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a b s t r a c t

This data article is related to the research paper entitled “senary
refractory high-entropy alloy CrxMoNbTaVW [1]”. In this data
article, the pseudo-binary Cr-MoNbTaVW phase diagram is pre-
sented to show the impact of Cr content to the senary Cr-
MoNbTaVW alloy system; the sub-lattice site fractions are pre-
sented to show the disordered property of the Cr-MoNbTaVW BCC
structures; the equilibrium and Scheil solidification results with
the actual sample elemental compositions are presented to show
the thermodynamic information of the melted/solidified
CrxMoNbTaVW samples; and the raw EDS scan data of the arc-
melted CrxMoNbTaVW samples are also provided.

& 2015 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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ata format
 Analyzed

xperimental
factors
The HEA samples were prepared using arc-melting of metallic powders. For
material characterizations, the samples were sectioned and polished.
xperimental
features
The EDS area scan was conducted and the ThermoCalc Calculations were per-
formed based on the EDS measured compositions.
ata source
location
Baton Rouge, Louisiana, USA
ata accessibility
 The data are included in this article.
D

Value of the data

� A full range pseudo-binary phase diagram of CrxMoNbTaVW is provided, which can be used for
future comprehensive studies on the CrxMoNbTaVW high entropy alloy system.

� The sub-lattice composition data can guide researchers on alloy microstructure analyses.
� The data provide information on the thermodynamic behavior of CrxMoNbTaVW HEA samples.
1. Data

Compared with the traditional single-principal-element alloys, high entropy alloys (HEA) have five
or more principal metallic elements at near equal molar ratios and a simple phase crystal structure
[2]. Based on the reported quinary MoNbTaVW alloy system [3] and Ti containing TiMoNbTaVW
system [4], Cr is incorporated into the MoNbTaVW system to form a senary refractory HEA
CrxMoNbTaVW.

To examine the effect of Cr concentration to the CrxMoNbTaVW HEA system, quasi-binary phase
diagram with the variation of Cr composition is presented in Fig. 1. As laves phase, a common
intermetallic phase, exists in the Cr alloyed refractory alloys [5], the quasi-binary phase diagram can
be used to guide the formation of single phased HEAs.
Fig. 1. Calculated pseudo-binary phase diagram of CrxMoNbTaVW.
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The composition data for two sub-lattices of BCC are calculated. The BCC lattice contains two
interpenetrating simple cubic sub-lattices, one sub-lattice consisting of the cubes’ corners, and the
other sub-lattice consisting of the cubes’ centers. In the ordered state, since certain atoms appear at
certain spatial positions, the hypothetically divided sub-lattices 1 and 2 will be occupied by two
different combinations of elements. That causes the elemental site occupancies of sub-lattices 1 and 2
differ to each other. In contrast, under a completely disordered state, a site can be occupied by an
atom of any type, thus the probability for a given site containing an atom of a given type is equal to
the probabilities for the other sites [6]. In Thermo-CalcTM calculations, when the site occupancies of
the two sub-lattices are the same, the structure is considered to be disordered [7]. Fig. 2 shows the
site occupancy fractions are identical for both sub-lattices 1 and 2.

The initial Thermo-CalcTM calculations for CrxMoNbTaVW were based on the designed Cr contents
(x¼0.5, x¼1.0, x¼2.0) [1]. For experimental validations, samples for the targeted Cr ratios were
synthesized and experimentally characterized. Although the compositions in the feedstock were
based on the designed Cr contents (x¼0.5, x¼1.0, x¼2.0), due to the fact that the boiling temperature
of Cr is even less than the melting temperature of W, the loss of Cr during the arc melting process is
intense. This excess vaporization causes the deviation of the bulk compositions from the targeted
ratios. After the actual bulk compositions of three samples were determined through the EDS area
scans, the CALPHAD calculation of the solidification process was re-performed using the measured
EDS compositions. The CALPHAD simulations using these true compositions are presented in this
data paper.
2. Experimental design, materials and methods

