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Although tuberculosis (TB) is a reemerging disease that affects people in developing countries and immunocompromised popu-
lations in developed countries, the current diagnostic methods are far from optimal. Metabolomics is increasingly being used for
studies on infectious diseases. We performed metabolome profiling of plasma samples to identify potential biomarkers for diag-
nosing TB. We compared the plasma metabolome profiles of TB patients (n � 46) with those of community-acquired pneumo-
nia (CAP) patients (n � 30) and controls without active infection (n � 30) using ultrahigh-performance liquid chromatography–
electrospray ionization-quadrupole time of flight mass spectrometry (UHPLC-ESI-QTOFMS). Using multivariate and univariate
analyses, four metabolites, 12R-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid [12(R)-HETE], ceramide (d18:1/16:0), cholesterol
sulfate, and 4�-formyl-4�-methyl-5�-cholesta-8-en-3�-ol, were identified and found to have significantly higher levels in TB
patients than those in CAP patients and controls. In a comparison of TB patients and controls, the four metabolites demon-
strated area under the receiver operating characteristic curve (AUC) values of 0.914, 0.912, 0.905, and 0.856, sensitivities of
84.8%, 84.8%, 87.0%, and 89.1%, specificities of 90.0%, 86.7%, 86.7%, and 80.0%, and fold changes of 4.19, 26.15, 6.09, and 1.83,
respectively. In a comparison of TB and CAP patients, the four metabolites demonstrated AUC values of 0.793, 0.717, 0.802, and
0.894, sensitivities of 89.1%, 71.7%, 80.4%, and 84.8%, specificities of 63.3%, 66.7%, 70.0%, and 83.3%, and fold changes of 4.69,
3.82, 3.75, and 2.16, respectively. 4�-Formyl-4�-methyl-5�-cholesta-8-en-3�-ol combined with 12(R)-HETE or cholesterol sul-
fate offered >70% sensitivity and >90% specificity for differentiating TB patients from controls or CAP patients. These novel
plasma biomarkers, especially 12(R)-HETE and 4�-formyl-4�-methyl-5�-cholesta-8-en-3�-ol, alone or in combination, are po-
tentially useful for rapid and noninvasive diagnosis of TB. The present findings may offer insights into the pathogenesis and host
response in TB.

Tuberculosis (TB) is a disease caused by the bacterium Myco-
bacterium tuberculosis. Although it is a well-known disease that

has been around for much of human history, there are still mil-
lions of new TB cases occurring per year worldwide, and TB re-
mains a leading cause of deaths worldwide, especially in develop-
ing countries. Since the 1980s, TB has reemerged as a result of the
AIDS epidemic and increasing use of immunosuppressants. In
recent years, a higher incidence of extrapulmonary disease in im-
munocompromised hosts and the emergence of multidrug-resis-
tant strains have further complicated diagnosis and treatment (1–
3). Despite the medical importance of TB, diagnosis is still
associated with many unresolved problems. The traditional gold
standard methods are smear and culture for acid-fast bacilli from
clinical specimens. Although culture offers higher sensitivity and
specificity than those of smears, it is not useful for culture-nega-
tive cases, especially in early, disseminated, or extrapulmonary
disease (4, 5). Moreover, it often takes 2 to 6 weeks before culture
is positive and even longer for definitive species identification.
While newer diagnostic modalities, such as adenosine deaminase
levels in pleural fluid, lipoarabinomannan levels in urine, PCR,
and Xpert MTB/RIF assays, have been developed (6–12), there are
still limitations in terms of their sensitivity and/or specificity.

Metabolomics is an emerging platform for studies of infectious
diseases or pathogens (13–19). For TB, the technique has been

applied on cultured isolates for differentiation from other Myco-
bacterium species and studies on the biology and virulence of tu-
berculosis (14, 15, 20–22). For example, lipidomics studies have
revealed novel metabolites potentially associated with growth and
virulence of M. tuberculosis (23, 24). We also recently identified
extracellular metabolites specific to M. tuberculosis (25), support-
ing the potential of metabolomics in exploring novel biomarkers
to better understand its biology and pathogenesis. On the other
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hand, metabolomics applied on direct patient samples may reveal
specific diagnostic markers or be used to monitor treatment re-
sponse (26–29). It has been shown that volatile organic com-
pounds (VOCs) in the urine of TB patients can be distinguished
from those of healthy subjects (26). A study using nuclear mag-
netic resonance spectroscopy-based metabolomics on serum sam-
ples from TB patients demonstrated discrimination between pa-
tients and healthy controls (27). In another metabolomics study,
several abundant metabolites were identified, including two my-
cobacterium-derived cell wall glycolipids, in EDTA-plasma from
TB patients that were not identified in household contacts (28).
However, patients with other bacterial infections were not in-
cluded as controls in these studies, and thus, the potential of such
a metabolic profile for use in the diagnosis of TB remains to be
determined.

