. The final set contained 

2273 European-ancestry cases and 2418 controls.

Statistical analyses

Using Illumina OmniExpress array data (for CCLS discovery samples) or Affymetrix 6.0 

data (COG validation samples), targeted SNP imputation was performed for a 500kb region 

on chromosome nine from 21.735Mb to 22.235Mb (GRCh37/hg19). The region is 

approximately centered on the original ALL GWAS hit in the region (rs3731217), first 

published by Sherborne et al (5). Imputation was performed using the IMPUTE v2.3.1 

software and its standard Markov chain Monte Carlo algorithm and default settings for 

targeted imputation (20). All 1,000 Genomes Phase I integrated haplotypes were provided as 

the imputation reference panel (21). SNPs with imputation quality (info) scores <0.70 or 

posterior probabilities <0.90 were excluded. Association statistics for imputed and directly 

genotyped SNPs were calculated using logistic regression in SNPTESTv2, using an allelic 

additive model (22) and a missing-data likelihood score-test to account for additional 

uncertainty inherent in analysis of imputed genotypes. The first five ancestry-informative 

principal components from Eigenstrat were used as covariates in logistic regression analyses 

of both CCLS discovery and COG validation sets (23). Of note, the rs3731249 missense 

variant that is the focus of this manuscript was directly genotyped on-array and was not 

imputed in the CCLS discovery set.

Case-control associations for CCLS samples undergoing TaqMan genotyping were 

evaluated using logistic regression, assuming an allelic additive model, adjusting for self-

reported ethnicity (African-American or Hispanic). We have previously demonstrated the 

validity of self-reported ethnicity as a measure of genetic ancestry in CCLS (24).

Associations from the CCLS Hispanic discovery set, the COG/WTCCC validation set, and 

the CCLS ALL validation set were combined using fixed effects meta-analysis in the META 

software package to generate a summary odds ratio and P-value for the combined ALL case-

control comparisons (25).

Genome-wide SNP data for melanoma cases and controls were analyzed using logistic 

regression, adjusted for the first five ancestry-informative principal components, using Plink 
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and Eigenstrat (23, 26). As in the CCLS Hispanic discovery set, rs3731249 was directly 

genotyped on-array in the melanoma dataset.

Allele frequencies from the deCODE NGS glioblastoma case-control data were calculated 

based on read counts; separately for reads generated from each case and control pool. Based 

on the derived allele frequencies, the number of chromosomes in the original pools carrying 

various alleles was estimated. Association tests were conducted using Fisher's exact test for 

the estimated number of chromosomes carrying the minor alleles in the corresponding case 

and control pools, with Mayo and UCSF data combined as previously described (17).

Genome-wide SNP data for pancreatic cancer cases and controls were stratified by array 

(550 versus 610Q). Data from each array underwent imputation using the IMPUTE v2.3.1 

software (20) and all 1,000 Genomes Phase I integrated haplotypes (21). Allelic additive 

SNP association statistics were calculated using logistic regression in SNPTESTv2, 

stratified by array (22). Five ancestry-informative principal components from Eigenstrat 

were used as covariates in logistic regression analyses (23). Association statistics from the 

two arrays were combined using fixed effects meta-analysis in the META software package 

(25).

Calculation of ancestral components in CCLS Hispanics

Ancestral components were calculated in Hispanic study subjects using Human Genome 

Diversity Project samples as the reference founder populations (27). A total of 63,303 

autosomal SNPs, common to both datasets, was used to evaluate ancestry using the program 

Structure (28), as previously described (29). Ancestral proportions were compared between 

individuals that carried the rs3731249 risk allele and those that did not carry the risk allele 

using a t-test.

MLPA

Multiplex ligation-dependent probe amplification (MLPA) was performed, as previously 

described, for 848 ALL patients with sufficient bone marrow DNA available(29). MLPA 

was carried out using the SALSA MLPA probemix P335-B1 ALL-IKZF1 (MRC Holland), 

which includes 2 probes within CDKN2A and 1 probe within CDKN2B. Single-gene 

deletions were identified when either the CDKN2A probes or the CDKN2B probe 

exclusively showed evidence of copy-number loss, with the other probe(s) remaining copy-

neutral. Data analysis was carried out using “Coffalyser.Net” fragment analysis software 

(MRC Holland). In brief, peak height ratios were determined by intra-sample normalization 

using data from 13 reference probes in genomic regions known not to be somatically altered 

in childhood ALL, and by inter-sample normalization using data from constitutive DNA 

reference samples.

Assessment of rs3731249 allelic imbalance and copy-number using SMART-ddPCR

We assayed all ALL patients that were heterozygous for rs3731249 and had diagnostic bone 

marrow DNA available (N=37) using a novel application of Droplet DigitalTM PCR 

(ddPCR) (Bio-Rad), termed Somatic Mutation Allelic Ratio Test (SMART-ddPCR). 

