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Abstract

The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular 

disease; however, the link between occupational exposure to engineered nanoparticles and adverse 

cardiovascular events remains unclear. In the present study, the authors demonstrated that 

pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart 

rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, 

pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to 

norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel 

blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional 

and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary 

inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose 

ganglia-regulated pathway via the activation of TRP channels in the lung.
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Introduction

Evidence accumulated from epidemiological studies suggests that there is a significant 

pathogenic correlation between the inhalation of small-sized or nanosized particles from 

ambient air and cardiovascular events, such as angina, arrhythmia, ischemic heart failure and 

sudden death (Dockery et al. 1992; Donaldson et al. 2001; Huang & Ghio 2009; Simkhovich 

et al. 2008). Recently, a number of studies have shown that pulmonary exposure to 
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engineered nanoparticles (with a diameter <100 nm), such as single-walled carbon 

nanotubes (SWCNTs), ultrafine titanium dioxide (UFTiO2) and silicon dioxide (SiO2), can 

cause biological and pathophysiological effects on the cardiovascular system. For instance, 

pulmonary inhalation of SWCNTs or UFTiO2 results in the development of vascular 

abnormalities, including atherosclerosis, increased vascular tone and impaired endothelial-

dependent vascular dilation (Cascio et al. 2007; Li et al. 2007; Nurkiewicz et al. 2008), 

while pulmonary inhalation of SiO2 causes alterations in both blood vessels and the heart 

(Chen et al. 2008). All of these observations suggest that engineered nanoparticles exhibit 

the potential to cause adverse effects on the cardiovascular system. In addition, the most 

interesting finding is that the adverse effects observed on the cardiovascular system induced 

by engineered nanoparticles are very similar to those reported in epidemiological studies of 

air pollution (Brook et al. 2009; Niwa et al. 2008; Simeonova & Erdely 2009). This finding 

indicates that engineered nanoparticles and nanosized particles from ambient air may share a 

common pathophysiological pathway(s) in the development of adverse cardiovascular 

effects following pulmonary exposure. Engineered nanoparticles are more homogeneous in 

their physical and chemical properties than naturally existing nanoparticles; therefore, they 

may induce more consistent and reproducible adverse health effects. These characteristics of 

engineered nanoparticles provide researchers with a rationale for using engineered 

nanoparticles to elucidate the mechanisms underlying adverse cardiovascular effects induced 

not only by engineered nanoparticles but also by air pollution.

Recently, studies conducted by other investigators have shown that inhalation of ultrafine 

particles from ambient air can alter cardiovascular autonomic nerve activity and baro-

receptor reflex sensitivity (Bartoli et al. 2009; Timonen et al. 2006), providing evidence to 

support the hypothetical mechanism of an autonomic sensory neuron-regulated pathway. 

Interestingly, the same observation has also been made in a study conducted by Legramante 

et al. (2009), who demonstrated that intratracheal instillation of engineered nanoparticles 

reduces the baroreflex response, thereby altering cardiac autonomic neuron activity. The 

authors of this study also demonstrated that pulmonary exposure of rats to UFTiO2 

enhanced substance P synthesis in nodose ganglia of the vagus nerve and was associated 

with biological changes in the heart, which was evidenced by an increased phosphorylation 

level of cardiac troponin I (cTnI) (Kan et al. 2012). All of these studies provide strong 

evidence, suggesting that a neuron-regulated pathway could play an important contributing 

role in cardiovascular dysfunction caused by air pollution or engineered nanoparticles (Kang 

et al. 2011).

Nodose and dorsal root ganglia contain pulmonary C-fibre sensory neurons. These sensory 

neurons detect major irritants in the lung and can be stimulated mechanically, chemically 

and biologically via the activation of the transient receptor potential (TRP) channels. 

Increased activity in C-fibre sensory neurons can result in changes to the gene expression of 

preprotachykinin and neuronal function in nodose and dorsal root ganglia (Curran et al. 

