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Abstract

Cocaine dependence (CD) is associated with several cognitive deficits. Accumulating evidence,
based on human and animal studies, has led to models for interpreting the neural basis of cognitive
functions as interactions between functionally related brain regions. In this review, we focus on
the magnetic resonance imaging (MRI) studies using brain connectivity techniques as related to
CD. The majority of these brain connectivity studies indicated that cocaine use is associated with
altered brain connectivity between different structures, including cortical-striatal regions and
default mode network. In cocaine users, some of the altered brain connectivity measures are
associated with behavioral performance, history of drug use, and treatment outcome. The
implications of these brain connectivity findings to the treatment of CD and the pros and cons of
the major brain connectivity techniques are discussed. Finally potential future directions in
cocaine use disorder research using brain connectivity techniques are briefly described.
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Introduction

Cocaine use disorder (CD) (See Table 1 for all abbreviations used in this article) is
associated with several cognitive deficits [1-2]. Accumulating evidence from human and
animal studies has led to models for interpreting the neural basis of cognitive functions as
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interactions between functionally related brain regions [3-6]. One of the theories is that CD
affects three separate and interacting systems: the prefrontal cortex (PFC) dependent
(reflective) system, the amygdala-striatum dependent (automatic, habitual or salient) system,
and the insula system that translates interoceptive signals into conscious feelings of desire
and decision-making processes related to uncertain risk and reward [7-8]. Imbalance among
these systems has been theorized to contribute to compulsive substance use and loss of
control in substance use disorders [7,9]. In addition, successful abstinence from drugs is
associated with improvement in prefrontal structure and function [10], with likely
improvement in the control of PFC over the striatal regions [10-11]. Furthermore, Robbins
et al. [12] proposed ‘neurocognitive endophenotypes’, whereby changes in behavioral or
cognitive processes are associated with deficits in neural systems. According to Robbins et
al. [12], four “frontostriatal loops’ putatively associated with different aspects of impulsivity
and compulsivity. Among these loops, two loops are relevant to impulsivity: i.e., the
ventromedial PFC, subgenual cingulate cortex, ventral striatal loop associated with reward,
and the ventrolateral PFC, ACC, pre-supplementary motor area, caudate, and putamen loop
associated with stop-signal inhibition. Thus, brain connectivity analysis may be a potentially
powerful tool to understand the neural correlates underlying impaired cognitive functions,
and to test theories such as the aforementioned triple-system theory.

Magnetic resonance imaging (MRI) based brain connectivity analysis is generally classified
into functional connectivity [13], effective connectivity [13], and structural connectivity
[14]. Functional connectivity refers to the correlations between spatially remote
neurophysiological events [13]. Unlike functional connectivity, effective connectivity
models the causal effect that one region’s activity has on another region [13]. Thus the
direction of connectivity is determined in effective connectivity. Structural connectivity can
be measured using white matter tractography, which is used to visually represent fiber tracts
using MRI diffusion tensor imaging [14]. Figure 1 shows a schematic diagram illustrating
structural connectivity (fiber pathways, top), functional connectivity (correlations, middle),
and effective connectivity (causal relationship, bottom) among between two brain regions
(R1 and R2).

In this article, we review MRI-based brain connectivity studies that investigated the effects
of cocaine use in humans and animals with a focus on the aforementioned triple-system
theory. We summarize the relationship between the altered brain connectivity measures and
the behavioral performance, drug use history, and treatment outcomes in the CD subjects.
We discuss the implications of the brain connectivity findings on the treatment of CD and
the pros and cons of the major brain connectivity techniques used in these studies. Finally
we discuss potentially useful future directions in CD research using brain connectivity.

Included studies and major findings

We searched http://www.ncbi.nlm.nih.gov/pubmed/ using the key words “cocaine
connectivity MRI” and found 47 articles. The search date was June 1st 2015. Out of these,
33 articles used MRI-based brain connectivity analysis in chronic cocaine use. Therefore
these 33 articles were included in this review. Thirty of these included studies on human
subjects except for three in which monkeys or rats were used as the subjects. Twenty of
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these 33 studies investigated resting state functional connectivity (rsFC) in humans. The
study subjects, rsFC analysis methods, and the major findings of these rsFC human studies
are summarized in Table 3. Ten of these 33 studies investigated functional connectivity or
effective connectivity in humans during tasks. The study subjects, the task used, the brain
connectivity analysis methods, and the major findings of these task-based brain connectivity
studies are summarized in Table 4. Three of these 33 studies investigated rsFC in animals.
The study subjects, rsFC analysis methods, and the major findings of these animal studies
are summarized in Table 5. The detailed seed regions and/or regions of interest (ROIs) used
are also provided for the brain connectivity analytical methods.