SMART-ddPCR was used to assess preferential allelic imbalance (PAI) of the CDKN2A 
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missense SNP rs3731249 in tumor DNA. This allowed assessment of the hypothesis that the 

protective allele of rs3731249 will be preferentially lost in tumors and the risk allele 

preferentially retained.

ddPCR was carried out as previously described (30). The Taqman SNP Genotyping Assay 

for rs3731249 (ABI: C__25611114_10) was used in ddPCR reactions, with FAM- and VIC-

labeled probes for detection of the risk (T) and protective (C) alleles, respectively. For each 

of the samples, ddPCR was carried out in duplicate and data were analyzed using 

QuantaSoftTM Software (Bio-Rad). To determine presence of allelic imbalance, for each 

subject we calculated the proportion of risk allele compared to protective allele as follows:

This results in a proportion between 0 and 1, with an expected proportion of 0.50 for 

samples with no allelic imbalance. Two of the 37 samples were excluded due to low 

concentrations for both the risk and protective alleles in the ddPCR reactions.

To determine thresholds for calling the presence of allelic imbalance in a subject, we 

analyzed constitutive DNA from rs3731249 heterozygotes using ddPCR. We used 3 

standard deviations above and below the mean risk allele proportion in these samples 

(0.491) to define the upper (0.524) and lower (0.458) thresholds, respectively. Tumor 

samples with allelic ratios falling outside this range were considered to demonstrate allelic 

imbalance. Among samples showing allelic imbalance (N=17), the number of tumor samples 

with PAI favoring the risk allele was compared to the number favoring the protective allele 

using a binomial test and assuming, under the null hypothesis, that a sample was equally 

likely to lose one allele as the other (i.e. p=q=0.50).

To assess copy number at the rs3731249 locus, a second ddPCR reaction was carried out 

using a Taqman assay targeting the SLC24A3 gene within a region not known to be copy 

number variable in ALL. Concentration of total CDKN2A relative to concentration of the 

genomic control was calculated as follows:

Tumor samples showing no evidence of copy-number loss but showing allelic imbalance 

were likely to have acquired copy-neutral LOH. Conversely, samples that presented with 

copy number loss but without allelic imbalance were presumed to have subclonal 

homozygous deletions.

RESULTS

Fine-mapping the 9p21.3 association with childhood ALL

Genotype data were generated for 321 Hispanic children with ALL and 454 Hispanic control 

children from CCLS using dried neonatal bloodspot DNA and the Illumina Omni-Express 

Walsh et al. Page 7

Cancer Res. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genotyping array (31). Imputation to 1000 Genomes was performed across a 500kb region 

on chromosome nine from 21.735Mb to 22.235 Mb (GRCh37/hg19), encompassing the 

MTAP, CDKN2A, CDKN2B and CDKN2B-AS1 genes and promoters. One-hundred thirty-

seven SNPs in the region were directly genotyped on-array and an additional 1909 were 

successfully imputed. The region is approximately centered on the original ALL GWAS 

lead SNP (rs3731217), first published by Sherborne et al (5).

The tag SNP from the previous GWAS, rs3731217, was associated with ALL risk in the 

CCLS Hispanic case-control data (OR=0.65; P=0.020). Capitalizing on the reduced linkage 

disequilibrium (LD) in the genetically admixed Hispanic discovery set (Figure 2), we 

identified 51 SNPs with p-values <0.020 and effect sizes larger than that observed for 

rs3731217. These SNPs were more strongly associated with ALL than rs3731217, both in 

terms of statistical significance and magnitude of effect, and were carried forward for 

validation in a second, independent case-control set.

Genotype data were generated for 980 European-ancestry children with ALL using 

remission blood samples and the Affymetrix 6.0 array by COG, as previously described 

(12). These 980 ALL cases were combined with 2624 European-ancestry control children 

from the WTCCC to form the validation case-control set (14). Imputation to 1000 Genomes 

was performed across the same 500kb region on chromosome nine. 127 SNPs in the region 

were directly genotyped on-array and an additional 1002 were successfully imputed. Of the 

51 SNPs more strongly associated with ALL risk in the Hispanic discovery data than the 

rs3731217 tag SNP, 46 were successfully genotyped or imputed in the COG/WTCCC 

validation set. Applying a strict Bonferroni correction for 46 tests of association, 42 of these 

SNPs were associated at P<1.1×10−3 in the validation set.

SNP associations from the discovery and validation sets were combined using meta-analysis 

to generate a volcano plot of the joint associations, with effect size plotted on the x-axis and 

statistical significance plotted on the y-axis (Figure 3). The volcano plot highlights the 42 

SNPs identified in discovery analyses and validated in COG data, and reveals three clear 

outliers in tight LD (R2>0.99): rs113650570, rs36228834 and rs3731249.

Bioinformatic, in-silico functional genomic and conditional SNP analyses

The 42 SNPs identified in discovery analyses which were associated at P<1.1×10−3 in the 

validation set appear in Supplementary Table 2. These SNPs were functionally annotated 

using ENCODE2 data, implemented in HaploRegV3 and RegulomeDB (32, 33), and were 

also investigated using data from the Genotype-Tissue Expression (GTEx) project to 

determine if they were cis eQTLs for MTAP, CDKN2A or CDKN2B (34). The three outliers 

identified by the volcano plot (rs113650570, rs36228834 and rs3731249) are more than 

three orders of magnitude more statistically significantly associated with ALL risk than the 

fourth-ranked variant, rs56018935 (Supplementary Table 2). While rs113650570 and 

rs36228834 are intronic SNPs with little direct evidence suggesting a regulatory function 

(Supplementary Table 2), rs3731249 is a p16 missense variant (A148T) in exon 2 of 

CDKN2A (Figure 4).
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Numerous SNPs in the region have putative functional relevance based on their location 

within promoter histone marks, enhancer histone marks, DNase hypersensitivity sites, and 

canonical transcription factor binding motifs. Additionally, a number of linked SNPs are 

significant CDKN2B eQTLs (Supplementary Table 2). Thus, it is possible that a number of 

ALL-associated variants in the region are causally related to leukemogenesis.