2002; Dinh et al. 2004). Moreover, the nerve fibres from the nodose ganglia also project to 

the brainstem, including the medullar cardiovascular regulatory centre, to regulate 

autonomic efferent neuron activity (Spyer 1982; Stansfeld & Wallis 1985) or innervate the 

different chambers of the rat heart and the wall of the aortic arch, where they exhibit a 

variety of neurochemical phenotypes (Ai et al. 2009; Guic et al. 2010; Kosta et al. 2010). 
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Thus, the sole connection of nodose ganglia could be a critical neuronal pathway that 

regulates cardiovascular function in response to pulmonary inhalation of nanoparticles. The 

objective of the present study was to determine cardiovascular reactions following 

pulmonary exposure to UFTiO2 and elucidate the underlying mechanism(s). The authors 

conducted cardiovascular haemodynamic measurements, including heart rate, left 

ventricular function and systemic blood pressure, and evaluated the role of nodose ganglia in 

the regulation of cardiovascular function by applying the TRP channel blocker in an in vivo 

animal model.

Methods and materials

Animals

Male Sprague-Dawley rats (Hla:(SD) CVF) from Hilltop Lab Animals (Scottdale, PA, 

USA), 6–7 weeks of age and free of viral pathogens, parasites, mycoplasmas, Helicobacter 

and cilia-associated respiratory (CAR) bacillus were used for all experiments. The rats were 

housed in cages ventilated with HEPA (high-efficiency particulate air)- filtered air under 

controlled temperature and humidity conditions and a 12-h light/12-h dark cycle. Food 

(Teklad 7913) and tap water were provided ad libitum. The rats were allowed to acclimatise 

to the facilities for 1 week before exposure was performed. The animal facilities are specific 

pathogen-free and accredited by the Association for Assessment and Accreditation of 

Laboratory Animal Care International. All experimental procedures were approved by the 

Animal Care and Use Committee of the National Institute for Occupational Safety and 

Health and conducted in accordance with the guide for the Care and Use of Laboratory 

Animals published by the US National Institutes of Health.

Pulmonary UFTiO2 exposure and ruthenium red treatment

Rats (7–8 weeks of age) received UFTiO2 (primary particle diameter ~21 nm) by inhalation. 

For this study, the UFTiO2 aerosol concentration was 6 mg/m3, and the exposure duration 

was 4 h. The aerosol generation system, exposure chamber and physical characterisation of 

UFTiO2 aerosol have been described previously (Nurkiewicz et al. 2008). Previous studies 

have shown that this exposure scheme produced an actual pulmonary deposition of 10 μg 

UFTiO2 in rats, which is equivalent to workers exposed to 0.1 mg/m3 for 27 workdays in a 

typical occupational environment, and resulted in biological and functional changes in the 

systemic and cardiac vascular system (Kan et al. 2012; LeBlanc et al. 2009; Nurkiewicz et 

al. 2008). This equivalency is calculated based on the deposited mass of UFTiO2 aerosol 

assuming a slow or no clearance. The rationale for the 27 days was based on the equivalent 

deposited mass per surface area of alveolar epithelium. Morphometric data for rat and 

human alveolar surface area are from Stone et al. (1992). Non-selective TRP channel 

blocker ruthenium red (2.5 mg/kg) (Sigma-Aldrich, St. Louis, MO, USA) was injected 

intraperitoneally 1 h prior to the pulmonary exposure of rats to UFTiO2 or filtered air.

In vivo haemodynamic measurements

At 24 h post-exposure, rats (7–8 per group) were anaesthetised with inhaled 3% isoflurane 

mixed with oxygen at a flow rate of 2 l/min. A temperature-regulated heating pad was used 

to maintain the normal body temperature of the rat. Using aseptic technique, a custom 
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catheter made according to the method described by Khanna et al. (2007) was inserted into 

the left ventricle through the carotid artery. The correct position of the catheter tip in the left 

ventricle was confirmed by the waveform of left ventricular pressure visualised on a 

computer monitor. Heart function was assessed by measuring the maximum rate of increase 

in left ventricular pressure (dP/dtmax) and minimum rate of decrease in left ventricular 

pressure (dP/dtmin). To study vascular function in vivo, systemic arterial blood pressure was 

determined by using a fluid-filled arterial catheter placed in the femoral artery and 

connected to a pressure transducer coupled to a computerised cardiovascular continuous 

monitoring system, a PowerLab/4SP analog-to-digital converter (AD Instruments, Colorado 

Springs, CO, USA). The heart rate was recorded by the same monitoring system at a 

sampling rate of 1000 Hz. Isoproterenol (ISO) or norepinephrine (NE) (Sigma-Aldrich) was 

administrated through a catheter (polyurethane, 3 French size) preplaced in the jugular vein. 

