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Abstract

Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of func-
tional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclu-
sion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of
the realignment parameters, and the squared parameters. However, these regressors have limited success at
noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs)
of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining
more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion
on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed
using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses.
Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nui-
sance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion
correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the
edge voxel regression models were able to eliminate significant differences in default-mode network connectivity
between high- and low-motion subjects regardless of the use of global signal regression or censoring.
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Introduction

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) can provide an estimate of functional con-

nectivity by computing the correlation of low-frequency
(<0.1 Hz) blood-oxygen-level-dependent (BOLD) signal
fluctuations in the resting brain between regions of interest
(Biswal et al., 1995). Fluctuations during this resting state
are thought to represent both spontaneous neuronal activa-
tion as well as unconstrained mental activity, such as day
dreaming or mind wandering (Fox et al., 2005; Mason
et al., 2007). Clinical applications range from presurgical
planning to the study of a range of clinical populations and
the study of risk factors for psychopathology (Greicius,
2008). While rs-fMRI has been shown to produce reliable
and consistent results (Birn et al., 2013; Damoiseaux et al.,
2006; Guo et al., 2012; Patriat et al., 2013; Shehzad et al.,
2009; Thomason et al., 2011; Van Dijk et al., 2010; Zuo
et al., 2010), many aspects of the preprocessing and the pro-
cessing pipeline remain suboptimal and a consensus standard

processing stream is yet to be reached. Among all the meth-
odological challenges with rs-fMRI, subject motion remains
one of the most significant.

Head motion has always be known to be an issue in the
field of fMRI (Friston, 1996; Jiang, 1995; Oakes et al.,
2005; Stillman et al., 1995), but it has recently received
even more attention due to the discovery that even very
small amounts of shot-to-shot motion or micromovements
can significantly distort functional connectivity estimates de-
rived from rs-fMRI data (Christodoulou et al., 2013; Jiang
et al., 2013; Jo et al., 2013; Muschelli et al., 2014; Power
et al., 2012, 2014, 2015; Satterthwaite et al., 2012, 2013a,
2013b; Van Dijk et al., 2012; Yan et al., 2013a, 2013b).
While it is possible to prevent some in-scanner motion
through the use of new MRI pulse sequences (Bright and
Murphy, 2013; Brown et al., 2010; Kundu et al., 2013;
Kuperman et al., 2011; Maclaren et al., 2013; Ooi et al.,
2011; White et al., 2010), training on MRI simulators be-
fore scanning (Lueken et al., 2012; Raschle et al., 2009),
or even the use of head restraints and other bite bars,

1Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.
2Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin.
3Department of Computer Science, University of Illinois-Urbana-Champaign, Urbana, Illinois.

BRAIN CONNECTIVITY
Volume 5, Number 9, 2015
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2014.0321

582



most data collection either do not or cannot make use of
these techniques and motion artifacts are still detectable
in these rs-fMRI data.

Different postacquisition methods have been developed to
attempt to eliminate the influence of head motion on the final
connectivity results. There are two different approaches to
minimize motion artifacts: group- and subject-level correc-
tion. At the group level, studies have shown that a covariate
of no interest (e.g., an estimate of the amount of motion) can
be added to the group-level linear regression model to help
minimize the influence of head motion on connectivity re-
sults (Satterthwaite et al., 2012; Van Dijk et al., 2012; Yan
et al., 2013a). While these methods are useful, they are some-
what limited since they assume a linear relationship between
the covariate and the motion artifact, which is not necessarily
true, and the effect of those methods may only be marginal
(Power et al., 2014). The effects of subject motion can also
be reduced at the subject level. One approach to reduce the
effects of motion is to censor image volumes acquired during
periods of high-motion volumes, either removing the data
entirely or replacing them with interpolated data (Power
et al., 2014). This method, also proposed by another study
(Carp, 2013) and which has similarities to AFNI 3dDespike,
either introduces synthetic data into the time series or can re-
sult in temporal discontinuities, which may bias connectivity
results. This censoring can also result in a significant reduc-
tion in degrees of freedom. The current study aims at describ-
ing and comparing a novel set of subject-level correction
methods, both in the presence and absence of censoring.

Current subject-level motion correction methods use two
strategies to reduce the influence of subject motion: volume
registration (first level) and motion regression (second level).
The former consists of realigning each volume acquired in
time to one volume from the run or an average volume
from the run. The latter method uses the estimated parame-
ters from this realignment as regressors of no interest in a lin-
ear regression analysis (Fox et al., 2005; Weissenbacher
et al., 2009). More recent strategies have also included the
derivative of these motion parameters, yielding 12 nuisance
regressors that are currently the most common strategy of
second-level motion correction (Power et al., 2012; Van
Dijk et al., 2012). Other studies have defined a set 24 motion
regressors, consisting of the estimated realignment parame-
ters, the realignment parameters shifted to the prior time
point, and these 12 regressors squared, to form a Taylor ex-
pansion of motion-related signal changes (Friston, 1996), to
further remove the effect of motion from rs-fMRI time series
(Power et al., 2014; Satterthwaite et al., 2013b; Yan et al.,
2013a). These studies also proposed that, in the future, the
aforementioned 24 regressors be used for motion regression
instead of the commonly used 12 regressors. Most of the
subject-level corrections, to date, use volumetric realign-
ments, which ignore motion occurring within the acquisition
of a volume (e.g., motion between slices). More recently,
however, a slicewise motion correction method (SLO-
MOCO) was proposed as a method to correct for head move-
ment occurring between slices (Beall and Lowe, 2014).
Furthermore, this study showed that estimated volumetric re-
alignment parameters were often a poor model for motion-
related signal changes (Beall and Lowe, 2014).