Resting state functional connectivity studies in humans

During resting state, cocaine-dependent subjects (CDs), cocaine abusers, or subjects with
prenatal cocaine exposure (PCE), had greater or lower FC between different regions
compared to non-drug-using controls (CTLs). These results are summarized in Table 3. As
can be seen from Table 3, the results across the studies are not always consistent. The
conflicting findings could be due to different methods [15], small sample size, different
cohorts [14] used in different studies and/or multiple other unknown factors [14].

Task-based brain connectivity studies in humans

As summarized in Table 4, compared to CTLs, the CD subjects had greater or lower FC
between different brain regions.

Three effective connectivity studies were conducted to investigate neural correlates
underlying working memory [16], response inhibition [17], and cue reactivity [18] in CDs.
Ma et al. [16] used dynamic causal modeling (DCM) of a working memory task and found
that during short memory delay condition, the inferior frontal gyrus to striatum effective
connectivity was reduced in CDs but increased in CTLs. During the longer memory delay
condition, the middle frontal gyrus to striatum effective connectivity was more reduced in
CDs than in CTLs [14]. In another functional magnetic resonance imaging (fMRI) based
DCM study, Ma et al. [17] used a Go/NoGo task to test response inhibition in CDs and
matched CTLs. Results of this study showed differences between groups in effective
connectivity during the Hard NoGo condition: the effective connectivity from right (R)
dorsolateral prefrontal cortex (DLPFC) to left (L) caudate was increased in CTLs but
remained the same in the CDs; the effective connectivity from R ventrolateral prefrontal
cortex to L caudate was reduced in the CTLs but remained the same in the CDs; the
effective connectivity from L anterior cingulate cortex (ACC) to L caudate remained the
same in the CTLs but was reduced in the CDs. Ray et al. [18] found that during cocaine-cue
exposure of a cocaine-Stroop task, CDs had a particular feed-forward effective connectivity
among the nodes of the drug-cue processing network
(amygdala—hippocampus—dorsalstriatum—insula—medial frontal cortex, DLPFC, ACC)
that was not present in the CTLs. All these effective connectivities had positive strength
except for the connectivity from insula to medial frontal cortex. Consistent with the triple-
system theory [7-8], these effective connectivity studies indicated that CD is associated with
an imbalance among the PFC regions, insula, and striatal regions: weakened control of the

Expert Rev Neurother. Author manuscript; available in PMC 2016 November 01.



1duosnue Joyiny 1duosnue Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ma et al.

Page 4

PFC regions over the striatal regions during working memory [16] and response inhibition
[17] and strengthened control of the striatal and insular regions over the PFC regions during
the cocaine-Stroop task [18].

Resting state functional connectivity studies in animals

Three resting state functional connectivity studies were conducted in rats [19-20] or
monkeys [21]. The results are summarized in Table 5. Lu et al. [20] found that cocaine self-
administration (SA) rats had lower rsFC between prelimbic cortex and entopeduncular
nucleus and between nucleus accumbens core and dorsomedial PFC compared to both
sucrose-SA and CTL rats. In addition, the rsFC between nucleus accumbens core and
dorsomedial PFC was positively correlated with cocaine SA escalation in cocaine-SA rats.
The other two studies investigated the acute effect of cocaine administration in cocaine-SA
rats or cocaine-SA monkeys. Murnane et al. [21] found that acute cocaine administration
selectively reduced the rsFC between ACC and nucleus accumbens, and between DLPFC
and nucleus accumbens. In addition, the rsFC between DLPFC and nucleus accumbens
during abstinence predicted cocaine intake when the monkeys were provided renewed
access to cocaine [21]. Another animal study [19] also reported increased rsFC after acute
cocaine administration. This was different from another study that reported decreased rsFC
[21]. This difference may be related to the different species or seed regions used in the two
studies.