Conditional analyses were performed in the discovery and validation datasets to determine 

whether rs3731249 could explain the majority of the ALL association signal in the 9p21.3 

region. Because the three lead SNPs (rs113650570, rs36228834 and rs3731249) are in 

complete LD, conditional analyses are unable to assess their effects independent of each 

other. Adjusting for subject genotype at rs3731249 greatly attenuated SNP associations in 

the region in logistic regression models (Figure 5). After adjusting for rs3731249, the most 

significantly associated SNP in meta-analysis of the two datasets was rs2188127, an 

intergenic variant between MTAP and CDKN2A (P=1.1×10−4, OR=0.73, 95% 

CI=0.62-0.86). Prior to adjustments for rs3731249, 54 SNPs had smaller p-values in the 

meta-analysis. These conditional analyses indicate that rs3731249, or a variant in tight LD, 

underlies the CDKN2A association signal in the region.

Association of rs3731249 with childhood ALL

In the CCLS Hispanic discovery set, the minor (T) allele of the missense SNP rs3731249 

was associated with a nearly 3-fold increased risk of ALL (OR=2.77; 95% CI=1.58-4.85; 

P=3.78×10−4). Hispanic subjects carrying the rs3731249 risk allele had genomes that were 

more European than individuals not carrying the risk allele, among both cases and controls 

(63.1% European versus 56.2% European; P=5.6×10−3). This 7% increase in European 

genomic ancestry also corresponded to a 7% decrease in Native American genomic ancestry. 

The association between the rs3731249 risk allele and increased European ancestry suggests 

that this allele originated on a European haplotype. The higher risk allele frequency in 

European-ancestry genomes also suggests that rs3731249 may be an ALL risk factor in 

additional populations harboring European ancestry, including non-Hispanic whites and 

African-Americans.

In the European-ancestry COG validation set, the minor allele of missense SNP rs3731249 

was also associated with a 3-fold increased risk of ALL (OR=2.99; 95% CI=2.10-4.26; 

P=1.51×10−9). Along with the two intronic SNPs rs113650570 and rs36228834, this was the 

most statistically significant association in the validation set.

TaqMan genotyping of a third ALL case-control set of Hispanic and African-American 

children (163 cases, 201 controls) again confirmed the 3-fold increased risk associated with 

rs3731249 (OR=3.59; 95% CI=1.22-10.59; P=8.8×10−3). Meta-analysis of the association 

between rs3731249 and ALL risk, across the three ALL case-control sets, reached genome-

wide statistical significance (Pmeta=1.69×10−13; ORmeta=2.97; 95% CI=2.22-3.96).

There was no heterogeneity of effect between B-cell and T-cell ALL in CCLS subjects, but 

rs3731249 did have a larger effect size within certain molecularly-defined ALL subgroups 

(29). Rs3731249 was associated with a 4.5-fold increased risk of ALL harboring a somatic 

CDKN2A deletion (OR=4.5; P=6.4×10−3), a 6-fold increased risk of IKZF1-deleted ALL 
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(OR=6.3; P=1.9×10−3) and a 6-fold increased risk of KRAS- or NRAS-mutated ALL 

(OR=6.4; P=6.1×10−4). Effect sizes were similar in high-hyperdiploid ALL as in the ETV6-

RUNX1 fusion ALL subgroup (OR=2.7 and 2.0, respectively).

MLPA assessment of 9p21.3 focal deletions

We assessed frequency of somatic 9p21.3 deletions in 848 ALL tumor specimens from the 

CCLS using MLPA, and identified 256 with copy-number loss at 9p21.3 (30.2%). 33 of 

these samples had focal single-gene deletions, of which 27 exclusively affected CDKN2A 

and 6 exclusively affected CDKN2B, suggesting that CDKN2A is the principal target of 

9p21.3 deletions in ALL (P=3.0×10−4).

Preferential allelic imbalance of the rs3731249 risk allele in ALL tumors

Because a heritable CDKN2A missense variant was strongly and robustly associated with 

increased ALL risk in three case-control sets, and ALL tumors frequently harbor somatic 

alterations of CDKN2A, we sought to determine if the risk allele is preferentially retained 

(and the protective allele preferentially lost) in ALL tumors. To investigate this interface of 

heritable and acquired CDKN2A variation in leukemogenesis, we assessed preferential 

allelic imbalance of rs3731249 using droplet digital PCR. This assay, termed “SMART-

ddPCR” (see Methods), was used to measure the relative number of copies of the T and C 

alleles in constitutive DNA and in leukemia diagnostic bone marrow samples (i.e. tumor 

DNA) in a subset of CCLS cases. Copies of the rs3731249 risk (T) and protective (C) allele 

were approximately equal in diploid constitutive DNA from heterozygous patients, as 

anticipated, with a mean risk allele proportion of 0.491 and upper and lower thresholds of 

0.524 and 0.458 respectively (Figure 6).