The goal of this study is to test novel motion regression
methods, performed at the subject level, which make use

of the information contained at the edges of the brain. The
motivation for this approach is that motion artifactually af-
fects the fMRI signal predominantly at the edges of the
brain ( Jo et al., 2010; Satterthwaite et al., 2013b). Further-
more, motion-induced signal changes are not necessarily lin-
early related to the six rigid-body realignment parameters.
For example, depending on the spatial gradient in signal in-
tensity within the image, motion in one direction may cause a
signal increase, but motion in the opposite direction may not
necessarily cause a concomitant decrease in signal, thus vio-
lating the assumption of linearity with respect to the realign-
ment parameters. In addition, motion may occur only during
the acquisition of one slice, and as a result, the signal inten-
sity time course of a particular voxel may not contain all
motion events. Our hypothesis is that deriving nuisance re-
gressors from areas most likely to be affected by motion,
that is, the edges of the brain, will result in a better model
of motion-related signal changes. Such a strategy has been
suggested for reducing the effects of task-related motion
(e.g., overt speech) on estimates of task-related fMRI activa-
tion (Birn, 1999), but has not yet been evaluated for func-
tional connectivity. This data-derived method has the
potential to correct for volumetric and between slice motion.
We test our models on a publicly and freely available dataset
used in previous studies ( Jo et al., 2013; Power et al., 2012;
Yan et al., 2013a). We also compare our methods to those
commonly used by the vast majority of rs-fMRI studies.
Finally, we repeat our analysis with and without using global
signal regression (GSR) and with and without censoring, as
there is currently no consensus on these preprocessing
steps. This approach should help rs-fMRI researchers deter-
mine the potential benefit of our proposed technique, regard-
less of the preferred preprocessing pipeline.

Materials and Methods

Participants and image data

For ease of comparison to prior studies, we used the gen-
erously donated dataset by Power and colleagues (2012) pub-
licly available on the FCON 1000 project website. We used
the same cohort (cohort 1—N = 22, 11F, 8.5 – 1 year) that
was used in previous studies ( Jo et al., 2013; Power et al.,
2012; Yan et al., 2013a). We believe that testing our hypoth-
eses and new methods on a common dataset encourages
reproducibility of results as well as comparisons and, there-
fore, express our gratitude to Power and coauthors for mak-
ing this dataset available. For more information concerning
the acquisition parameters, the subjects, and/or to download
the data, please consult the website (http://fcon_1000
.projects.nitrc.org/indi/retro/Power2012.html).

fMRI preprocessing

Preprocessing of the rs-fMRI data was implemented using
the software AFNI (Cox, 1996) (Fig. 1). The preprocess-
ing steps included the following: removal of the first three
volumes of data to get rid of the initial transient in the MR
signal; slice-timing correction to correct timing difference
due to an interleaved acquisition of slices within a volume;
within-run volume registration to reduce the influence of
subject motion within the scanner; T1-to-EPI alignment;
motion and other nuisance regression (with and without
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censoring—with and without GSR), spatial blurring (6 mm
fwhm), temporal filtering (0.01–0.1 Hz bandpass) all in one
step (using 3dTproject); and normalization of EPI data to a
common MNI atlas space.

Edge voxel analysis

For each subject, a mask of the brain’s edges was gener-
ated from the echo-planar image by first generating a brain
mask (using AFNI’s 3dAutomask) and then subtracting a
whole-brain mask to this same mask inflated by two voxels
in each direction. Finally, voxels from the resulting edge
voxel mask intersecting with the subject’s anatomy mask
were excluded to ensure that the final edge voxel mask did
not include voxel inside the brain incorrectly classified as
‘‘edge voxels.’’ Such voxels include voxels in the ventral
portion of the prefrontal cortex, where susceptibility artifacts
are common and cause signal dropout. Figure 2 shows an
edge voxel brain mask for one representative subject. Edge
voxel time courses were extracted from the preprocessed
resting data (right after the coregistration step), and the pri-

mary features of the temporal signal changes were derived
using a temporal principal component analysis (PCA).
Twelve principal components (PCs) were derived for each
subject. PCA was used to extract relevant features from
these time courses since motion-related signal changes are
often positive on one edge of the brain and negative at the
opposite edge. A simple average of all edge voxel time
courses would therefore cancel out the positive and negative
signal changes and thus not accurately represent motion-
related signal changes. In contrast, PCA generates a set of
linear uncorrelated components that reflect the main features
of signal variations at the edge of the brain. Such a PCA de-
composition approach has previously been used to derive
nuisance regressors from CSF and other high variance vox-
els, primarily to model physiological noise (Behzadi et al.,
2007). In this study, we use this idea to specifically derive
noise regressors that will best model the signal changes in-
duced by subject motion, and we evaluate the effectiveness
of this approach at reducing the influences of subject motion.