Relationship between brain connectivity and behavior, drug use history,

and treatment outcome

Greater impulsivity was found to be associated with higher rsFC between orbital frontal
cortex and subgenual ACC [22], and between striatum and DLPFC [23]. Greater impulsivity
was found to be associated with lower resting state inter-network connectivity between an
intrinsic connectivity network involving the anterior insula and ACC, and an intrinsic
connectivity network involving the striatum [24]. In addition, the rsFC between perigenual
ACC and DLPFC was significantly and positively correlated with reversal learning score
[25]. In [22], the authors first computed the rsFC between right ventral striatum (superior
part) and anterior prefrontal cortex/orbitofrontal cortex (Go circuit) and the rsFC between
right ventral striatum (inferior part) and dorsal anterior cingulate cortex (STOP circuit). The
GO circuit is hypothesized to promote compulsive behaviors while the STOP circuit may
limit such behaviors [22]. They then computed rsFC (difference) = rsFC (GO circuit) - sSFC
(STOP circuit) and performed a correlation analysis and found that rsFC (difference) was
positively correlated with compulsive like behaviors reflected in the DSM-IV-TR in cocaine
users. The greater difference in rsFC between striatal-anterior prefrontal/orbital frontal
cortex (GO) and striatal-dorsal ACC (STOP) circuits was associated with more loss of
control over cocaine use [23]. These studies suggest that the impaired cortical-striatal
connectivity may be an underlying factor in the impaired behavioral performance in CD.

The duration of cocaine use was associated with lower rsFC between ventral tegmental area
and thalamus/lentiform nucleus/nucleus accumbens [26], greater short-range and long-range
functional connectivity density in the regions of the default mode network (DMN) [27],
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lower intra-network connectivity strength of sensory motor cortex [28], and greater inter-
network connectivity strength between occipital-limbic brain regions [28]. Greater peak
cocaine level was associated with greater rsFC between caudate and thalamus and between
amygdala and insula, and with lower rsFC between amygdala and cerebellum [22]. Greater
recent cocaine use was associated with greater rsFC between striatum and DLPFC [23].
Greater cocaine use frequency and money spent on cocaine per week in abstinent CDs was
associated with lower connectivity strength within occipital brain regions [28].

One study [29] compared rsFC across relapsed CDs, non-relapse CDs, and CTLs. The
results of that study showed that relapsed CDs had lower rsFC between the L corticomedial
amygdala and ventromedial PFC/rostral ACC than non-relapse CDs [29]. Adinoff et al. [30]
found that rsFC between posterior hippocampus and posterior cingulate cortex (part of
DMN) predicted relapse with 75% accuracy at 30, 60, and 90 days following treatment.
During cocaine-Stroop tasks, greater Stroop-related intrinsic connectivity in bilateral
thalamus, ventral striatum, and substantia nigra regions was associated with smaller number
of self-reported days of consecutive abstinence during treatment [31]. In addition, greater
Stroop-related intrinsic connectivity in bilateral thalamus, ventral striatum, and substantia
nigra, R insula and L hippocampus was associated with more positive urine screens [31].
Greater effective connectivity from insula to DLPFC was associated with greater cocaine
craving ratings [18]. In monkeys, impaired connectivity between PFC and striatal regions
during abstinence predicted cocaine intake when the monkeys were able to access cocaine
again [21]. These studies suggest that impaired cortical-striatal connectivity and DMN may
be predictive of treatment outcomes.

Implication for the treatment of cocaine use disorder

The findings of the brain connectivity studies suggest that the cortico-striatal circuits could
be therapeutic targets in CD. For example, Konova et al. [32] found that short-term
methylphenidate (MPH) administration reduced an abnormally strong rsFC between ventral
striatum and the dorsal striatum (putamen/globus pallidus), and lower rsFC between these
regions with placebo administration robustly correlated with less severe addiction. In
addition, short-term MPH strengthened several corticolimbic and corticocortical
connections. Konova et al. [27] found that while the effects of MPH on functional
connectivity density only partly overlapped with those of CD, MPH was associated with
reduced density of short-range connections to the putamen/thalamus, a network of core
relevance to habit formation and addiction [33]. These studies [27,32] did not report if the
rsFC affected by the MPH is correlated with the clinical measures such as cocaine use or
impulsivity. In addition to medications, deep brain stimulation (DBS) and repeated trans-
cranial magnetic stimulation (rTMS) are two promising approaches which can be used for
treating CD, with cortical-striatal circuits as the targets [11].