Cardiopulmonary responses and spinal reflexes were checked to determine the proper depth 

of anaesthesia. Each rat was euthanised with a carbon dioxide overdose at the end of the 

experiment.

Substance P immunohistochemistry

For tissue preparation, the right and left nodose ganglia and dorsal root ganglia (C1-C2 and 

T1-T4) were excised, fixed in picric acid-formaldehyde for 3 h and rinsed three times with 

0.1 M phosphate-buffered saline containing 0.3% Triton X-100 (PBS-Tx) (pH 7.8). The 

nodose ganglia were then frozen in isopentane, cooled with liquid nitrogen and stored in 

airtight bags at −80°C. The immunocytochemical procedures for the localisation of 

substance P immunoreactive neurons were similar to those described previously (Kan et al. 

2012). Briefly, cryostat sections (12 μm thickness) of nodose ganglia were mounted on 

gelatin-coated cover-slips, dried briefly at room temperature and then incubated with rabbit 

anti-substance P antiserum (Peninsula, Belmont, CA, USA) at a dilution of 1:100 for 60 min 

in a humidified chamber at 37°C. The coverslips were rinsed with PBS-Tx containing 1% 

bovine serum albumin (PBS-Tx + BSA) three times, for 5 min per rinse. The sections were 

then incubated with fluorescein isothiocyanate (FITC)-labelled goat anti-rabbit IgG (ICN 

Immunobiologicals, Inc., Costa Mesa, CA, USA) at a dilution of 1:100 for 60 min at 37°C. 

Then, the coverslips were mounted with fluoromount, and the sections were observed under 

a fluorescence microscope equipped with a fluorescein (excitation wavelengths from 455 to 

500 nm and emission wavelengths >510 nm) filter. The controls consisted of testing the 

specificity of primary antiserum by absorption with 1 μg/ml of the specific antigen. Non-

specific background labelling was determined by omission of primary antiserum. The 

quantitative measurement of fluorescence intensity in nodose ganglia was performed 

similarly to the authors’ previously described method (Kan et al. 2012).

Western blots

The phosphorylation status of cTnI was examined at 24 h following pulmonary exposure to 

UFTiO2. Cardiac tissue samples were removed from rats, rapidly frozen and crushed with a 

mortar and pestle at the temperature of liquid nitrogen for protein extraction. Cardiac tissue 

was prepared in lysis buffer containing 20 mmol/l Tris-HCl, 20 mmol/l NaCl, 0.1 mmol/l 

ethylenediaminetetraacetic acid (EDTA), 0.1% Triton X-100 and protease inhibitors and 

centrifuged at 10,000 g for 20 min at 4°C as described previously (Kan et al. 2012). Equal 
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amounts of protein were loaded onto an 8% SDS PAGE (sodium dodecyl sulfate 

polyacrylamide gel electrophoresis) and then transferred to a polyvinylidene difluoride 

(PVDF) membrane (Invitrogen, Carlsbad, CA, USA). Phosphorylation of cTnI was detected 

by phospho-cardiac troponin-I (Ser 23/24) antibody (Cell Signaling Technology, Danvers, 

MA, USA). Total cTnI was detected with a rabbit mAb (Cell Signaling Technology).

Statistical analysis

Data were compared using analysis of variance, followed by pairwise comparisons between 

the control and treated groups using a Student’s t-test. All data were analysed using JMP 

software (version 9.0) and differences were considered statistically significant at p < 0.05. 

The values in the figures are expressed as the mean ± SD (standard deviation).

Results

Effects of UFTiO2 and TRP channel blocker on heart rate

Pulmonary inhalation of UFTiO2 did not change the basal heart rate compared with the 

control group (exposed to filtered air) at 24 h post-exposure. However, ISO-induced 

increases in heart rate were greater in rats exposed to UFTiO2 compared with rats exposed to 

filtered air (Figure 1). Pretreatment of the rats with ruthenium red, a non-selective TRP 

channel blocker, did not affect the basal heart rate in rats either exposed to filtered air or 

UFTiO2, but prevented the ISO-induced increase in heart rate in rats exposed to UFTiO2 

(Figure 1). In addition, ruthenium red alone had no effect on heart rate in response to ISO 

(Figure 1).