To identify potential biomarkers for noninvasive diagnosis of
TB, we applied state-of-the-art technology for metabolomics pro-
filing of plasma samples from TB patients, using ultrahigh-perfor-
mance liquid chromatography– electrospray ionization-quadru-
pole time of flight mass spectrometry (UHPLC-ESI-QTOFMS).
Multi- and univariate statistical analyses were used to identify me-
tabolites with significantly higher levels in plasma from TB pa-
tients than in plasma from patients with community-acquired
pneumonia (CAP) or controls without active infection. The diag-
nostic performance of the identified biomarkers was assessed us-
ing whole-metabolome receiver operating characteristic curve
(ROC) analysis.

MATERIALS AND METHODS
Patient and control samples. Clinical samples were collected from hos-
pitalized adult patients (�18 years of age) at Queen Mary Hospital, Hong
Kong. A total of 46 plasma samples from 37 patients with newly diagnosed
TB, and 60 plasma samples from 30 patients with CAP and 30 controls
without active infection were recruited for UHPLC-QTOFMS analysis.
Plasma samples from TB patients were collected before the commence-
ment of antimycobacterial treatment. The plasma samples from CAP pa-
tients were collected at admission. This study was approved by the insti-
tutional review board of the University of Hong Kong/Hospital Authority
of Hong Kong West Cluster (reference no. UW 13-265).

Diagnostic criteria. A diagnosis of TB was based on compatible clin-
ical features, together with the presence of the following microbiological
evidence: (i) positive stain for acid-fast bacilli, (ii) positive culture for M.
tuberculosis, and/or (iii) positive PCR for M. tuberculosis from clinical
samples. The diagnosis of CAP was based on compatible clinical features
and radiological evidence of lung infiltrates, with disease onset occurring
within 48 h of hospital admission. The causative agents of CAP included
Acinetobacter baumannii (n � 1), Escherichia coli (n � 2), Haemophilus
influenzae (n � 2), Klebsiella pneumoniae (n � 1), Moraxella catarrhalis
(n � 1), Pseudomonas aeruginosa (n � 1), Streptococcus pneumoniae (n �
4), and influenza B virus (n � 1), while the etiological agent was unknown
for the remaining cases. The controls consisted of patients without any
clinical evidence of active infection.

Chemicals and reagents. Liquid chromatography-mass spectrometry
(LC-MS)-grade water, methanol, and acetonitrile were purchased from
J.T. Baker (Center Valley, PA, USA). HPLC-grade ethanol and acetone
were purchased from Merck (Darmstadt, Germany). Formic acid was
of American Chemical Society (ACS) reagent grade and obtained from
Sigma-Aldrich, (St. Louis, MO, USA). Ceramide (d18:1/16:0) was pur-
chased from Avanti Polar Lipid (Alabaster, AL, USA). 12R-Hydroxy-
5Z,8Z,10E,14Z-eicosatetraenoic acid [12(R)-HETE] and cholesterol
sulfate standards were purchased from Cayman Chemical (Ann Arbor,
MI, USA).

Sample preparation. Blood samples were collected in heparin bottles,
transferred immediately to the laboratory, and centrifuged at 3,000 rpm
and 4°C for 10 min to obtain the plasma fractions. For metabolomics
analysis, 100 �l of plasma was thawed at 4°C, and plasma proteins were
precipitated with 400 �l of a methanol-ethanol-acetone mixture at a ratio
of 1:1:1 (vol/vol/vol). The sample extract was vigorously vortexed for 1
min and centrifuged at 14,000 rpm and 4°C for 10 min. The supernatant
was collected for UHPLC-ESI-QTOFMS analysis. All specimens were im-
mediately kept at �80°C until analysis and stored within 1 week. The
thawed specimens were analyzed within 48 h in a random manner to
prevent the batch effect.