Expert Commentary

While activation measures or structural measures provide local information, the connectivity
measures provide information about the relationship among distinct brain regions. Previous
studies (reviewed by Rowe [34]) showed that the functional or effective connectivity
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methods could be sensitive to the presence or severity of disease and/or treatment, even
where activation analysis is insensitive. However, as suggested by Rowe [34], the
connectivity methods should be used as complementary to, not a substitute for, the
activation or structural measures.

The majority of the existing brain connectivity studies indicate that CD is associated with
altered brain networks including cortical-striatal regions and DMN. Within the CD subjects,
some of the altered brain connectivity measures are associated with behavioral performance,
drug use history, or treatment outcomes. Some studies, e.g., Ma et al. [16,35], have
speculated that the change of connection could be due to the effect of change of
neurotransmitters. The direct “toxic” effect of cocaine could be another causal factor. Future
studies are needed to test these hypotheses. Given the alterations reviewed here, it is an
interesting topic to describe which of these alterations in connectivity are specific of CD,
and which others are shared by consumption of other drugs of abuse.

The cortical-striatal circuits could be promising therapeutic targets for CD. There is a
pressing need to develop clinically useful biomarkers for treatment or prognosis of
substance use disorders [36-37]. To date, however, it is still one of the major challenges to
identify such useful biomarkers [38]. Rowe [34] has demonstrated that the connectivity
approaches are relatively more sensitive to the presence or severity of disease and/or
treatment than the approaches of regionally specific dysfunction. Thus, brain connectivity
approaches could be clinically useful biomarkers for the treatment or prognosis of cocaine
use disorder although there is still a paucity of such studies in the literature of cocaine use
disorder.

Resting state functional connectivity and task-based effective connectivity are the two major
brain connectivity techniques used in the studies described above. During the resting state
fMRI scan, the subject is not required to perform any task. Thus resting state design is
particularly attractive for animal studies or studies on patients incapable of task performance
during the scan. This is an advantage of the resting state design over the task-based design.
However, some neuronal processes essential in CD studies can only be measured with task-
based fMRI [39]. In addition, resting state fMRI data has relatively low signal to noise ratio
and requires extensive preprocessing steps to increase the signal to noise ratio. One should
choose either task-based or resting state or both designs depending on the research question.
Functional connectivity, which is based on correlation, cannot provide the direction of
connectivity. However, functional connectivity is generally easy to compute although more
complicated methods such as the graph theoretical analysis have been prposed [40].
Functional connectivity analysis could be hypothesis driven [41] or data driven (e.g., ICA)
[42]. Although originally, functional connectivity needed ROIs to compute the correlation
coefficients, whole brain functional connectivity methods such as the modular analysis [43]
are now available and eliminates this requirement. Effective connectivity can provide the
direction of connectivity, which may be important for understanding the neurobiology of
CD. Effective connectivity analysis is generally complicated. In its original implementation,
effective connectivity was hypothesis driven, but currently data driven effective connectivity
techniques such as the DCM network discovery [44—45] are available. Effective
connectivity needs ROIs and whole brain effective connectivity technique available are not
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yet available. DCM, one of the implementation of effective connectivity analysis, works on
underlying neuronal level rather than at the hemodynamic level [46]. Therefore, confounders
such as disease or medications may have less effect on the DCM analysis [46-49].
Originally, DCM was based on task-based fMRI data. However, currently novel DCM
techniques have been developed for the analysis of resting state fMRI [50-52].

Five Year View

Almost all human studies reviewed here are cross sectional in nature. Thus, these studies
cannot distinguish the preexisting altered brain connectivity from that caused by chronic
cocaine use. Given the fact that both could be underlying factors, it is necessary to
distinguish these two causes. Animal studies are particularly appropriate to address this
question because the drug use can be well-controlled. Currently there are few brain
connectivity studies in experimental CD. Resting state functional connectivity and structural
connectivity analyses are particularly suitable for animal studies. Alternatively, longitudinal
studies using non-treatment-seeking CD subjects can hopefully also address this question.
However, we are not aware of any such publications.