Effects of UFTiO2 and TRP channel blocker on left ventricular function

Baseline measures of dP/dtmax, which reflects the systolic function of the left ventricle, were 

similar in all experimental groups at 24 h post-exposure. Pulmonary inhalation of UFTiO2 

slightly reduced dP/dtmax in response to higher dosages of ISO, but the difference did not 

reach statistical significance when compared with the control group (p > 0.05) (Figure 2A). 

The dP/dtmin, which indicates the diastolic function of the left ventricle, was decreased in 

response to ISO and reached statistical significance at higher dosages in rats exposed to 

UFTiO2 compared with the control group (Figure 2B). Reduced dP/dtmin in response to ISO 

was prevented by pretreatment of rats with ruthenium red (Figure 2B).

Effects of UFTiO2 and TRP channel blocker on systemic blood pressure

Pulmonary inhalation of UFTiO2 or pretreatment with ruthenium red did not alter basal 

levels of mean blood pressure compared with the control group (p > 0.05) (Figure 3A). 

However, UFTiO2 significantly increased mean blood pressure in response to NE, an α-

adrenergic receptor agonist. Ruthenium red prevented the increase of mean blood pressure in 

response to NE in rats exposed to UFTiO2 (Figure 3A). Systolic blood pressure was not 

affected by pulmonary inhalation of UTFiO2 either at basal levels or in response to NE 

(Figure 3B). By contrast, diastolic blood pressure in response to NE was significantly 

increased at higher NE concentrations in rats exposed to UFTiO2 at 24 h post-exposure 

compared with the control group (Figure 3C). Pretreatment of rats with ruthenium red 
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prevented increased diastolic blood pressure in response to NE in rats exposed to UFTiO2 

(Figure 3C).

Effect of TRP channel blocker on SP synthesis in nodose and dorsal root ganglia and cTnI 
phosphorylation

Pulmonary inhalation of UFTiO2 significantly increased neuronal substance P 

immunoreactivity in the nodose ganglia, but not in the dorsal root ganglia at 24 h post-

exposure (Figure 4A). Immunohistochemistry revealed that only 3.42 ± 0.65% of neurons 

displayed substance P immunoreactivity in control rats, whereas 10.23 ± 1.67% (p ≤ 0.05 

compared with the controls) of neurons were substance P positive in rats exposed to 

UFTiO2. Substance P immunoreactivity in nodose ganglia by UFTiO2 was reduced to 4.98 ± 

0.59% in rats pretreated with ruthenium red (Figure 4B). Western blots confirmed that 

pulmonary inhalation of UFTiO2 increased the phosphorylation level of cTnI in the heart at 

24 h post-exposure (Figure 5A and B). However, pretreatment with ruthenium red prevented 

UFTiO2-elevated phosphorylation levels of cTnI (Figure 5A and B).

Effect of UFTiO2 on reactive oxygen species in the heart and aortic artery

Pulmonary exposure to nanoparticles or polluted air can increase reactive oxygen species 

(ROS) generation in the lung and the secondary organs, which causes tissue damage 

(Lodovici & Bigagli 2011). As reported previously, inhalation exposure to UFTiO2 at levels 

and duration used in the present study did not alter bronchoalveolar lavage markers of 

inflammation and lung damage. However, histological evaluation demonstrated alveolar 

macrophages associated with deposition sites of particles in scattered alveoli (Nurkiewicz et 

al. 2008). In the present study, the authors also examined the formation of ROS in the heart 

and aortic artery after UFTiO2 exposure. Hydroxyl radicals were indirectly measured in 

heart and aorta tissue slices according to methods previously described (Ide et al. 2000). The 

results indicated that UFTiO2 exposure did not increase the amount of ROS production in 

the heart and aortic artery (data not shown).

Discussion and conclusion

The present study reports that pulmonary exposure of rats to UFTiO2 did not increase ROS 

production in the heart and aortic artery, but significantly increased heart rate, depressed 

diastolic function of the heart and elevated mean and diastolic blood pressure in response to 

adrenergic stimuli. Pretreatment of the rats with ruthenium red, a non-selective TRP channel 

blocker, not only inhibited substance P synthesis in nodose ganglia but also inhibited the 

phosphorylation level of cTnI and prevented the changes in cardiovascular function 

associated with substance P synthesis in nodose ganglia induced by UFTiO2.