Motion regression models

In this study, we compare eight different regression mod-
els aimed at reducing the correlates of in-scanner motion. In
addition, the results will be compared to not doing any mo-
tion regression at all. The models are as follows:

(i) 6mot: 6 parameters of motion coming from the vol-
ume registration step of the preprocessing pipeline.
This is a common method.

(ii) 6edge: the first 6 PCs of the edge voxels signal of the
preprocessed files.

(iii) 12mot: same as (i) + the first derivative of those six
parameters. This led to regression with 12 parameters
of motion. This method is widely used in resting-state
functional connectivity processing.

(iv) 12edge: the first 12 PCs of the edge voxels signal of
the preprocessed files.

(v) 6mot6edge: regressors from (i) + regressors from (ii).
This results in a regression with 12 parameters.

(vi) 6mot6edge*: same as v with the difference that the
six PCs of the edge voxels signal were derived after
the regression described in (i). This is done to mini-
mize the mutual information contained in the 6 re-
gressors from (i) and (ii).

(vii) 24mot: 24 motion regressors based on Friston (1996)
also examined by other more recent studies (Power

FIG. 1. Preprocessing and processing pipeline. Green cells
indicate single-subject preprocessing and analysis of the rs-
fMRI data. Gray cells indicate single-subject processing of
the anatomical data. Black cells indicate group-level analysis.
Color images available online at www.liebertpub.com/brain

FIG. 2. Edge voxels. Mask of the brain’s edge voxels (in
red) for a representative subject overlaid on the subject’s
3d-rendered anatomical scan and echo-planar images. The
mask of edge voxels was derived from the resting-state
echo planar image scans. Color images available online at
www.liebertpub.com/brain
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et al., 2014; Yan et al., 2013a). The regressors are as fol-
lows: same as i, i regressors squared, i regressors at the
previous time point, those last 6 regressors squared.

(viii) 24edge: the first 24 PCs of the edge voxels signal of
the preprocessed files.

All of the above regressions were accompanied by the
same set of additional nuisance regressors: one averaged
white matter and one averaged cerebrospinal fluid time se-
ries. GSR is often used as a nuisance regressor and has
been shown to have an effect on the motion regression but
can also affect the connectivity results (Murphy et al.,
2009; Saad et al., 2012); thus, we repeated the above regres-
sions, including GSR. Of note, all of the regressors were
detrended and demeaned before the regression analysis.

Censoring

Censoring files were generated using AFNI’s 1d_tool.py
function, which takes into account motion between two con-
secutive volumes by calculating the Euclidean norm of the
temporal derivative of the motion parameters and then thre-
sholding this metric at a level defined by the user. For the pur-
pose of this study, we chose a threshold of 0.25 mm; this
is equivalent to a framewise displacement, or FD, threshold
of 0.48 mm (we found that FD values were on average
1.9 – 0.2 times higher than Euclidean norm values—see Yan
et al., 2013a, for a more complete study of the different
ways to calculate FD). Figure 3 shows examples of represen-
tative one low- and one very high-motion subject. Table 1
shows the amount of time points censored per subject. To
study the effect of censoring on the different regression

FIG. 3. Principal components
(PCs), motion parameters, and
framewise displacement for a rep-
resentative low-motion subject
(left) and very high-motion subject
(right). From top to bottom: first six
edge PCs, next 6 edge PCs, six edge
PCs after doing 6mot regression, 6
parameters of motion, framewise
displacement as calculated in the
Power paper, framewise displace-
ment as calculated using AFNI. The
red line shows the threshold used in
this study (0.25 mm). Color images
available online at www.liebertpub
.com/brain
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models, we ran our analysis with and without censoring. Data
points with high shot to shot motion are ignored in the re-
gression analysis (beta calculation for nuisance regression
and connectivity calculation) and are replaced by interpolated
values (Power et al., 2014) before temporal filtering. Note that
the nuisance regression, censoring, spatial blurring, and tem-
poral filtering occurred all in the same step.

Metrics

In this study, we compare the different models described
above by the means of three different measures: R2,
DVARS, and temporal signal to noise ratio (tSNR) as defined
by Power and colleagues (2012) and also recently used by the
same authors (Power et al., 2014).

We first examined the total variance (R2) explained by
each model, above and beyond the variance explained by
WM and CSF regressors (or the WM, CSF, and Global re-
gressors). To preserve fairness in the comparison between
the different models, only models having the same number
of regressors are compared to each other. This is because a
higher number of regressors are very likely to explain
more variance than fewer regressors.