Similarly, there exists the possibility that a remote region that has not been directly damaged
shows a change of functional (or effective) connectivity. Such a phenomenon is called
“connectional diaschisis” [53-54]. As suggested by Carrera and Tononi [54], the
connectivity showing connectional diaschisis could be the target of therapeutic strategies.
Brain lesion has been used to locate directly damaged brain region in [53]. For cocaine use
disorder, brain regions showing altered structure or function could be used as directly
damaged brain regions.

Functional connectivity and effective connectivity are related to white matter structural
connectivity [55-56]. Previous MRI diffusion studies have reproducibly shown that CD is
associated with significant white matter changes in both humans [57-63] and animals [64—
65]. The impaired white matter integrity could be associated with impulsivity [57], poor
decision-making [62], or worse treatment outcomes [66]. However, only one study [67] has
used MRI diffusion-derived tractography to investigate the impaired structural connectivity
in the PCE subjects.

Combined neuroimaging modalities can provide more information than a single imaging
modality alone. Adinoff et al. [30] combined pseudo-continuous arterial spin labeling
(pCASL) and resting state fMRI. These authors first analyzed the pCASL data to locate the
region showing group difference in regional cerebral blood flow (rCBF). They then used this
region as a seed for the resting state fMRI functional connectivity analysis. Coullaut-Valera
et al. [68] used electroencephalography (EEG) to investigate impaired functional
connectivity in polydrug users. EEG has low spatial resolution and high temporal resolution
and so it is natural to combine it with fMRI which has a high spatial resolution, but
relatively low temporal resolution, to gain more understanding of brain connectivity. A
review [69] of 12 papers correlating EEG and fMRI-based resting state networks in adult
human subjects suggests that spatially delimited theta and whole/local alpha waves could
add important additional information to fMRI-based resting state networks (RSNs).
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Combined fMRI-based functional/effective connectivity and MRI diffusion-based structural
connectivity may provide additional insight for the relationship between brain structure and
function [55,70]. Prior information provided by MRI diffusion-based tractography
(structural connectivity) can improve the results of DCM effective connectivity analysis
[71].

DCM could be used to understand the consequences of pathophysiological changes. For
example, DCM has been used to explain how acetylcholine enhances the precision of
bottom-up synaptic transmission in cortical hierarchies [72]. In another study, Moran et al.
[73] used DCM to infer the synaptic basis of ketamine-induced change in coordinated
oscillations in the neural circuits of the rat happocampus and PFC. The information provided
in these studies suggests that it is possible to use DCM to quantify the putative synaptic
mechanisms underlying certain drug effects in terms of changes in effective (directional)
connectivity between brain regions.
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Figure 1.
Schematic diagram illustrating structural connectivity (fiber pathways, top), functional

connectivity (correlations, middle), and effective connectivity (causal relationship, bottom)
between two brain regions (R1 and R2).

Expert Rev Neurother. Author manuscript; available in PMC 2016 November 01.



1duosnue Joyiny 1duosnuen Joyiny 1duasnuen Joyiny

1duasnuen Joyiny

Ma et al.

Table 1

Abbreviations used in this manuscript.

Abbreviations

Definition

AB attentional bias

AcbC nucleus accumbens core

AcbS nucleus accumbens shell

ACC anterior cingulate cortex

BLA basolateral amygdala

CCA cross correlation analysis

CD cocaine dependence

CDs Cocaine dependent subjects
CMA corticomedial amygdala

coc cocaine

CPu caudate putamen

CTLs controls

DBS deep brain stimulation

DC dorsal caudate

DCM dynamic causal modeling

DCP dorsal caudal putamen

DLPFC dorsolateral prefrontal cortex
DMN default mode network

DMT delayed memory task

DRP dorsal rostral putamen

ECN executive control network

EEG electroencephalography

FC functional connectivity

FCD functional connectivity density
fMRI functional magnetic resonance imaging
ICA independent component analysis
ICD intrinsic connectivity distribution
ICN intrinsic connectivity networks
IFC inferior frontal cortex