Untargeted metabolomics profiling of patient plasma using
UHPLC-ESI-QTOFMS. The metabolomic profiling of plasma superna-
tants was performed using Agilent 1290 Infinity UHPLC (Agilent Tech-
nologies, Waldbronn, Germany) coupled with the Agilent 6540 UHD
accurate-mass QTOF system (Agilent Technologies, Santa Clara, CA,
USA) accompanied by the MassHunter Workstation software for QTOF
(version B.03.01 for data acquisition; Agilent Technologies, USA). A Wa-
ters Acquity UPLC BEH C18 column (2.1 by 100 mm, 1.7 �m) (Waters,
Milford, MA, USA) was used for the separation, with an injection volume
of 5 �l. The column and autosampler temperatures were maintained at
45°C and 10°C, respectively. The separation was performed at a flow rate
of 0.4 ml/min under a gradient program in which mobile phase A was
composed of LC-MS-grade water containing 0.1% formic acid (vol/vol),
and mobile phase B was composed of acetonitrile. The gradient program
was applied as follows: t � 0 min, 5% B; t � 0.5 min, 5% B; t � 7 min, 48%
B; t � 20 min, 78% B; t � 27 min, 80% B; t � 31 min, 99.5% B; t � 36.5
min, 99.5% B; and t � 36.51 min, 5% B. The stop time was 40 min. The
ESI mass spectra were acquired in both positive and negative ion modes
using Agilent Jet Stream ESI source, with capillary voltages of �3,800 V
and �3,500 V, respectively. Other source conditions were kept constant
in all experiments: the gas temperature was kept constant at 300°C, drying
gas (nitrogen) was set at the rate of 7 liters/min, and the pressure of
nebulizer gas (nitrogen) was 40 lb/in2. The sheath gas was kept at a flow
rate of 10 liters/min at a temperature of 350°C. The voltages of the Frag-
mentor, Skimmer 1, and Octopole RF peak were 135 V, 50 V, and 500 V,
respectively. The mass data were collected between m/z 80 and 1,700 at an
acquisition rate of 2 scans/s. Two reference masses at m/z 121.0509 (pro-
tonated molecular ion of C5H4N4) and m/z 922.0098 (protonated molec-
ular ion of C18H18O6N3P3F24) for positive mode, and m/z 119.0363 (de-
protonated molecular ion of C5H4N4) and m/z 966.0007 (formate adduct
of C18H18O6N3P3F24) for negative mode, were used as constant mass cor-
rections during the LC-MS run. Product ion scanning (PIS) experiments
were performed with the Acquity UPLC I-class system coupled with the
Waters Synapt G2-Si QTOF system (Waters) operating in both positive
and negative electrospray ionization modes. The mass data were collected
between m/z 50 and 1,000 at an acquisition rate of 3 scans/s. The voltages
of the capillary, sampling cone, and source offset were 3 kV, 30 V, and 80
V, respectively. Other source conditions were kept as follows: source tem-
perature, 120°C; desolvation temperature, 380°C; cone gas, 10 liters/h;
desolvation gas, 800 liters/h; and nebulizer gas, 6.5 � 105 Pa. Intermittent
injections of leucine enkephalin with lock masses of m/z 556.2771 at pos-
itive mode and m/z 554.2615 at negative mode at a concentration of 400
pg/�l in 50% acetonitrile at a flow rate of 6 �l/min were used for accurate
mass measurements. Tandem mass spectrometry (MS/MS) analysis was
performed using ultrahigh-purity argon at a collision energy at 10, 20, or
40 eV to generate the best-quality MS/MS spectra for putative identifica-
tion and structural elucidation of the significant metabolites.

Data processing and statistical analysis. Multivariate and univariate
analyses were performed to identify molecular features that discriminate
TB patients from CAP patients and controls. The multivariate analysis was
applied to a total of 106 LC-MS data for plasma samples collected from
three groups (46, 30, and 30 samples from newly diagnosed TB patients,
CAP patients, and controls without active infection, respectively). The
raw LC-MS data were converted into mzXML format using msConvert
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(ProteoWizard) and subsequently processed using the open-source
XCMS package (http://www.bioconductor.org/packages/2.8/bioc/html
/xcms.html) operating in R (http://www.r-project.org/), which adopted
different peak detection and alignment, as well as data filtering with
centWave algorithms. The data were further processed with normal-
ization, scaling, filtering, and statistical analysis using MetaboAnalyst

3.0 (www.metaboanalyst.ca). The data were mean centered, square
root scaled, and normalized, such that the sum of squares for each
chromatogram equaled on statistical analysis (30). Insignificant fea-
tures between TB patients and CAP patients or controls were filtered
out using both univariate and multivariate analyses. For multivariate
analysis, principal component analysis (PCA) was performed for un-
supervised analysis, while partial-least-squares discrimination analysis

FIG 1 PLS-DA score plot based on human plasma from 46 TB patients, 30
CAP patients, and 30 controls without active infection. (A) PLS-DA score plot
of positive mode data, with accuracy of 99%, multiple correlation coefficient
(R2) of 92.5%, and cross-validated R2 (Q2) of 82.7%. (B) PLS-DA score plot of
negative mode data, with accuracy of 97.2%, multiple correlation coefficient
(R2) of 88.6%, and cross-validated R2 (Q2) of 77.4%.