DVARS measures the uniformity of the MR signal intensity
within a volume from one time point to the previous (Power
et al., 2012). The equation for this measure is as follows:

DVARS =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< [DIi(~x)]2>

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< [Ii(~x)� Ii�1(~x)]2>

q

where Ii (x) represents the signal intensity I at the time point i
at the voxel location x, which are then averaged across the
entire brain. The lower the number the higher the data qual-
ity. This measure has been used by recent studies (Power

et al., 2012, 2014; Saad et al., 2012; Satterthwaite et al.,
2013a). While it is not known what the whole-brain
DVARS should be (as this can also contain neuronal blood
oxygenation-level-dependent (BOLD) signal changes to a
small extent), comparing the results of different models
head-to-head gives us an idea of how they perform relative
to one another in reducing motion effects, since the only dif-
ference between all the models resides in the regression of
the different motion regressors. Note that while lower
DVARS may indicate better quality, it does not necessarily
mean that the artifact has been completely removed (Power
et al., 2014).

Finally, to assess the influence of these noise reduction
strategies on the signal at a more basic level, we measured
the tSNR (Triantafyllou et al., 2006; Van Dijk et al., 2012).

Statistical testing

Statistical testing was done in MATLAB using an ANOVA
followed by Tukey’s honest significance difference test for
multiple comparison correction.

Functional connectivity processing

In this study, we generated maps of the default-mode net-
work (DMN) using a posterior cingulate/precuneus (PCC)
seed for each subject and regression model. The seed used
in the present study was a 4-mm-radius sphere located in
the posterior cingulate cortex (PCC, MNI coordinates
[RAI]: 2,�52, 28). For each regression model, a two-sample
t-test was used to observe the differences, within the sample
studied here, between high-motion and low-motion subjects.
A median split on the ratio of time point censored was used
to create a high-motion and a low-motion group; details
about how many time points were censored for each subject
can be found in Table 1. Since the sample only comprises
healthy subjects, there should be no significant differences
between the two groups once the artifact is removed. A sim-
ilar approach has been previously used (Power et al., 2014;
Yan et al., 2013a). Finally, we corrected for multiple com-
parisons using a Monte-Carlo simulation that incorporates
the estimated smoothness of the data to determine the small-
est number of voxels a cluster needs to include in order for it
to have 5% chance to exist by chance or noise only (individ-
ual p = 0.001, cluster extent = 64 voxels).

Results

Principal components

Figure 3 shows the different PCs derived for two represen-
tative subjects: one low motion and one high motion. Supple-
mentary Figure S1(Supplementary Data are available online
at www.liebertpub.com/brain) shows the spatial distribution
of the different PCs over each voxel for a high- and a low-
motion subject. None of the observed patterns resembled
known networks. Supplementary Figure S2 shows the time
series obtained after each motion correction algorithm (in
red) compared to the time series before motion regression (in
black). The more regressors used, the lower the amplitude of
large spikes. The regressors using edge voxel information
reduced the amplitude of the spikes compared to the current
techniques studied here. Across the entire group of 22 sub-
jects, 73% of the subjects had at least one run for which the

Table 1. Number of Time Points Censored Using

a 0.25 mm Threshold on Framewise Displacement

Metrics Calculated Using AFNI’s Euclidean

Subject # TP censored Ratio TP censored

1 163 0.37
2 144 0.39
3 54 0.12
4 151 0.34
8 146 0.56

13 17 0.07
16 20 0.08
17 92 0.35
18 8 0.03
19 80 0.31
20 110 0.28
21 39 0.15
24 91 0.35
26 12 0.05
28 4 0.01
49 135 0.35
63 60 0.23
64 23 0.08
65 30 0.10
66 42 0.14
67 12 0.04
68 25 0.10
Mean 66.27 0.21
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first PC was significantly correlated to the global signal
(Supplementary Table S1). However, none of the PCs cor-
related with the derivatives of the six parameters of motion.
Furthermore, all of the subjects had at least one run where
one or more of the 24 motion parameters (24mot) were
correlated with the global signal. Note that the significance
threshold used here (cc = 0.30 and cc = 0.35 for correlation to
global signal and the motion parameters, respectively) is
very stringent and was determined using the degrees of
freedom from the subject for which the lowest amount of
time points were acquired (132 time points) and a
Bonferroni-corrected p-value of 0.05 based on the number of
tests with the most number of runs (6 runs and 6 runs · 18
PCs · 31 motion parameters + GSR = 3348 for correlation to
GSR and the motion parameters, respectively).

When the PCs were derived after the 6mot regression was
carried out (white PCs in Supplementary Table S2), none of
the PCs derived after 6mot was correlated to GSR or the
motion parameters (Supplementary Table S2). It is, how-
ever, possible that the PCs may be significantly correlated
with a linear combination of the motion regressors and de-
rivatives, which is not assessed by the correlation matrix
presented here.