IFG inferior frontal gyrus

IFS inferior frontal sulcus

IMaGES Independent Multi-sample Greedy Equivalence Search
IMT immediate memory task

L left

LR bilateral

M1 primary motor cortex

MCC middle cingulate cortex
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Abbreviations

Definition

MDN mediodorsal nucleus

MFC medial frontal cortex

MFG middle frontal gyrus

MPH methylphenidate

MRI magnetic resonance imaging

MTG middle temporal gyrus

MTL medial temporal lobe

NAC nucleus accumbens

NCOC utero exposure to non-cocaine drugs
OFC orbital frontal cortex

PAG periaqueductal gray

pCASL pseudo-continuous arterial spin labeling
PCC posterior cingulate cortex

PCE prenatal cocaine exposure

PDE prenatal drug exposure

PFC prefrontal cortex

PGs individuals with pathological gambling
pHp posterior hippocampus

PPC posterior parietal cortex

PPI psychophysiological interaction
PrL prelimbic cortex

R right

ROIs regions of interest

rsFC resting state functional connectivity
RSN resting state network

ITMS repeated trans-cranial magnetic stimulation
S1 primary sensory cortex

S2 secondary sensory cortex

SA self-administration

SFG superior frontal gyrus

SMA supplementary motor area

SN salience network

STR striatum

VLPFC ventrolateral prefrontal cortex

VRP ventral rostral putamen

VSi inferior ventral striatum

VSs superior ventral striatum

VTA ventral tegmental area
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Table 2

Connectivity techniques used in the studies reviewed in this manuscript.

Techniques

Brief introduction

Cross correlation analysis (CCA)

CCA is amethod in which functional connectivity is measured by evaluating the correlation
between the time course of each voxel (or region of interest) and a reference function (often
obtained from a seed).

Dynamic causal modeling (DCM)

DCM is a Bayesian procedure that measures effective connectivity through optimally predicting
how fMRI data were generated. The effective connectivity, which is formulated in terms of
stochastic or ordinary differential equations, is modeled at the hidden neuronal level rather than
the observed fMRI level.

Functional connectivity density (FCD)

It estimates the number of global and local functional connections to a given region that exceed a
specified correlation strength, based on correlations among all voxels, and the number of remote
(long-range) connections, which is the difference between the former two numbers.

Global connectivity analysis

It is a data-driven FC method. It is a quantitative measure of the extent each voxel is connected to
every other voxel in the brain, based on a correlation coefficient matrix obtained from the
correlation analysis among all voxels.

Graph theory

A graph consists of a set of nodes (or vertices) and a set of connections (or edges). The adjacency
matrix A contains the information about the connectivity structure of the graph. Ai,j = 1 when an
edge exists between two vertices i and j, otherwise Ai,j = 0. The number of edges connecting to a
vertex is called the degree k of this vertex. In graph theory, efficiency provides a physical
meaning for topological characterization of the networks and measures the ability of information
transfer of a network. Efficiency can be measured at the local or global level. Small-worldness
refers to a phenomenon that most nodes are not neighbors of one another. However, every other
node can reach these nodes through a small number of steps (or hops).

Intrinsic connectivity density (ICD)

ICD is based on the correlation among all voxels of interest. For each voxel, a histogram of
correlations is constructed to estimate the distribution of connections to this voxel. The alpha
parameter, which controls the spread of the distribution of connections, is a measure of number of
high-correlation connections. Group level analysis is conducted based on the parametric image of
the alpha parameter from all voxels for each subject.

In dependent component analysis (ICA)

ICA is data-driven method for functional connectivity analysis, which drives a set of
measurement data into a number of independent components (or maps). It requires no reference
function or predefined seed.

Independent Multisample Greedy
Equivalence Search (IMaGES)

IMaGES measures effective connectivity. Given a set of ROIs and without a prescribed model,
IMaGES uses a Bayesian algorithm to search for the best model.

Modular analysis

Based on the correlations among all voxels, the modular analysis aims to find an optimal partition
of modules, which are groups of nodes that are strongly connected with each other in the same
module. After the modules are determined, both inter-module connectivity and intra-module
connectivity are then computed.

Psychophysiological interaction (PPI)

PPI measures functional connectivity between a brain region and the rest of the brain with
relation to the performance of a particular psychological task.
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