FIG 2 Significance analysis of microarray (SAM) plots in positive (A) and
negative (B) ionization modes. The false discovery rate (FDR) was determined
when running multiple tests on high-dimensional data that distinguish be-
tween TB and non-TB groups. An FDR of �0.05 was considered significant.
d(i) indicates the SAM score. The middle diagonal line indicates equal ob-
served d(i) and expected d(i) values, and the lines parallel to this line are drawn
at delta d(i) distances of 2.85 (A) and 2.25 (B).
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(PLS-DA) was performed for supervised analysis to identify features
with discriminative power. A score plot was applied to reduce the
dimensionality of the data for grouping of the samples, in which each
point in the score plot represented the individual sample, and similar
data sets exhibited clustering, while different sets separated farther
apart. PLS-DA models were validated based on accuracy, the multiple-
correlation coefficient (R2), and cross-validated R2 (Q2) in cross-vali-
dation. The significance of the biomarkers was ranked using the vari-
able importance in projection (VIP) score (�1) from the PLS-DA
model that was responsible for the separation of TB patients from
non-TB groups, i.e., CAP patients and controls. Significant features
were further identified by a significance analysis of microarray (SAM),
in which the false discovery rate (FDR) was determined by running
multiple tests on high-dimensional data that distinguish between TB
and non-TB groups, with an FDR of �0.05 considered to be significant
(31, 32).

For univariate analysis, the statistical significance of features was de-
termined among TB patients, CAP patients, and controls without active
infection using one-way analysis of variance (ANOVA) with Fisher’s post
hoc test by MetaboAnalyst 3.0. A P value of �0.05 was considered to be
statistically significant. Common significant features from PLS-DA, SAM,
and one-way ANOVA were included for univariate ROC analysis using
Web-based ROCEET (33). The classical ROC curve analysis was per-
formed, and the area under the ROC curve (AUC) was calculated with the
predefined model. In addition, the optimal cutoffs for the given metabo-
lite were computed to obtain the sensitivity, specificity, and confidence
intervals at different cutoffs for an evaluation of the recognition and pre-
diction abilities with respect to each variable. Protonated ions ([M�H]�)
for ceramide (d18:1/16:0) and 4	-formyl-4
-methyl-5	-cholesta-8-en-
3
-ol and deprotonated ions ([M-H]�) for 12(R)-HETE and cholesterol
sulfate were used for AUC and abundance calculations, respectively. Sig-
nificant features with an AUC of �0.85 for a comparison between TB
patients and controls without active infection were identified, and ROC
curve analysis for the identified metabolites was further performed to
compare TB and CAP patients. Box-and-whisker plots were generated,
and P values were calculated by the Student t test using the Analyse-it
software (Leeds, United Kingdom).

Metabolite identification. Features with significant differences were
selected for PIS experiments. The MS/MS spectra of the potential bio-
markers and commercially available reference standards, including cer-
amide (d18:1/16:0), 12(R)-HETE, and cholesterol sulfate, were processed
using the Waters MassLynx version 4.1 software (Waters Corp., Milford,
MA). A potential molecular formula based on the accurate mass and
isotopic pattern recognitions of parent and fragment ions were gener-
ated. All putative identities were confirmed by matching with entries
in the METLIN (http://metlin.scripps.edu/), Human Metabolome Da-
tabase (HMDB) (http://www.hmdb.ca/), MassBank (http://www
.massbank.jp/), LipidMaps (http://www.lipidmaps.org/), Mtb Lipid,

KEGG (http://www.genome.jp/kegg), MycoMass, and MycoMap data-
bases (http://www.brighamandwomens.org/research/depts/medicine/rh
eumatology/Labs/Moody/default.aspx) using exact molecular weights,
nitrogen rule, or MS/MS fragmentation pattern data and a literature
search. Efforts were made to distinguish metabolites from the other iso-
baric compounds whenever possible by its elution order and degree of
difference in fragmentation pattern corresponding to its structural char-
acteristics. The putative identities of the biomarkers were confirmed by
comparing their chromatographic retention times (RTs) and MS/MS
spectra with those obtained from commercially available standards of
ceramide (d18:1/16:0), 12(R)-HETE, and cholesterol sulfate.