Variance explained

Figure 4 and Supplementary Figure S3 show the amount
of variance explained by each of the eight models. As
expected, the models with 12 regressors explain more vari-
ance than the models with only six regressors. This general
trend is consistent with results from previous studies (Sat-
terthwaite et al., 2013b). The results were consistent regard-
less of the use of either GSR or censoring (Table 2).

For the models with six regressors, 6edge explains signif-
icantly more variance than 6mot regardless of GSR and
censoring (Table 2). For the models with 12 regressors,
regressors incorporating information from edge voxels
(12edge, 6mot6edge, 6mot6edge*) explain significantly
more variance than the more standard 12mot regressors
(Table 2). Comparing the different approaches incorporating
edge voxel information, the 6mot6edge* and 6mot6edge

methods perform similarly, and 12edge performed signifi-
cantly better than these two methods (Table 2). These results
hold regardless of whether GSR or censoring was performed.
Finally, as expected, the 24mot model, with its 24 regressors,
explained significantly more variance than the 6 regressor
models as well as the 12 regressor models (Fig. 4, Supple-
mentary Fig. S3 and Table 2).

Figure 5 top shows the cumulative variance explained,
within the edge voxel masks, by the 12 PCs of edge voxels,
12edge. On average, the first PC accounts for roughly 26%
of the variance. Subsequent PCs account for asymptotically
decreasing fractions of variance. This fraction of explained
variance did not differ much between high-motion and
low-motion subjects, with the first PC accounting for 28%
of the variance in low-motion subjects and only 24% of the
variance in high-motion subjects. The difference in
explained variance between the two motion groups increases
with increasing numbers of components with the PCs
explaining more variance for the high-motion group. Figure
5b shows the fraction of variance explained by the six PCs
derived after 6mot regression, as in 6mot6edge* (bottom).
The fraction of variance explained by these PCs continues
to increase with only gradually diminishing returns. Again,
the fraction of explained variance is different for high- and
low-motion subjects, where the greater fraction of variance
is explained by the PCs in high-motion subjects (Fig. 5).

DVARS

Figure 6 and Supplementary Figure S4 show the DVARS
for each correction technique, compared to no correction.

Regressors incorporating edge voxel information (12edge,
6mot6edge, 6mot6edge*) as well as the 24mot regressor set
yield significantly better data quality (lower DVARS) than
the standard 12mot whenever censoring is used (Fig. 6, Supple-
mentary Fig. S4 and Table 2). 12edge and 24mot performed
similarly and yielded significantly lower DVARS than all the
other methods studied. When only six regressors are used,
6edge reduced DVARS more significantly compared to 6mot.

GSR reduces DVARS for all correction methods (Fig. 6
and Supplementary Fig. S4), this difference was found to

FIG. 4. Variance explained (R2)
by each of the nuisance regressor
sets. For each method, the top bar
(green) shows the variance
explained by the different motion
regression models when censoring
was not used; the bottom bar (blue)
shows the variance explained by the
different motion regression models
when not used and was used. Error
bars in the graphs represent the stan-
dard error of the mean. The results
shown here were obtained without
the use of global signal regression
(GSR). Color images available online
at www.liebertpub.com/brain
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Table 2. Results of the Significance Testing for the R
2, the tSNR, and the DVARS Analysis
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FIG. 5. Cumulative variance
explained within the edge voxel
mask by the 12 principal compo-
nents (top) and the 6 principal
components derived after 6mot re-
gression, as in 6mot6eedge* (bot-
tom) for all subjects (green), high-
motion subjects (red), and low-
motion subjects (blue). Color
images available online at
www.liebertpub.com/brain

FIG. 6. DVARS results. For each
regressor set, the top bar (green)
shows the DVARS for the different
motion regression models when
censoring was not used; the bottom
bar (blue) shows the DVARS for
the different motion regression
models when censoring was used.
Error bars in the graphs represent
the standard error of the mean. The
results shown here were obtained
without the use of GSR. Color
images available online at
www.liebertpub.com/brain
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be statistically significant ( p < 0.05 corrected). In addition,
censoring significantly lowered DVARS.

Finally, Table 3 shows the correlation between each sub-
ject’s average DVARS and their average FD. The motivation
for this analysis is that if the motion models removed the mo-
tion completely, the correlation between DVARS and FD
should be negligible (i.e., DVARS should not be greater
for high-motion subjects—those with high FD). When cen-
soring is not used, there is a high correlation between
DVARS and FD except for the two 24-regressor models
(when GSR is used). However, when censoring is done,
the correlation coefficient drops dramatically (e.g., for
6mot it goes from 0.57 to 0.08 when GSR is not used and

from 0.63 to 0.22 when it is used). Moreover, censoring
made each correlation nonsignificant or anticorrelation
(Table 3). Of note, GSR did not affect the correlation except
for the two 24-regressor models.

tSNR

Figure 7 and Supplementary Figure S5 show the tSNR re-
sults for each of the motion correction methods. Overall, the
more regressors used, the higher the tSNR. Similarly to var-
iance explained and DVARS, 6edge yielded better results
than 6mot, our 12-regressor models (12edge, 6mot6edge,
and 6mot6edge*) performed better than 12mot, and 24edge
yielded higher tSNR than 24mot (Fig. 7, Supplementary
Fig. S5 and Table 3). Similarly to DVARS, censoring had
a positive impact on the results as represented by higher
tSNR values (Fig. 7 and Supplementary Fig. S5).