A total of 57 ALL patients from CCLS were heterozygous for the rs3731249 risk allele in 

Illumina GWAS genotyping or targeted TaqMan genotyping. Sufficient tumor tissue was 

available for 35 of these patients, of which 17 showed evidence of allelic imbalance due to 

hemizygous deletion (N=11) or copy-neutral LOH (N=6). Of these 17 tumors with allelic 

imbalance, 14 preferentially retained the risk allele and 3 preferentially retained the 

protective allele (PBinomial=0.006) (Figure 6). This indicates that the rs3731249 missense 

SNP is subject to directional selection, wherein the ALL risk allele is favored during clonal 

evolution of the tumor. The 18 tumor samples that did not display allelic imbalance either 

had no detectable 9p21.3 lesions (N=13) or had subclonal homozygous deletion (N=5), 

suggesting a complex assortment of somatic CDKN2A alterations in leukemogenesis.

9p21.3 association mapping in additional cancers

Germline mutations in CDKN2A are associated with familial melanoma-astrocytoma 

syndrome (35) and familial melanoma-pancreatic cancer syndrome (36). Additionally, the 

cancer-associated GWAS hits on 9p21.3 span 320kb from a melanoma-associated variant at 

rs7023329 near MTAP(6) to a glioma-associated variant at rs4977756 in CDKN2B-AS1(7). 

The ALL association peak in CDKN2A partially overlaps the melanoma and glioma peaks, 

suggesting that pan-cancer risk alleles may reside in the region (Figure 7). To determine if 

the putatively hypomorphic rs3731249 variant is associated with adult melanoma, 

glioblastoma, or pancreatic cancer risk, we used data from three large case-control studies of 
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European-ancestry populations. Among 1969 adults with melanoma and 1044 controls 

genotyped on-array, strong association was detected in MTAP (Pmin=5.5×10−7. However, no 

significant associations were detected in CDKN2A, including at missense variant rs3731249 

(P=0.52) (Figure 7a). Pooled deep-sequencing of the 9p21.3 region in 684 adults with 

glioblastoma and 821 controls identified strong association in CDKN2B-AS1 

(Pmin=8.2×10−8. However, rs3731249 was not significantly associated with glioblastoma 

risk (P=0.52) (Figure 7c). Among 2273 adults with pancreatic cancer and 2418 controls 

genotyped on-array, no 9p21.3 SNPs had P-values <0.05, including rs3731249 (P=0.15) 

(data not shown in figure).

We also sought to determine if the lead SNPs from melanoma and glioblastoma case-control 

analyses are associated with ALL risk. The lead melanoma SNP from previous GWAS, 

rs7023329, was not associated with ALL risk in meta-analysis of the CCLS and COG 

datasets (OR=0.93; P=0.15). Similarly, the lead glioblastoma SNP from previous GWAS, 

rs4977756, was not associated with ALL risk in meta-analysis of the CCLS and COG 

datasets (OR=0.99; P=0.79).

DISCUSSION

We have refined the childhood ALL association peak at chromosome 9p21.3 via genotyping 

and fine-mapping, revealing a heritable p16 missense variant rs3731249 (A148T) that 

confers a 3-fold increased risk of childhood ALL, consistent across three ALL case-control 

sets with European ancestry or admixture. Adjusting for rs3731249 removed the majority of 

the association signal at chr9p21.3. Identifying a missense variant with such a large effect on 

ALL risk, and one that has not been previously reported, demonstrates the utility of fine-

mapping known association loci through a combination of genotyping and imputation with 

whole-genome sequencing datasets, as well as the value of genetically admixed populations 

for identifying putatively causal variants.

Using several online tools, we assessed whether the amino acid change from alanine to 

threonine affects the protein function of p16, but found no evidence of any strong 

deleterious effects (37, 38). However, evidence from previous studies suggests that 

p16(A148T) may result in reduced efficiency of p16 as a cell cycle inhibitor. The variant 

protein has been shown to have diminished ability to compete with cyclin D for CDK4 

binding (39) and has altered subcellular localization and expression relative to wild-type p16 

(40). The 2% risk allele frequency observed in healthy controls suggests that the effect of 

A148T on p16 activity is likely subtle and may only become important in the context of a 

pre-cancerous lymphoblast. Furthermore, rs3731249 was not associated with risk of 

melanoma, glioblastoma, or pancreatic cancer. This suggests rs3731249 may be associated 

with risk of cancer only in tissues that constantly self-renew, such as the bone marrow, but 

not associated with risk of cancer in tissues with low rates of self-renewal, such as glia and 

melanocytes (41, 42).

SNPs on 9p21.3 have been associated with multiple cancers and as a variety of other 

medical conditions, including heart disease, stroke, diabetes, and glaucoma (14, 43-45). The 

widely assorted localization of these associations suggests multiple functional genetic 
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polymorphisms exist in the region, and also highlights the core pleotropic functionality of 

genes on 9p21.3.