RESULTS
Metabolomic profiling of plasma samples and omics-based sta-
tistical and bioinformatic analysis. The metabolomes of 106
plasma samples from the three groups (46 samples from newly
diagnosed TB patients, 30 samples from CAP patients, and 30
samples from controls without active infection) were character-
ized and compared. A total of 1,626 and 1,598 molecular features
in positive and negative modes, respectively, were obtained and
subjected to statistical analysis using MetaboAnalyst 3.0 (see Ta-
bles S1 and S2 in the supplemental material). For multivariate
analysis, PCA revealed that samples from TB patients and CAP
patients clustered separately. However, using this unsupervised
method, ambiguous separation was observed between TB patients
and controls. Therefore, a supervised method using PLS-DA was
performed, which showed that the TB group can be distinguished
from the non-TB group (CAP patients and controls) in both pos-
itive and negative mode data (Fig. 1A and B), with accuracies of
99% and 97.2%, multiple-correlation coefficients of 92.5% and
88.6%, and cross-validated R2 values of 82.7% and 77.4%, respec-
tively. Significant features for the separation between TB and
non-TB groups were ranked, yielding 242 and 243 features with a
VIP score of �1 in positive and negative ionization modes, respec-
tively. SAM methods were also used to select the most discrimina-
tive features responsible for the separation between TB and
non-TB groups, yielding 233 and 324 significant features with an
FDR of �0.05 in positive and negative ionization modes, respec-
tively (Fig. 2A and B).

Univariate analysis using one-way ANOVA identified 434 and
577 statistically significant molecular features (P � 0.05) in posi-
tive and negative mode, respectively. A total of 76 and 84 common
significant features in positive and negative ionization modes, re-
spectively, with a VIP score of �1 by PLS-DA, SAM, and one-way
ANOVA were manually inspected. Those features not due to in-

TABLE 1 Plasma metabolites with higher levels in TB patients than those in CAP patients and controls without active infection

Compound
Experimental
mass (m/z)

Retention
time (min) Ion MS/MS fragment masses (m/z)

VIP
scorea

Elemental
composition Putative identity

1 538.5190 33.02 M�H 252.2672, 264.2682, 282.2794,
502.4987, 520.5095,
538.5193

1.37 C34H67NO3 Ceramide (d18:1/16:0)

2 429.3738 32.22 M�H 149.0976, 165.0924, 177.0935,
191.1083, 205.1228,
219.1382, 303.2339,
401.3434, 411.3598,
429.3733

4.54 C29H48O2 4	-Formyl-4
-methyl-5	-
cholesta-8-en-3
-ol

3 319.2276 12.73 M-H 135.1145, 179.1069, 257.2274,
301.2181, 319.2274

1.02 C20H32O3 12(R)-HETE

4 465.3039 33 M-H 79.9580, 96.9594, 465.3059 1.29 C27H46O4S Cholesterol sulfate
a VIP, variable importance in projection score in PLS-DA analyses. A VIP score of �1 is considered to be statistically significant.
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FIG 3 MS/MS mass spectra and predicted structures with expected fragmentation profiles of the four biomarkers in TB patient plasma and standards: ceramide
(d18:1/16:0) (A), 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol (B), 12(R)-HETE (C), and cholesterol sulfate (D).
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terference were included for univariate ROC analysis to select the
most discriminant biomarkers. Four metabolites with an AUC of
�0.85, two each in positive and negative modes, were identified,
which exhibited upregulation in TB patients compared to controls
(Table 1).

The first metabolite, with m/z 538.5190 and retention time
(RT) of 33.02 min in positive mode, was identified as ceramide
(d18:1/16:0) by the molecular formula and MS/MS fragmenta-
tion pattern corresponding to its structural characteristics in
the Human Metabolome Database (HMDB), and this was con-
firmed by matching the RT and MS/MS spectrum with a com-
mercially available authentic chemical standard of ceramide
(d18:1/16:0) (Fig. 3A). The peaks at m/z 520.5091 and 502.4996
corresponded to fragments after the neutral loss of one water
molecule and two water molecules from the parent ion, respec-
tively. The peak at m/z 264.2676 referred to the fragment after
a combined loss of two water molecules and a hexadecanoyl
group.

The second metabolite, with m/z 429.3733 at an RT of 32.22
min in positive mode, was identified as 4	-formyl-4
-methyl-5	-
cholesta-8-en-3
-ol by the molecular formula and MS/MS frag-
mentation pattern corresponding to its characteristics in HMDB
(Fig. 3B). The peak at m/z 411.3598 was the fragment after the
neutral loss of a water molecule at C-3, while the peak at m/z
303.2339 represented the fragment after cleavage of the bond be-
tween C-17 and C-20 and the loss of a 4-
-methyl group. The peak
at m/z 205.1228 was the fragment resulting from the cleavage of
bonds between C-9 and C-11 and between C-8 and C-14, while the
peak at m/z 165.0924 was the fragment resulting from the cleavage
of bonds between C-9 and C-10 and between C-7 and C-8 and the
loss of 4-
-methyl group. However, an authentic chemical stan-
dard of 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol was not
commercially available for comparison.