An increase in heart rate (Figure 1) associated with altered diastolic function in response to 

ISO at 24 h after exposure to UFTiO2 suggests an acute effect of UFTiO2 on cardiac 

function (Figures 1 and 2). A change in heart rate usually results from an alteration in 

autonomic nervous system activity. Alterations in autonomic nervous system activity have 

been observed in epidemiological studies and are positively correlated with the level of 

small-sized particles in ambient air (Pope et al. 1999). Increased heart rate resulting from 
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exposure to engineered nanoparticles was first reported in a study using an isolated rodent 

heart. The increase in heart rate in this experimental model was primarily due to an increase 

of catecholamine released from adrenergic nerve endings within the heart (Stampfl et al. 

2011). In the present study, it is likely that pulmonary inhalation of engineered nanoparticles 

is able to influence the activity of the autonomic nervous system, which in turn modulates 

neurotransmitter synthesis or release from neuronal terminals that innervate the heart. This 

proposed mechanism is based on the finding that pulmonary inhalation of UFTiO2 increased 

substance P synthesis in nodose ganglia, which may alter the activity of nodose ganglia 

neurons that project to the medulla and different parts of the heart. Such a mechanism may 

also partially explain why increases in heart rate are observed during air pollution episodes 

(Peters et al. 1999).

This study also demonstrated that pulmonary inhalation of UFTiO2 had a significant effect 

on cardiac function, with diastolic function of the heart affected more than systolic function. 

This observation, together with the previous finding that inhalation of UFTiO2 resulted in an 

increase in phosphorylated cTnI, suggests that UFTiO2-induced cTnI phosphorylation may 

serve as one of the factors underlying the cardiac dysfunction observed in the present study 

and epidemiological studies of air pollution. In vivo and in vitro studies have confirmed that 

a sustained increase in cTnI phosphorylation regulated by protein kinase A (PKA) changes 

myofilament calcium binding affinity and reduces relaxation rate, thereby impairing the 

diastolic function of the heart (Sakthivel et al. 2005). Other studies have shown that 

increases of sympathetic nerve activity or catecholamine concentrations in the blood can 

result in an elevation of cTnI phosphorylation, which indicates a neuron-regulated effect on 

the phosphorylation status of cTnI (van Dijk et al. 2008). Altered diastolic function of the 

heart is considered an early pathophysiological indicator of many forms of human heart 

failure (Krajnak et al. 2011; Satpathy et al. 2006). However, the impact of altered diastolic 

function on the heart usually produces no symptoms in its early stage, unless it has 

progressed to the point of diminishing heart function. The alterations in the diastolic 

function of the heart resulting from pulmonary inhalation of UFTiO2 in this study suggest 

that pulmonary exposure to nanoparticles may increase the risk of a cardiac event in workers 

exposed daily to nanoparticles.

Pulmonary inhalation of UFTiO2 also altered vasculature function, as evidenced by an 

increase in mean blood pressure in response to NE (Figure 3A). This increased mean blood 

pressure was primarily due to elevated diastolic blood pressure (Figure 3C) because while 

the increases in systolic blood pressure in response to NE were greater in rats exposed to 

UFTiO2 (Figure 3B), they did not reach significant levels. The authors and other 

investigators have reported that inhalation of pulmonary irritants, including UFTiO2, can 

result in changes in the vascular function of small vessels primarily by increasing vascular 

tone through a sympathetic nerve-regulated mechanism and/or impairing acetylcholine-

induced vasodilation through an endothelium-regulated pathway (Krajnak et al. 2011; 

LeBlanc et al. 2009; Nurkiewicz et al. 2008). The impact of endothelial dysfunction on 

blood pressure could be different, as it affects diastolic more than systolic blood pressure in 

rats (de Belchior et al. 2012). This could be the mechanism of isolated diastolic 

hypertension, one subtype of hypertension diagnosed in the clinic (Arima et al. 2012).
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The alterations in cardiovascular reactions in response to adrenergic stimuli in this study 

indicate that pulmonary inhalation of UFTiO2 may have an influence on the activity of the 

autonomic nerves that regulate cardiovascular function. Recently, other investigators have 

reported that local treatment with an α-adrenergic receptor antagonist partially blocked 

vascular dilatory dysfunction induced by pulmonary exposure to nanoparticles (Brook et al. 