The second exon of CDKN2A encodes portions of both the p14 and p16 proteins. Although 

the rs3731249 polymorphism is within exon two, it is positioned outside of the p14 coding 

region and is therefore unlikely to affect function of that protein (Figure 4). This suggests 

that p16, and not p14 or p15, is the critical mediator of leukemogenesis in the 9p21.3 region. 

This is further supported by the MLPA data which demonstrated that CDKN2A, and not 

CDKN2B, was the target of focal single-gene deletions in the region.

Heritable genetic variants have recently been associated with specific subtypes of childhood 

ALL, with the GATA3 rs3824662 risk allele associated exclusively with genomic alterations 

that underlie Philadelphia chromosome-like ALL (4) and PIP4K2A SNPs associated 

exclusively with high-hyperdiploid ALL (46). However, the effects of these variants on 

subtype-specific somatic alterations have yet to be elucidated. In this study, we identify a 

CDKN2A missense variant that confers high risk of ALL and even higher risk of CDKN2A-

deleted ALL, suggesting that the risk variant may initiate a molecular cascade enhanced by 

subsequent deletion. Furthermore, we demonstrate a direct interaction between heritable and 

somatic genetic variation in CDKN2A, made evident in the form of PAI.

We developed a novel methodology, SMART-ddPCR, to investigate PAI of cancer-

associated heritable variants via absolute measurement of risk and protective allelic copy 

number. We demonstrate that in childhood ALL tumor samples, there is preferential 

retention of the risk allele and loss of the protective allele among rs3731249 heterozygotes 

with somatic CDKN2A alterations, suggesting an important role for this missense SNP in 

leukemia etiology and progression. Of twenty-one heterozygotes that did not display PAI for 

the rs3731249 risk allele, five were observed to have subclonal homozygous deletion of 

CDKN2A, thereby inactivating both alleles. Another three subjects had deletion of RB1, 

suggesting that subjects not displaying PAI may have CDKN2A point mutations or 

alterations to other genes involved in control of cell cycle.

The complexity and subclonality of somatic CDKN2A alterations as revealed by our 

SMART-ddPCR data support current evolutionary theories of cancer development. It has 

recently been shown that CDKN2A deletions can be caused by off-target RAG-mediated 

mutational processes (47), which could result in hemizygous or homozygous CDKN2A loss, 

or in copy-neutral LOH via attempted repair of hemizygous deletions. The initial event may 

be random (i.e. deletion of the rs3731249 risk allele is just as likely as the protective allele), 

but tumor cells retaining the risk allele have a competitive advantage during tumor 

evolution. Our results provide evidence that heritable genetic variation can act as an 

additional substrate for selection during clonal evolution of childhood ALL.

The rs3731249 risk allele is found at a frequency of 2% in healthy control children. Such 

common variants do not often have such large effect sizes. However, a SNP in the 3’-UTR 

of TP53 was recently shown to confer 3-fold increased risk of basal cell carcinoma, 

neuroblastoma, and glioma (48-50). Our data reveal that p16 missense SNP rs3731249 

confers a 3-fold increased risk of ALL in three independent and ethnically diverse case-
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control sample sets. Furthermore, this variant is subject to directional selection during tumor 

evolution. These results demonstrate, for the first time, a direct interaction between heritable 

and somatic CDKN2A variation underlying leukemogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This work was financially supported by NCI R01CA155461 (JLW, XM), NCI R25CA112355 (KMW), NIEHS and 
EPA P01ES018172 (CM, JLW), NIEHS R01ES09137 (CM, JLW) and grants from the Swiss Cancer League and 
the SICPA Foundation (SG). Work at The University of California, San Francisco Department of Neurological 
Surgery was supported by the National Institutes of Health (grant numbers R01CA52689, P50CA097257), as well 
as the National Brain Tumor Foundation, the Stanley D. Lewis and Virginia S. Lewis Endowed Chair in Brain 
Tumor Research, the Robert Magnin Newman Endowed Chair in Neuro-oncology, and by donations from families 
and friends of John Berardi, Helen Glaser, Elvera Olsen, Raymond E. Cooper, and William Martinusen. Work at 
the Mayo Clinic was supported by the National Institutes of Health (grant numbers P50CA108961 and P30 
CA15083), the National Institute of Neurological Disorders and Stroke (grant number RC1NS068222Z), the Bernie 
and Edith Waterman Foundation, and the Ting Tsung and Wei Fong Chao Family Foundation.

This study makes use of data generated by the Wellcome Trust Case-Control Consortium. A full list of the 
investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding for the 
project was provided by the Wellcome Trust under award 076113 and 085475. Melanoma case-control data were 
obtained from dbGaP Study Accession phs000187.v1.p1 (High Density SNP Association Analysis of Melanoma: 
Case-Control and Outcomes Investigation). Research support to collect data and develop an application to support 
this project was provided by 3P50CA093459, 5P50CA097007, 5R01ES011740, and 5R01CA133996. Pancreatic 
cancer case-control data were obtained from dbGaP Study Accession phs000206.v4.p3 (CGEMS Pancreatic Cancer 
(PanScan)). The ALL Relapse GWAS dataset used for the analyses described in this manuscript were obtained 
from dbGaP study accession phs000638.v1.p1 (Genome-Wide Association Study of Relapse of Childhood Acute 
Lymphoblastic Leukemia). The ALL Relapse GWAS dataset was generated at St. Jude Children's Research 
Hospital and by the Children's Oncology Group, supported by NIH grants CA142665, CA21765, CA158568, 
CA156449, CA36401, CA98543, CA114766, CA140729, and U01GM92666, Jeffrey Pride Foundation, the 
National Childhood Cancer Foundation, and by ALSAC.