Connectivity

Figure 8 shows the differences in DMN connectivity be-
tween high- and low-motion subjects for each motion regres-
sion model. Only the 24-regressor models were able to
significantly diminish or eliminate connectivity differences be-
tween the low- and high-motion groups. 24edge was the only
model to eliminate connectivity differences between the two
groups no matter the use of GSR or censoring. 24mot was
only able to do so when GSR was used. When GSR was not
used, 24mot was only able to reduce connectivity differences
compared to 6- and 12-regressor models but was not able to
eliminate those differences (Fig. 8). All the other models
resulted in large clusters of high- versus low-motion connec-
tivity differences in the occipital lobe and the lateral temporal
cortex, when censoring was not used, while significant clusters
located within the DMN, and task-positive networks were vis-
ible when censoring was used (Fig. 8). Supplementary Figure
S6 shows the group maps for the high- and low-motion groups
for each of the motion corrections studied.

Discussion

In this study, we set out to test and compare new motion
regression models to current standard methods to correct
for the effects of in-scanner head motion. We used R2,

Table 3. Correlation Between Each

Individual Average DVARS Calculated

After Regression and Their Average FD

FIG. 7. tSNR results. For each
regressor set, the top bar (green)
shows the tSNR for the different
motion regression models when
censoring was not used; the bottom
bar (blue) shows the temporal sig-
nal to noise ratio (tSNR) for the
different motion regression models
when censoring was used. Error
bars in the graphs represent the
standard error of the mean. The
results shown here were obtained
without the use of GSR. Color
images available online at
www.liebertpub.com/brain

590 PATRIAT ET AL.



tSNR, DVARS, and functional connectivity (from a PCC
seed) as metrics to compare the different methods. The num-
ber of regressors to use depends on the available degrees of
freedom and desired statistical power. In this study, we chose
to examine either 6 or 12 regressors to facilitate comparison
with the existing motion regression approaches. Using a
higher number of regressors can model a greater amount of
variance (with diminishing returns as the number of regres-
sors increase), yet the loss of degrees of freedom should
not be underestimated.

Principal components

We have shown in this study that edge voxel regressors ex-
plain a lot of the variance due to head motion and are better at
removing the effect of motion than current standard tech-
niques. Furthermore, the edge voxel regressors were shown
to reduce the amplitude of large spikes (Supplementary
Fig. S2). The ideal number of edge voxel regressors will de-
pend on the amount of motion and the number of image vol-
umes acquired. While a significant fraction of variance is
explained by the first PC, and the 6 motion realignment pa-
rameters, further gains in the variance explained by the

PCs rise with only gradually diminishing returns (Fig. 5).
PCs, for the 12edge and 6mot6edge models, or the PCs
after regressing out the 6 motion parameters, account for
greater variance in high-motion subjects since the noise con-
tains a greater contribution from motion. Another interesting
finding is the observation that the PCs are not always signif-
icantly correlated to the motion parameters. This may be due,
in part, to the greater sensitivity of the PCs to slicewise mo-
tion not accurately captured by volumetric realignment
(Beall and Lowe, 2014).

While the first PC of the edge voxel time series was often
correlated with the global signal, it should be kept in mind
that the global signal can contain significant amounts of
motion-related signal change, as motion-related signal
changes occur throughout the brain (Power et al., 2014,
2015; Satterthwaite et al., 2013b; Yan et al., 2013a,
2013b). Furthermore, one or more of the 24 motion realign-
ment parameters (24mot) also correlated significantly with
the global signal, further supporting the possibility that as-
pects of the motion are captured in the global signal. Finally,
recent studies have also shown that even pure noise regres-
sors can account for neuronal activation-like patterns across
the brain (Bright and Murphy, 2015). The reason for this is

FIG. 8. Default-mode network (DMN) connectivity differences between median-split high- and low-motion subjects for
each motion regression model. Left panel shows results when censoring was used, while the right panel shows results
when censoring was not used. The green rectangles represent cases where there were no significant differences. The blue
clusters show spatial locations where connectivity was either less positive or more anticorrelated in the low-motion
group, while warmer colors represent clusters where connectivity was either higher or less anticorrelated in the low-motion
group. Note: these results were obtained without the use of GSR. Color images available online at www.liebertpub.com/brain

MOTION CORRECTION USING EDGE VOXEL INFORMATION FOR RS-FC 591



that, unless the noise is perfectly orthogonal to the signal of
interest, the fit of that noise regressor is similar in areas that
have highly correlated (i.e functionally connected) fluctua-
tions. The removal of signals of interest, at least to a certain
degree, is therefore always a possibility, even with pure noise
regressors, but this likelihood increases with a large number
of nuisance regressors. Care should therefore be taken to
minimize the number of nuisance regressors.