2009; Nurkiewicz et al. 2008), which also suggested an involvement of the autonomic 

nervous system in response to nanoparticle exposure. The present study showed that 

UFTiO2 exposure-increased neurotransmitter substance P synthesis occurred predominantly 

in the nodose ganglia, but not in the dorsal root ganglia (Figure 4A), indicating that the 

sensory neurons in the nodose ganglia are likely associated with cardiovascular functional 

and biological changes after exposure to UFTiO2. This was supported by the interesting 

finding that pretreatment of rats with a non-selective TRP channel blocker not only inhibited 

substance P synthesis in the nodose ganglia but also prevented the cardiovascular functional 

changes and increases in phosphorylated cTnI (Figures 4 and 5). Both nodose and dorsal 

root ganglia contain cell bodies of pulmonary sensory neurons, however, the neuronal 

pathways that functionally transfer signals from the lung to the cardiovascular regulatory 

centre in the medulla, the heart and the peripheral vasculatures are different. It has been 

reported that the cardiovascular responses to the inhalation of certain irritants can be blocked 

by bilateral vagotomy, suggesting that cardiovascular responses induced by certain irritants 

in the lung can be mediated mainly through nodose ganglia (Wang et al. 1996). In addition, 

nodose ganglia also contain the cell bodies of the aortic baroreceptor neurons involved in the 

baroreflex, one of the body’s most important homeostatic mechanisms for maintaining 

normal blood pressure (Li et al. 2008). Therefore, considering the unique neuronal 

connections of the nodose ganglia with the cardiovascular system, the observations from the 

current study indicate that the nodose ganglia play a significant role in the regulation of 

UTFiO2 exposure-induced changes in the cardiovascular system by acting as an 

intermediary centre for integrating signalling from the lung and then further transmitting 

such signals to either the central nervous system or peripheral nerves, which regulate and 

control cardiovascular function (Figure 6). Nevertheless, these findings are sufficiently 

compelling enough to warrant more definitive research.

Recently, Hazari et al. (2011) demonstrated that TRP channels in the lung play a crucial role 

in the regulation of cardiac rhythm after exposure to diesel particles, and blockage of TRP 

channels by ruthenium red abolished diesel exposure-induced cardiac arrhythmias. TRP 

channels are a group of ion channels (Ca2+ and Na+) that function as cellular sensors. They 

are expressed in a variety of tissues, including the endings of nodose C-fibres in the lung and 

cardiomyocytes in the heart (Vennekens 2011), and respond to diverse signals, including 

intracellular and extracellular messengers, exogenous chemicals, temperature and 

mechanical stress (Glazebrook et al. 2005). In this study, pretreatment of rats with a non-

selective TRP channel blocker prevented UFTiO2 exposure-induced biological and 

functional changes in the cardiovascular system, which indicates an activation of TRP 

channels by pulmonary inhalation of UFTiO2. The mechanism by which UTFiO2 exposure 

activates TRP channels in the lung is unclear and requires further investigation. However, it 

has been shown that nanoparticles, including engineered nanoparticles like UFTiO2, have 

high surface activity and can interact with macrophages, epithelial cells or leukocytes that 
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can evoke the production of ROS and pro-inflammatory factors in the lung (Rahman et al. 

2002; Scherbart et al. 2011). Therefore, the possible mechanisms responsible for the 

activation of TRP channels following UTFiO2 exposure include the direct stimulation of 

TRP channels by UFTiO2 or locally generated ROS and/or inflammatory factors in the 

alveoli.

It has been reported that TRP channels are also expressed in the heart and vasculature and 

involved in several fundamental cell functions, such as contraction, proliferation and cell 

death (Watanabe et al. 2008). Ruthenium red is a non-selective TRP channel blocker, it can 

block ryanodine receptors in the heart and reduce cardiac muscle contractility in vitro 

(Aschar-Sobbi et al. 2012). However, the effects of ruthenium red on the cardiovascular 

function in vivo are uncertain. In the present study, pretreatment of rats with ruthenium red 

did not affect cardiovascular function either at basal levels or in response to adrenergic 

stimuli, which suggests that the effects of ruthenium red on preventing UFTiO2 exposure-

induced biological and functional changes observed in this study are not likely via the 

blocking of TRP channels in the heart and vasculature.