The authors gratefully acknowledge the clinical investigators at the following collaborating hospitals for help in 
recruiting patients: University of California Davis Medical Center (Dr. Jonathan Ducore), University of California 
San Francisco (Drs. Mignon Loh and Katherine Matthay), Children's Hospital of Central California (Dr. Vonda 
Crouse), Lucile Packard Children's Hospital (Dr. Gary Dahl), Children's Hospital Oakland (Dr. James Feusner), 
Kaiser Permanente Roseville (formerly Sacramento) (Drs. Kent Jolly and Vincent Kiley), Kaiser Permanente Santa 
Clara (Drs. Carolyn Russo, Alan Wong, and Denah Taggart), Kaiser Permanente San Francisco (Dr. Kenneth 
Leung), and Kaiser Permanente Oakland (Drs. Daniel Kronish and Stacy Month). Bioinformatic analysis of next-
gen sequencing data from glioma cases and controls was performed with extensive support from Yuanyuan Xiao. 
Paige M. Bracci contributed helpful analytic advice for calculating agreement between MLPA and ddPCR assays 
via Bland-Altman plots.

The collection of cancer incidence data used in this study was supported by the California Department of Public 
Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 
103885; the National Cancer Institute's Surveillance, Epidemiology and End Results Program under contract 
HHSN261201000140C awarded to the Cancer Prevention Institute of California, contract HHSN261201000035C 
awarded to the University of Southern California, and contract HHSN261201000034C awarded to the Public 
Health Institute; and the Centers for Disease Control and Prevention's National Program of Cancer Registries, under 
agreement # U58DP003862-01 awarded to the California Department of Public Health. The ideas and opinions 
expressed herein are those of the author(s) and endorsement by the State of California Department of Public Health, 
the National Cancer Institute, and the Centers for Disease Control and Prevention or their Contractors and 
Subcontractors is not intended nor should be inferred.

REFERENCES

1. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev 
Cancer. 2006; 6(3):193–203. [PubMed: 16467884] 

Walsh et al. Page 13

Cancer Res. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.wtccc.org.uk


2. Xu H, Yang W, Perez-Andreu V, et al. Novel susceptibility variants at 10p12.31-12.2 for childhood 
acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013; 105(10):
733–42. [PubMed: 23512250] 

3. Migliorini G, Fiege B, Hosking FJ, et al. Variation at 10p12.2 and 10p14 influences risk of 
childhood B-cell acute lymphoblastic leukemia and phenotype. Blood. 2013; 122(19):3298–307. 
[PubMed: 23996088] 

4. Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-
like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013; 45(12):1494–8. 
[PubMed: 24141364] 

5. Sherborne AL, Hosking FJ, Prasad RB, et al. Variation in CDKN2A at 9p21.3 influences childhood 
acute lymphoblastic leukemia risk. Nat Genet. 2010; 42(6):492–4. [PubMed: 20453839] 

6. Barrett JH, Iles MM, Harland M, et al. Genome-wide association study identifies three new 
melanoma susceptibility loci. Nat Genet. 2011; 43(11):1108–13. [PubMed: 21983787] 

7. Wrensch M, Jenkins RB, Chang JS, et al. Variants in the CDKN2B and RTEL1 regions are 
associated with high-grade glioma susceptibility. Nat Genet. 2009; 41(8):905–8. [PubMed: 
19578366] 

8. Bei JX, Li Y, Jia WH, et al. A genome-wide association study of nasopharyngeal carcinoma 
identifies three new susceptibility loci. Nat Genet. 2010; 42(7):599–603. [PubMed: 20512145] 

9. Timofeeva MN, Hung RJ, Rafnar T, et al. Influence of common genetic variation on lung cancer 
risk: meta-analysis of 14 900 cases and 29 485 controls. Hum Mol Genet. 2012; 21(22):4980–95. 
[PubMed: 22899653] 

10. Schwab CJ, Chilton L, Morrison H, et al. Genes commonly deleted in childhood B-cell precursor 
acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica. 
2013; 98(7):1081–8. [PubMed: 23508010] 

11. Walsh KM, Chokkalingam AP, Hsu LI, et al. Associations between genome-wide Native American 
ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia. 2013; 27(12):
2416–9. [PubMed: 23615557] 

12. Yang JJ, Cheng C, Devidas M, et al. Genome-wide association study identifies germline 
polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood. 2012; 
120(20):4197–204. [PubMed: 23007406] 

13. Yang JJ, Cheng C, Devidas M, et al. Ancestry and pharmacogenomics of relapse in acute 
lymphoblastic leukemia. Nat Genet. 2011; 43(3):237–41. [PubMed: 21297632] 

14. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared 
controls. Nature. 2007; 447(7145):661–78. [PubMed: 17554300] 