6-regressor models

We studied two 6-regressor models: 6mot and 6edge.
6edge regressors explain significantly greater amount of var-
iance compared to the 6mot regressors. DVARS were found
to be significant decreased when 6edge was used. Finally,
tSNR was significantly increased when 6edge was used.
All in all, the 6edge model outperformed the current standard
for 6-regressor models. However, none of these models was
able eliminate DMN connectivity differences between the
high- and low-motion groups, thus indicating that improve-
ments are necessary to completely get rid of motion artifacts;
adding more regressors might be beneficial. The conclusions
stand regardless of the use of GSR or censoring.

12-regressor models

We studied four 12-regressor models: the standard 12mot
and our own models 12edge, 6mot6edge, and 6mot6edge*.
The models based on edge voxels explained significantly
more variance than the current standard 12mot. In addition,
the first 12 PCs from the edge voxel time series (12edge) per-
formed better than a simple combination of the 6 realignment
parameters with the first 6 PCs of the edge voxels before any
regression (6mot6edge) and the combination of the 6 realign-
ment parameters with the first 6 PCs of edge voxels after re-
gression of these realignment parameters (6mot6edge*).
Once again, our 12-regressor models incorporating edge
voxel information had significantly lower DVARS than the
standard 12mot. 12edge was the 12-regressor correction
method that yielded significantly lower DVARS. Finally,
12edge yielded significantly higher tSNR than all the other
12-regressor models studied here. All in all, the 12edge
model outperformed the current standard for 12-regressor
models. However, none of the four models was able to elim-
inate DMN connectivity differences between the high- and
low-motion groups, thus indicating that improvements are
necessary to completely get rid of motion artifacts; adding
more regressors might be beneficial. The conclusions stand
regardless of the use of GSR or censoring.

24-regressor models

We studied two 24-regressor models: 24mot, derived
using the motion parameters, and our own model 24edge.
The model based on edge voxels explained significantly
more variance than the current standard 24mot. Once
again, our 24-regressor models incorporating edge voxel in-
formation had significantly lower DVARS than the standard
24mot. Also, 24edge yielded significantly higher tSNR val-
ues. Finally, 24edge was the only model to eliminate DMN
connectivity differences between the low- and high-motion
subjects. 24mot was only able to do so when GSR was
used. All in all, the 24edge model outperformed the 24-

regressor model proposed previously to replace 12mot (Fris-
ton, 1996; Power et al., 2014; Satterthwaite et al., 2013b;
Yan et al., 2013a). The conclusions stand regardless of the
use of GSR or censoring.

12- versus 6-regressor models

As expected, the 12-regressor models outperformed the 6-
regressor models in terms of variance explained and data qual-
ity; the six added regressors in our 12edge model accounted
for roughly 45% more variance than the 6edge model (Fig.
4). This is not surprising, as adding more regressors take
more variance into account. For DVARS, a similar pattern
emerges likely due to added noise removal coming from the
added information contained in the additional regressors.
The 12-regressor models increased tSNR values significantly.
Models with a higher number of regressors have also been
shown to reduce the number of significantly different connec-
tions between high- and low-motion groups, as well as a lower
correlation between subject motion and pairwise connectivity
(Satterthwaite et al., 2013b). In summary, our results show a
clear advantage of using 12-regressor models over the 6-
regressor models for motion correction.

12- versus 24-regressor models

The 24-regressor models were found to explain more
amount of variance and yield data of higher quality (as mea-
sured by DVARS and tSNR) than the best 12-regressor mod-
els (12edge *). Moreover, only the 24-regressor models were
able to reduce (e.g., 24mot) or completely eliminate (e.g.,
24edge) the DMN connectivity differences between the
high- and low-motion groups. In summary, our results
show a clear advantage of using the 24-regressor over the
12-regressor models for motion correction.

The effect of censoring

Significant fractions of variance were explained by the edge
voxel regressors even after motion censoring. This demon-
strates that our edge voxel models represent motion beyond
merely large motion spikes, for example, by including slower
drifts. If only large motion spikes were represented by our
models, our models would explain very little to no additional
variance when censoring is used. Censoring significantly re-
duced the DVARS for all methods. The reduction in
DVARS with censoring is not surprising, since the primary dif-
ference in signal between successive images occurs when there
is motion. Censoring these time points reduces the difference.
Similarly, censoring was associated with increased tSNR. This
increase in tSNR is also not surprising since the removal of
motion-related spikes decreases standard deviation.

The effect of using GSR

According to Figure 4 and Supplementary Figure S3, GSR
appears to not impact the fraction of variance explained. This
was further demonstrated in Table 3 since the correlation co-
efficients between DVARS and FD were very similar with
and without GSR (except for 24edge and 24mot). However,
as seen in Figures 6, 7, and Supplementary Figures S4, S5,
GSR significantly reduced DVARS and increased tSNR.
This indicates that GSR positively impacts data quality.
However, studies have also shown that GSR can introduce
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anticorrelations (Murphy et al., 2009) and alter group differ-
ences in functional connectivity (Gotts et al., 2013; Saad
et al., 2012, 2013). These are significant problems, and there-
fore, we cannot recommend the use of GSR.