In conclusion, the in vivo observations together with the previous findings that pulmonary 

inhalation of UFTiO2 did not cause significant systemic inflammation and that direct 

exposure of cardiomyocytes to UFTiO2 did not induce biological changes provide 

compelling evidence to support a role for nodose ganglia in the neuronal-mediated pathway 

that regulates cardiovascular function following pulmonary inhalation of UFTiO2 (Kan et al. 

2012). Activation of TRP channels appears to be an initial step to trigger this entire event.

The significance of the findings is that this proposed mechanism may not only be critical for 

engineered nano-particle exposure-regulated alterations in cardiovascular function but may 

also be an important mechanism underlying the increased incidence of cardiovascular 

diseases associated with air pollution. Unchanged basal cardiovascular function, but altered 

cardiovascular reactions in response to adrenergic stimuli after pulmonary inhalation of 

UTFiO2 indicate that pulmonary inhalation of UFTiO2 or ambient nanoparticles may not 

pose an immediate health risk to healthy people; however, in people predisposed to 

cardiovascular diseases, such as coronary artery disease, congestive heart failure or essential 

hypertension associated with high circulating plasma catecholamine, pulmonary inhalation 

of nanoparticles may worsen the disease state and trigger a cardiovascular event.
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Figure 1. 
The dose–response curve of heart rate in response to ISO at 24 h after exposure to UFTiO2 

and the effect of ruthenium red (RR) on UFTiO2-induced heart rate increase in response to 

ISO. Each value represents the mean ± SD of six rats; p < 0.05 compared with the control 

group (*).
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Figure 2. 
Effects of UFTiO2 and ruthenium red (RR) on cardiac function. (A) The contractile ability 

of the heart at 24 h after exposure to UFTiO2 was assessed by measuring the maximum rate 

of increase in left ventricular pressure, dP/dtmax. (B) The diastolic function of the heart at 24 

h after exposure to UFTiO2 was assessed by measuring the minimum rate of decrease in left 

ventricular pressure, dP/dtmin. Each value represents the mean ± SD of six rats; p < 0.05 

compared with the control group (*).
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Figure 3. 
Effects of UFTiO2 and ruthenium red (RR) on blood pressure. (A) The dose–response curve 

of mean blood pressure (MBP) in response to NE at 24 h after exposure to UFTiO2. (B) The 

dose–response curve of systolic blood pressure (SBP) in response to NE at 24 h after 

exposure to UFTiO2. (C) The dose–response curve of diastolic blood pressure (DBP) in 

response to NE at 24 h after exposure to UFTiO2. Each value represents the mean ± SD of 

six rats; p < 0.05 compared with the control group (*).
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Figure 4. 
Fluorescence photomicrographs of substance P (SP) immunoreactivity in nodose and dorsal 

root ganglia. (A) SP immunoreactivity was detected in different groups at 24 h post-

exposure. (B) The SP immunoreactivity in nodose and dorsal root ganglia was quantified 

(B). Each value represents the mean ± SD of 5 rats; p < 0.05 compared with the control 

group (*).
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Figure 5. 
The Western blot represents cardiac TnI phosphorylation and expression in different groups 

at 24 h post-exposure. (A) Each lane of the Western blot shows cardiac TnI phosphorylation 

and expression in a myocyte preparation from an individual rat. (B) Densitometry values of 

specific bands were compared between each treatment and the control group. Each value 

represents the mean ± SD of three different experiments; p < 0.05 compared with the control 

group (*).

Kan et al. Page 17

Nanotoxicology. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Schematic diagram describes a nodose ganglia-involved neuronal pathway in the regulation 

of cardiovascular function after pulmonary exposure to nanoparticles. Activation of TRP 

channels in the lung by nanoparticles results in transmission of stimulatory signals to nodose 

ganglia, where signals are integrated and processed. These signals are then transmitted to the 

cardiovascular centre in the medulla or the peripheral organs through the afferent neurons of 

nodose ganglia, resulting in modification of cardiovascular function.
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