15. Amos CI, Wang LE, Lee JE, et al. Genome-wide association study identifies novel loci 
predisposing to cutaneous melanoma. Hum Mol Genet. 2011; 20(24):5012–23. [PubMed: 
21926416] 

16. Walsh KM, Codd V, Smirnov IV, et al. Variants near TERT and TERC influencing telomere 
length are associated with high-grade glioma risk. Nat Genet. 2014; 46(7):731–5. [PubMed: 
24908248] 

17. Jenkins RB, Xiao Y, Sicotte H, et al. A low-frequency variant at 8q24.21 is strongly associated 
with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet. 
2012; 44(10):1122–5. [PubMed: 22922872] 

18. Petersen GM, Amundadottir L, Fuchs CS, et al. A genome-wide association study identifies 
pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet. 
2010; 42(3):224–8. [PubMed: 20101243] 

19. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide association study 
identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 
2009; 41(9):986–90. [PubMed: 19648918] 

20. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the 
next generation of genome-wide association studies. PLoS Genet. 2009; 5(6):e1000529. [PubMed: 
19543373] 

21. Abecasis GR, Altshuler D, Auton A, et al. A map of human genome variation from population-
scale sequencing. Nature. 2010; 467(7319):1061–73. [PubMed: 20981092] 

Walsh et al. Page 14

Cancer Res. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 
2010; 11(7):499–511. [PubMed: 20517342] 

23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components 
analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):
904–9. [PubMed: 16862161] 

24. Chokkalingam AP, Aldrich MC, Bartley K, et al. Matching on Race and Ethnicity in Case-Control 
Studies as a Means of Control for Population Stratification. Epidemiology (Sunnyvale). 2011; 
1:101. [PubMed: 24683503] 

25. Liu JZ, Tozzi F, Waterworth DM, et al. Meta-analysis and imputation refines the association of 
15q25 with smoking quantity. Nat Genet. 2010; 42(5):436–40. [PubMed: 20418889] 

26. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and 
population-based linkage analyses. Am J Hum Genet. 2007; 81(3):559–75. [PubMed: 17701901] 

27. Li JZ, Absher DM, Tang H, et al. Worldwide human relationships inferred from genome-wide 
patterns of variation. Science. 2008; 319(5866):1100–4. [PubMed: 18292342] 

28. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype 
data: linked loci and correlated allele frequencies. Genetics. 2003; 164(4):1567–87. [PubMed: 
12930761] 

29. Walsh KM, de Smith AJ, Welch TC, et al. Genomic ancestry and somatic alterations correlate with 
age at diagnosis in Hispanic children with B-cell acute lymphoblastic leukemia. Am J Hematol. 
2014; 89(7):721–5. [PubMed: 24753091] 

30. Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for 
absolute quantitation of DNA copy number. Anal Chem. 2011; 83(22):8604–10. [PubMed: 
22035192] 

31. Walsh KM, de Smith AJ, Chokkalingam AP, et al. GATA3 risk alleles are associated with 
ancestral components in Hispanic children with ALL. Blood. 2013; 122(19):3385–7. [PubMed: 
24203929] 

32. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes 
using RegulomeDB. Genome Res. 2012; 22(9):1790–7. [PubMed: 22955989] 

33. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and 
regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012; 
40(Database issue):D930–4. [PubMed: 22064851] 

34. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013; 45(6):580–5. [PubMed: 
23715323] 

35. Bahuau M, Vidaud D, Jenkins RB, et al. Germ-line deletion involving the INK4 locus in familial 
proneness to melanoma and nervous system tumors. Cancer Res. 1998; 58(11):2298–303. 
[PubMed: 9622062] 

36. Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma-
prone kindreds with p16INK4 mutations. N Engl J Med. 1995; 333(15):970–4. [PubMed: 
7666916] 

37. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein 
function using the SIFT algorithm. Nat Protoc. 2009; 4(7):1073–81. [PubMed: 19561590] 

38. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing 
potential of sequence alterations. Nat Methods. 2010; 7(8):575–6. [PubMed: 20676075] 

39. Reymond A, Brent R. p16 proteins from melanoma-prone families are deficient in binding to 
Cdk4. Oncogene. 1995; 11(6):1173–8. [PubMed: 7566978] 

40. Walker GJ, Gabrielli BG, Castellano M, Hayward NK. Functional reassessment of P16 variants 
using a transfection-based assay. Int J Cancer. 1999; 82(2):305–12. [PubMed: 10389768] 

41. Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a 
subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 
2013; 110(15):6021–6. [PubMed: 23530248] 

42. Tomasetti C, Vogelstein B. Cancer etiology. Variation in cancer risk among tissues can be 
explained by the number of stem cell divisions. Science. 2015; 347(6217):78–81. [PubMed: 
25554788] 

Walsh et al. Page 15

Cancer Res. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Burdon KP, Macgregor S, Hewitt AW, et al. Genome-wide association study identifies 
susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1. Nat Genet. 2011; 
43(6):574–8. [PubMed: 21532571] 

44. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 
affects the risk of myocardial infarction. Science. 2007; 316(5830):1491–3. [PubMed: 17478679] 

45. Yasuno K, Bilguvar K, Bijlenga P, et al. Genome-wide association study of intracranial aneurysm 
identifies three new risk loci. Nat Genet. 2010; 42(5):420–5. [PubMed: 20364137] 