The third metabolite, with m/z 319.2274 at an RT of 12.73 min
in negative mode, was identified as 12R-hydroxy-5Z,8Z,10E,14Z-
eicosatetraenoic acid [12(R)-HETE] [12(R)-HETE] by matching
the molecular formula and MS/MS spectra provided in METLIN
and LipidMaps, and it was confirmed by matching the RT and
MS/MS spectra using a commercially available authentic chemical
standard of 12(R)-HETE (Fig. 3C). The peaks at m/z 301.2181 and
257.2274 were fragments after the neutral loss of one water mol-
ecule and a combined loss of a water molecule at C-12 and formate

group, respectively. The peak at m/z 179.1069 was the fragment
resulting from cleavage of the aliphatic group and the neutral loss
of a water molecule at C-12.

The fourth metabolite, with m/z 465.3059 at an RT of 33.0
min in negative mode, was identified as cholesterol sulfate by
matching the molecular formula in HMDB, and it was con-
firmed by matching RT and MS/MS spectra using commer-
cially available authentic cholesterol sulfate (Fig. 3D). Two
fragments, at m/z 79.9580 and 96.9594, referred to SO3

� and
HSO4

� ions, respectively.
Diagnostic performance of metabolites. The AUC, sensitiv-

ity, and specificity for ROC curves calculated at optimal cutoffs for
the four metabolites are summarized in Table 2. Box-and-whisker
plots were generated for the three groups (Fig. 4). In a comparison
of TB patients and controls, three metabolites, ceramide (d18:1/
16:0), 12(R)-HETE, and cholesterol sulfate, demonstrated an
AUC of �0.9. In a comparison of TB patients and controls, 12(R)-
HETE showed the largest AUC, at 0.914, with 84.8% sensitivity
and 90.0% specificity, but in a comparison of TB and CAP pa-
tients, it showed a relatively lower AUC, at 0.793, with 89.1%
sensitivity and 63.3% specificity. Ceramide (d18:1/16:0) and cho-
lesterol sulfate demonstrated AUC values of 0.912 and 0.905 in a
comparison of TB patients and controls, respectively, but they also
showed relatively lower AUC values of 0.717 and 0.802 in a com-
parison of TB and CAP patients, respectively. In contrast, 4	-
formyl-4
-methyl-5	-cholesta-8-en-3
-ol demonstrated better
discrimination between TB and CAP patients, with a higher AUC
of 0.894, 84.8% sensitivity, and 83.3% specificity compared to that
between TB patients and controls.

Using the same optimal cutoffs for each metabolite, we calcu-
lated the sensitivities and specificities of different combinations of
two or three of the four metabolites for diagnosing TB (Table 3).
The specificities of combined metabolites were generally higher
than those of individual metabolites, while the sensitivities of
combined metabolites were generally lower than those of individ-
ual metabolites for differentiating TB patients and controls or
CAP patients. Two combinations, 4	-formyl-4
-methyl-5	-
cholesta-8-en-3
-ol plus 12(R)-HETE, and 4	-formyl-4
-meth-
yl-5	-cholesta-8-en-3
-ol plus cholesterol sulfate, offered �70%
sensitivity and �90% specificity for differentiating TB patients
from controls and CAP patients.

TABLE 2 AUC, sensitivity, and specificity for ROC curves calculated at optimal cutoff for ceramide (d18:1/16:0), 4	-formyl-4
-methyl-5	-
cholesta-8-en-3
-ol, 12(R)-HETE, and cholesterol sulfate

Significant metabolite by comparison group AUCa 95% CIb Sensitivity (%) Specificity (%) P valuec Fold change

TB vs controls
Ceramide (d18:1/16:0) 0.912 0.850–0.974 84.8 86.7 3.90E-08 26.15
4	-Formyl-4
-methyl-5	-cholesta-8-en-3
-ol 0.856 0.758–0.853 89.1 80.0 5.55E-07 1.83
12(R)-HETE 0.914 0.846–0.981 84.8 90.0 5.63E-03 4.19
Cholesterol sulfate 0.905 0.829–0.981 87.0 86.7 4.73E-10 6.09

TB vs CAP
Ceramide (d18:1/16:0) 0.717 0.595–0.840 71.7 66.7 5.24E-03 3.82
4	-Formyl-4
-methyl-5	-cholesta-8-en-3
-ol 0.894 0.816–0.972 84.8 83.3 9.78E-10 2.16
12(R)-HETE 0.793 0.683–0.904 89.1 63.3 2.32E-02 4.69
Cholesterol sulfate 0.802 0.693–0.911 80.4 70.0 6.46E-05 3.75

a AUC, area under the receiving operating characteristic curve.
b CI, confidence interval.
c All P values were calculated using Student’s t test.
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DISCUSSION