A further potential model would be to combine edge voxel
PCs with the 24mot method. However, the correlation be-
tween the PCs and a subset of the 24mot regressors shows
that using this combination would result in an unnecessary
redundancy and a reduced effectiveness compared to the
lost degrees of freedom (Supplementary Table S2). Another
possibility would be to first do the 24mot regression and then
derive the PCs in a similar manner as the 6mot6edge* set of
regressors). However, the effects of such a large loss in de-
grees of freedom should be carefully considered and not be
underestimated. BOLD sensitivity can be decreased by in-
creasing the number of regressors and increasing the com-
plexity of the regression model (Beall, 2010; Beall and
Lowe, 2014).

Other data driven models

PCA has previously been used in the context of denoising
rs-fMRI data using the correction method CompCor (Beh-
zadi et al., 2007). This method creates regressors using
PCA on a noise mask consisting in voxels having the highest
standard deviation voxels, which are usually made of white
matter, cerebrospinal fluid, vessels, and brain edge regions.
Given the nature of these regions, it is possible that the
resulting PCs represent mostly physiological processes. In
the current study, we focused on the edge voxels to create
a set of regressors more specific to motion than those pro-
posed in CompCor.

Recently, another denoising method called FIX has been
proposed (Griffanti et al., 2014; Salimi-Khorshidi et al.,
2014). This powerful method uses independent component
analysis (ICA) on preprocessed data (rigid-body registration,
spatial and temporal smoothing) to extract a large set of com-
ponents that are then automatically classified as being artifac-
tual (physiological noise, motion, or unknown origin) or signal
of interest. To identify the motion-related components, they
are compared to five different edge masks (different thick-
nesses). Contrary to our mask, which includes voxels outside
of the brain but having at least a face in common with the
brain, the masks from FIX include voxels that are inside of
the brain. Given this difference and the fact that a temporal-
PCA and a spatial-ICA are quite different operations, we ob-
tain different components generated by FIX. One potential
drawback of FIX method is the number of components used
to denoise the data. The most recent implementations of
FIX remove 60 artifactual components, and thus, degrees of
freedom. This correction, when combined with an additional
24 nuisance regressors from the 24mot model, can result in
an unacceptable loss of degrees of freedom for many studies.

Limitations

While it is beneficial to use a commonly utilized dataset
and while the sample provided us with statistically signifi-
cant results, a larger sample may shed more light on the ef-
fect of GSR on motion correction as well some potential
tSNR differences. A larger sample would also be beneficial
to validate the connectivity differences between high- and
low-motion subjects. Also, due to the lack of physiological

data, it was not possible for us to test the efficiency of our
models associated with nuisance regressors other than WM
and CSF, such as RETROICOR (Glover et al., 2000),
RVTCor (Birn et al., 2006), and RVHRCor (Chang and Glo-
ver, 2009). A potential concern when deriving nuisance re-
gressors from the data itself is the possibility of removing
true neuronal activity-related BOLD signal fluctuations or
signal of interest. However, we believe this to be unlikely
for our proposed method. As shown in Figure 2, the edges
used to define motion-related signal changes do not extend
into the brain (e.g., they do not follow sulci or include re-
gions such as the vmPFC). Motion-induced signal changes
at these edges tend to be much larger than typical BOLD re-
sponses. In addition, voxels at the edge of the brain that con-
tain true BOLD activation are likely to be much fewer in
number than voxels containing motion-related signal
changes. It is thus unlikely that neuronal BOLD signal
changes would contribute a significant amount of variance
to the edge voxel time series. Moreover, the fit of each PC
with each voxel of the brain was visually inspected for a
high- and a low-motion subject. None of the PCs exhibited
known network connectivity patterns.

Conclusion

In this study, we set out to compare and contrast current
commonly used models of motion regression to novel motion
regression models making use of the information contained
in the EPI’s voxels located at the edge of the brain. We
found that using regressors containing information from
the brain’s edge voxels led to better motion regression and
better data quality. We found that if a study has sufficiently
high degrees of freedom such that the inclusion of a large
number of additional regressors is not a significant concern,
using a 24-regressor model such as our 24edge model signif-
icantly improves the data. We also found that, within the
scope of the study, only the 24edge model was found to elim-
inate DMN connectivity differences between low- and high-
motion subjects. If degrees of freedom are an issue (e.g., due
to short scan time or heavy censoring), the use of the 12edge
model would be an appropriate choice for motion correction.
Our results also point out that the use of censoring in con-
junction with 24edge is recommended. The use of GSR fur-
ther reduces noise, but raises significant concerns due to
potential alterations to the within-subject and between-
subject covariance structure.
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