The Thermo-CalcTM software was used to perform the CALPHAD calculations. In the Console mode
of Thermo-CalcTM, after initialization, the thermodynamic database TCNI7 [7] was employed to cover
all edge binaries and most available ternaries of the Cr–Mo–Nb–Ta–V–W system. Then the elements
Cr, Mo, Nb, Ta, V and W were defined and all the phases were restored for exhaustive analysis. After
defining the system, the POLY3 module was used for the phase diagram calculation. The initial
conditions include temperature, pressure, and the equivalence properties for all elements besides Cr.
The temperature and the Cr composition were set as variables and the searching ranges were also
assigned. The POST module of Thermo-CalcTM was used to plot the phase diagram after the mapping
was completed, as shown in Fig. 1. In the associated research article [1], the range of Cr content was
narrower, for batter matching of the experimentally tested Cr content range.
Fig. 2. Sub-lattices 1 and 2 compositions of (a) BCC1 and (b) BCC2 in Cr1MoNbTaVW.



B. Zhang et al. / Data in Brief 5 (2015) 730–735 733
The site fractions of sub-lattices 1 and 2 of each BCC structure were plotted based on Thermo-
CalcTM simulations. After confirming the TCNI7 database, all six elements of Cr, Mo, Nb, Ta, V and W
were defined and all the relevant phases were restored. Then the POLY3 module of the Thermo-
CalcTM was activated for the property diagram calculations. For the initial conditions, the ambient
temperature and pressure were set and the mole fractions of all the elements were set to be 16.67%.
The equilibrium single point calculation was initiated to determine a starting point for the step loop.
The temperature range and increment were then set for the rest of step calculations. After the
Fig. 3. EDS bulk composition analysis results for CrxMoNbTaVW HEAs: (a) x¼0.5, (b) x¼1.0 and (c) x¼2.0.



Fig. 4. Phase compositions of equilibrium solidification using the measured EDS compositions (a) Cr0.5MoNbTaVW,
(c) Cr1.0MoNbTaVW, (e) Cr2.0MoNbTaVW; and Scheil solidification: (b) Cr0.5MoNbTaVW, (d) Cr1.0MoNbTaVW,
(f) Cr2.0MoNbTaVW.
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completion of step calculations, the site fractions of BCC1 and BCC2 phases were plotted in the POST
module (Fig. 2(a) and (b)).

For experimental measurements of sample compositions, after sectioning an arc-melted HEA
sample, the exposed surface of the ingot was subsequently ground by 240, 400, 600, and 800 SiC
sandpapers in sequence, before wet-polishing with 1, 0.3 and 0.05 mm Al2O3 suspensions. Field-
emission scanning electron microscope FE-SEM (FEI, Quanta 3DFEG) equipped with BSE and EDS
detectors was used to characterize the chemical compositions of the samples along the cross-sections.
The EDS area scan was performed with a relatively low magnification (600� ) and long live scan time
(200 s) to obtain the element ratios.

The EDS measured elemental ratios, Fig. 3, were regarded as the bulk compositions and were used
to re-perform the CALPHAD solidification calculations. Two different solidification models were used
for all three cases: the equilibrium solidification and the Scheil–Gulliver solidification [8,9].

The equilibrium solidification process can be simulated by the calculation of the property dia-
grams. Similar to the site fraction calculations, the POLY3 module was used to calculate the property
diagrams with the initial elemental ratios decided by the EDS composition results shown in Fig. 3.
Then in the POST module, mole fractions of all the phases are plotted in Fig. 4(a), (c) and (e). The
Scheil solidification assumes no diffusion in the solid phase, so the solid phase is excluded from the
system in each iteration step of the equilibrium calculation. After the initial conditions for each step
were calculated the same way as the equilibrium solidification case, the solid phase amount was fixed
to be zero and the temperature was set to be none for the calculation of the liquidus temperature. The
liquidius temperature was then used as the new starting point for the next step calculation. In each
looping step, only the liquid phase was kept for the equilibrium calculation. After all step calculations
were completed in the prescribed temperature range, the mole fractions of the pre-deducted solid
phases were plotted in Fig. 4(b), (d) and (f).
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