Using a metabolomics approach, we identified four novel bio-
markers with significantly higher levels in plasma from TB pa-
tients than those in CAP patients and controls. Of the four metab-
olites, 12(R)-HETE showed the largest AUC, at 0.914, with 84.8%
sensitivity, 90.0% specificity, and a fold change of 4.19 compared
to controls. However, compared to CAP patients, the AUC
dropped to 0.793, with only 63.3% specificity. The diagnostic per-
formance of ceramide (d18:1/16:0) was also promising, with an
AUC of 0.912, 84.8% sensitivity, 86.7% specificity, and a fold
change of 26.15 compared to controls. However, the AUC
dropped to 0.717, with 71.7% sensitivity, 66.7% specificity, and a
fold change of 3.82 compared to CAP patients. Similarly, choles-
terol sulfate showed a relatively high AUC of 0.905, 87.0% sensi-
tivity, 86.7% specificity, and a fold change of 6.09 compared to
controls. However, the AUC dropped to 0.802, with 80.4% sensi-
tivity, 70% specificity, and a fold change of 3.75 compared to CAP
patients. In contrast, 4	-formyl-4
-methyl-5	-cholesta-8-en-
3
-ol showed good diagnostic performance in distinguishing TB

patients from both CAP patients and controls, with an AUC of
�0.85 and �80% sensitivity/specificity, although the fold changes
were only 2.16 and 1.83, respectively. Therefore, 12(R)-HETE,
ceramide (d18:1/16:0), and cholesterol sulfate should offer better
diagnostic performance than that of 4	-formyl-4
-methyl-5	-
cholesta-8-en-3
-ol in differentiating between TB patients and
controls. In particular, the �20-fold change of ceramide (d18:1/
16:0) suggests that it may be a promising candidate for use in the
diagnosis of TB. However, these biomarkers may also be elevated
in CAP patients, although not to levels as high as those in TB
patients. On the other hand, 4	-formyl-4
-methyl-5	-cholesta-
8-en-3
-ol may offer better discrimination between TB and CAP
patients. When 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol is
combined with 12(R)-HETE or cholesterol sulfate, the specifici-
ties were �90% for differentiating TB patients from both controls
and CAP patients, although the sensitivities were �80%. If these
biomarkers or their combinations are adopted for the diagnosis of
TB, the results should be interpreted and correlated with clinical
findings. For example, in patients with clinical features compati-

FIG 4 Box-and-whisker plots representing relative abundance of ceramide (d18:1/16:0) (A), 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol (B), 12(R)-HETE
(C), and cholesterol sulfate (D) in the plasma from TB patients, CAP patients, and controls without active infections. The relative abundance of each metabolite
in the plasma from TB patients was significantly higher than that of the other two groups using Student’s t test. The horizontal line represents the median, the
bottom and the top of the box represent the 25th and the 75th percentiles, and the whiskers represent the 5th and 95th percentiles.
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ble with TB while CAP is considered unlikely, elevated plasma
ceramide (d18:1/16:0) levels are highly suggestive of TB. However,
in situations in which CAP cannot be excluded, 4	-formyl-4
-
methyl-5	-cholesta-8-en-3
-ol alone or combined with 12(R)-
HETE or cholesterol sulfate may be a more specific indicator for
empirical treatment while waiting for culture results. Although
the present biomarkers exhibit only modest discriminatory power
between TB and CAP patients or controls, they may represent
promising biomarkers to assist in the diagnosis of TB, especially in
disseminated infections for which culture and PCR are often neg-
ative. One limitation of these biomarkers is that they do not offer
value for drug resistance profiles, unlike traditional culture and
genotypic diagnostic methods. Nevertheless, further studies in-
volving larger patient sets should be performed to better assess
their diagnostic accuracy and potential prognostic value.

The present results support that ceramides are involved in the
host response to pathogens, including TB. Ceramides are pro-
duced from the hydrolysis of sphingomyelin or are synthesized
from serine and palmitate (34). A ceramide-rich membrane has
diverse functions during bacterial infections, including phagocy-
tosis, apoptosis, phagosome trafficking, and macrophage matura-
tion (35–41). However, the roles of different ceramides during
infections caused by different pathogens are poorly understood.
We showed here that the level of ceramide (d18:1/16:0) in plasma
samples from TB and CAP patients was higher than that in con-
trols. Furthermore, the level of ceramide (d18:1/16:0) in TB pa-
tients was higher than that in CAP patients, which may reflect the
more robust innate immune response in TB. Interestingly, in a
recent metabolomic profiling study (42), ceramide (d18:1/16:0)
has also been found in the pleural fluid from TB patients at higher
levels than those in lung cancer patients. Further studies are re-
quired to determine if ceramide (d18:1/16:0) is a promising bio-
marker for the diagnosis of TB, which may be applied to plasma
and pleural fluid samples.