46. Walsh KM, de Smith AJ, Chokkalingam AP, et al. Novel childhood ALL susceptibility locus 
BMI1-PIP4K2A is specifically associated with the hyperdiploid subtype. Blood. 2013; 121(23):
4808–9. [PubMed: 23744494] 

47. Papaemmanuil E, Rapado I, Li Y, et al. RAG-mediated recombination is the predominant driver of 
oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014; 
46(2):116–25. [PubMed: 24413735] 

48. Walsh KM, Anderson E, Hansen HM, et al. Analysis of 60 reported glioma risk SNPs replicates 
published GWAS findings but fails to replicate associations from published candidate-gene 
studies. Genet Epidemiol. 2013; 37(2):222–8. [PubMed: 23280628] 

49. Diskin SJ, Capasso M, Diamond M, et al. Rare variants in TP53 and susceptibility to 
neuroblastoma. J Natl Cancer Inst. 2014; 106(4):dju047. [PubMed: 24634504] 

50. Stacey SN, Sulem P, Jonasdottir A, et al. A germline variant in the TP53 polyadenylation signal 
confers cancer susceptibility. Nat Genet. 2011; 43(11):1098–103. [PubMed: 21946351] 

Walsh et al. Page 16

Cancer Res. Author manuscript; available in PMC 2016 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Summary of study design and analyses
The flowchart details progression of subjects and analyses through various stages of the 

study.
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Figure 2. Ethnic-specific patterns of linkage disequilibrium in the 9p21.3 region
(A) Haplotype structure in the California Childhood Leukemia Study Hispanic discovery set 

(Ncases=321, Ncontrols=454). (B) Haplotype structure in the Children's Oncology Group and 

Wellcome Trust Consortium validation set (Ncases=980, Ncontrols=2624). Darker shading 

indicates higher R2 values and greater correlation between SNPs.
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Figure 3. Volcano plot of SNP associations from case-control analyses of California Childhood 
Leukemia Study (CCLS) participants and Children's Oncology Group (COG) participants
SNP associations from CCLS Hispanics and COG European-ancestry subjects were 

combined via meta-analysis then plotted with -log10(P-values) on the Y-axis and ln(odds 

ratio) on the X-axis. The open black circle denotes rs3731217, the ALL tag-SNP identified 

in previous GWAS. 42 SNPs having smaller p-values and larger effect sizes than GWAS tag 

SNP rs3731217 in CCLS discovery analyses, and also associated at P<1.1×10−3 in COG 

validation analyses, appear as black diamonds. Three outlier associations are labeled with 

their rsID.
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Figure 4. Representation of the coding sequences of the CDKN2A gene
Transcripts 1-5 are p16 splice variants and transcript 6 is the p14ARF (Exon 1 not pictured). 

Light green blocks depict coding exons. Dark green blocks are untranslated. The red vertical 

line indicates the position of the rs3731249 missense variant. This polymorphism alters 

amino acid coding (Alanine → Threonine) in p16 splice variants 1, 2, 4, and 5, but not in 

splice variant 3 or in p14ARF. Gene transcript data were extracted from the NCBI Homo 

sapiens Annotation Release 105.
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Figure 5. SNP association plots for ALL risk at 9p21.3 in meta-analysis of CCLS Hispanic 
discovery set and the COG/WTCCC validation set, both with and without adjustment for 
missense variant rs3731249
The strength of linkage disequilibrium between each SNP and missense variant rs3731249 

(purple circle) is indicated by color. Recombination rates, plotted in light blue, are based on 

1000 Genomes CEU samples. (A) Association plot for ALL risk in the combined CCLS 

Hispanic discovery set and COG validation set. (B) Association plot for ALL risk in the 

combined CCLS Hispanic discovery set and COG validation set, adjusted for rs3731249 

genotype.
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Figure 6. Risk allele proportions in constitutive and tumor DNA from ALL patients 
heterozygous for the rs3731249 missense variant
Risk allele proportions are displayed as a fraction of total allelic copy number measured 

using ddPCR. Subjects were assayed in duplicate, and error bars represent standard error of 

the mean. Upper/lower thresholds of allelic imbalance (AI) were determined from repeat 

measurements of constitutive DNA samples (white squares). In tumor DNA, 14 patients 

showed AI favoring the rs3731249 risk allele versus 3 patients with AI favoring the 

protective allele (PBinomial=0.006).
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Figure 7. SNP association plots for risk of melanoma, childhood ALL, and glioblastoma at 
9p21.3
The strength of LD between each SNP and missense variant rs3731249 (purple circle) is 

indicated by color. Recombination rates, plotted in light blue, are based on 1000 Genomes 

samples. (A) SNP association plot for melanoma risk among 1969 cases and 1044 controls 

of European-ancestry. (B) SNP association plot for childhood ALL risk from a meta-

analysis of 321 cases and 454 controls from the CCLS Hispanic GWAS and 980 cases and 

2624 controls from COG/WTCCC. (C) SNP association plot for glioblastoma risk among 
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684 patients and 821 controls of European-ancestry from the UCSF Adult Glioma Study and 

The Mayo Clinic.
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