The elevated levels of plasma 4	-formyl-4
-methyl-5	-
cholesta-8-en-3
-ol in TB patients may suggest enhanced choles-
terol biosynthesis during TB infections. 4	-Formyl-4
-methyl-
5	-cholesta-8-en-3
-ol is an intermediate during cholesterol
biosynthesis II. Cholesterol plays key roles in the pathogenesis of
TB, such as phagocytosis and macrophage and phagosome matu-
ration (43–45). However, increased plasma 4	-formyl-4
-meth-
yl-5	-cholesta-8-en-3
-ol levels have not been reported in TB or
other infections. It would be interesting to investigate if the inter-

mediate, 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol, during
cholesterol biosynthesis activation in TB serves a specific function
in pathogenesis or the innate immune response.

The elevated levels of plasma 12(R)-HETE may reflect induced
arachidonic acid metabolism during TB. 12(R)-HETE is an ara-
chidonic acid metabolite produced by arachidonate 12-lipoxy-
genase (12-LOX), which is expressed in human macrophages and
induced by interleukin 4 (IL-4) (46). Increased IL-4 production by
human CD8� T cells and bronchoalveolar cells has been observed
in TB patients (47, 48). The present study represents the first to
report increased plasma 12(R)-HETE levels in TB patients, which
may be related to IL-4 induction of 12-LOX in macrophages or
other cells. In M. tuberculosis-infected mice, high serum levels of
lipoxin A4, another arachidonic acid metabolite produced by 5-li-
poxygenase (5-LOX), have been observed (49). Moreover, mice
deficient in 5-LOX were more resistant to TB and harbored fewer
bacteria in the lungs (49). Since arachidonic acid has been shown
to enhance mycobacteria killing via activation of NF-�B (50), fur-
ther studies are warranted to elucidate the role of arachidonic acid
metabolism, especially 12(R)-HETE or 12-LOX, in host defense
against M. tuberculosis.

Cholesterol sulfate, a component of low-density lipoproteins
(51), may represent a less specific biomarker than the other three
metabolites for the diagnosis of TB, since plasma cholesterol sul-
fate may be increased in other pathological conditions, such as
cirrhosis of the liver, hypercholesterolemia, and hypothyroidism
(52–54). During skin invasion by pathogens, cholesterol sulfate
has been shown to facilitate keratinocyte differentiation (55). Our
findings of increased plasma cholesterol sulfate levels in TB pa-
tients may also suggest a role in the host response to M. tubercu-
losis. However, given that cholesterol sulfate may be elevated in
other disease conditions, it may be a less promising candidate as a
diagnostic biomarker for TB.
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TABLE 3 Sensitivities and specificities of combinations of two or three metabolites for differentiation between TB and controls or CAP

Metabolites

TB vs controls TB vs CAP

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

Ceramide (d18:1/16:0) � 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol 76.1 90.0 65.2 90.0
Ceramide (d18:1/16:0) � 12(R)-HETE 69.6 100.0 60.9 76.7
Ceramide (d18:1/16:0) � cholesterol sulfate 84.8 86.7 67.4 73.3
4	-Formyl-4
-methyl-5	-cholesta-8-en-3
-ol � 12(R)-HETE 73.9a 100.0 73.9 96.7
4	-Formyl-4
-methyl-5	-cholesta-8-en-3
-ol � cholesterol sulfate 78.3 90.0 71.7 96.7
12(R)-HETE � cholesterol sulfate 71.7 100.0 67.4 80.0
Ceramide (d18:1/16:0) � 12(R)-HETE � cholesterol sulfate 69.6 100.0 56.5 80.0
4	-Formyl-4
-methyl-5	-cholesta-8-en-3
-ol � 12(R)-HETE � cholesterol sulfate 63.0 100.0 60.9 100.0
Ceramide (d18:1/16:0) � 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol � 12(R)-HETE 60.1 100.0 54.4 96.7
Ceramide (d18:1/16:0) � 4	-formyl-4
-methyl-5	-cholesta-8-en-3
-ol � cholesterol sulfate 76.1 90.0 63.0 96.7
a Combinations with sensitivity of �70% and specificity of �90% for both comparisons (TB versus controls and TB versus CAP) are in bold.
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