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ABSTRACT

Structural variations (SVs) play a crucial role in ge-
netic diversity. However, the alignments of reads
near/across SVs are made inaccurate by the pres-
ence of polymorphisms. BatAlign is an algorithm
that integrated two strategies called ‘Reverse-
Alignment’ and ‘Deep-Scan’ to improve the accu-
racy of read-alignment. In our experiments, BatAl-
ign was able to obtain the highest F-measures
in read-alignments on mismatch-aberrant, indel-
aberrant, concordantly/discordantly paired and SV-
spanning data sets. On real data, the alignments
of BatAlign were able to recover 4.3% more PCR-
validated SVs with 73.3% less callings. These sug-
gest BatAlign to be effective in detecting SVs and
other polymorphic-variants accurately using high-
throughput data. BatAlign is publicly available at
https://goo.gl/a6phxB.

INTRODUCTION

Aligning sequencing reads to a reference genome is usually
the first step in most of the genomic analysis. However, it is
harder to align sequencing reads that span across genomic
variations back onto a reference genome as the whole-reads
do not represent the reference genome exactly. As such,
the sensitivity and accuracy of calling structural variations
(SVs) can be affected. This motivated us to study the align-
ment of short reads that are associated not only with SV
but also with single nucleotide variants (SNVs) and insert–
delete (indel) variants.

Alignment tools were initially developed to align short
reads allowing mismatches only. A number of such meth-
ods have been proposed, including SOAP (1), RMAP (2),
Bowtie (3), PerM (4) and BatMis (5). Although they are
generally fast, they will miss capturing the wide spectrum

of non-SNVs that have been shown to represent 7–8% of
human polymorphisms (6). As increasing evidences show
that indels are involved in a wide range of diseases (7), mis-
match aligners are unsuitable to be used in the studies of
such biologically important events.

To align reads that span across indels, gapped aligners
were proposed. Existing gapped alignment methods mostly
use the seed-and-extend approach by first aligning a part
of the read to obtain preliminary seeding locations for
the queried read. Different gapped aligners use different
seeding techniques, including contiguous exact match seeds
(BLAT (8), MegaBLAST, SeqAlto (9), YAHA (10), BWA-
MEM (11)), mismatch-seeds (RMAP (2), Stampy (12)),
spaced-seeds (Eland (13), PatternHunter (14), MAQ (15),
ZOOM (16)) and q-gram filters (RazerS (17), SHRiMP
(18), MASAI (19)). Next, the seed locations are extended
to the full length of the read, allowing for gaps, and these
alignments are reported to the users.

Current gapped aligners generally offer reasonable effi-
ciency and accuracy. However, they assume that the parts of
each read used to obtain the preliminary seeding locations
to have a small number of mismatches in them. This as-
sumption will bias the alignments. Our analysis shows that
the majority of the reads with incorrect alignments are (1)
reads whose seeds have many mismatches or (2) reads res-
cued by incorrect pairing the paired reads. (1) is an unfavor-
able consequence of the seed-and-extend approach. When
there are indels or too many mismatches in the read, the
aligners will misalign the read due to incorrect seeding of
candidate locations. (2) is due to biased pairing method-
ologies that over-rely on the estimated/given nominal insert
sizes of the paired-end libraries. With existing approaches,
paired reads that span over an SV (i.e. the aligned locations
of the two reads are not within the expected insert-size) can
be misaligned to other genomic locations where they can
be concordantly aligned instead. This bias will affect align-
ment and adversely impact variant-calling performance.
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Although misalignments of reads are low in general, it
is important to resolve them as they are most-likely to be
variant-spanning. As such, our variant of seed-and-extend
gapped aligner, BatAlign, was developed to offer accurate
alignments of reads spanning across SNVs, indels and SVs.
Unlike existing seeding strategies, BatAlign allows high mis-
matches and a gap in the seeding regions of the read. It uti-
lizes two strategies called ‘Reverse-alignment’ and ‘Deep-
scan’ to find confident seed locations for reads. It also per-
forms unbiased mapping of paired reads to avoid misalign-
ing SV-spanning reads.

The organization of this paper is as follows. We first de-
scribe the simulation of data and how the performances of
aligners are being compared with one another. Next, we de-
scribe the routines being implemented in BatAlign.

In the Discussion and Results section, we first touch on
the inadequacies on current seed-and-extend methodolo-
gies, then we compare the performance of BatAlign with
some published methods over a wide range of data sets:
ART-simulated data sets, indel-aberrant data sets, simu-
lated paired-end data sets, RSV-simulated SV-data sets and
real data sets. Overall, the results show that BatAlign had
the highest F-measure for aligning reads that contain vari-
ants or span across genomic breakpoints among the com-
pared methods.

MATERIALS AND METHODS

Methods of experiments

Compared methods. We have used the following gapped
alignment tools for comparison: BatAlign, Bowtie2 (2.0.6),
BWA-Short, BWA-SW (0.6.1-r104), GEM (third release),
SeqAlto (0.5-r123) and BWA-MEM (0.7.5a). These align-
ers are widely used and feature a wide range of mapping
techniques. For each tool, the reference genome was indexed
with default indexing parameters. hg19 reference genome
was used for all experiments in this paper. All experiments
were run on a Linux workstation equipped with Intel X5680
(3.33 GHz) processor and 16GB RAM.

Simulation of data. We generated four classes of simulated
data. The first class mimicked Illumina-like reads, the sec-
ond class has one indel in each of its reads, the third class is
‘paired’ reads and the last class is from an RSV-rearranged
(20) genome. The first class of reads was generated by ART
(21) from hg19 (excluding non-chromosomal sequences).
We have chosen ART for our study since the substitu-
tion errors were simulated according to empirical, position-
dependent distribution of base quality scores; it also sim-
ulates insertion and deletion errors directly from empiri-
cal distributions obtained from the training data from the
1000 genomes project (22). Empirical read quality score
distributions were provided for read lengths 75, 100 and
250 bp (these are the longest read lengths made available
by ART). We have capped the number of mismatches and
indels (SNVs or base-call errors or gaps) in the simulated
reads at 7%.

The second class of reads was used to demonstrate the
performance of BatAlign on aligning reads with indels. The
average density of an indel is 1 in ∼7.2 kb (23) so we sim-

ulated indels with ART at a much higher rate of 0.1% into
two data sets (one each for insert- and delete-type of gap).

The third class of reads was used to demonstrate the ef-
ficacy of mate-pair information on the paired-end mapping
mode of the compared programs. Six sets of 1 million reads
were created. Each set consisted of 2 × 500 k x (75/100/250)
bp x (concordant/discordant) reads. The first set consisted
of concordant paired-end reads with a mean insert size of
500 bp and a standard deviation of 50 bp. The second set
consisted of discordant paired-end reads, where the ‘left’
and ‘right’ ends of the paired reads were simulated from
chromosome 1 and chromosome 2 of hg19, respectively.
This class of reads was used to demonstrate the robustness
of BatAlign when aligning reads with mate-pair informa-
tion in the presence of genomic SVs.

The fourth class of reads was used to gauge the perfor-
mance of aligners on SV-spanning reads. A total of 3760
SVs of insertions, deletions, duplications, inversions and
translocations were simulated using the RSVsim package
in the Bioconductor (24). Reads were simulated from the
rearranged genome to a depth of 30X and aligned to the
hg19 reference genome. The resulting alignments were sub-
sequently applied with BreakDancer (25) to call out puta-
tive SVs and were validated against the oracle information
from the simulator.

As simulated data come with oracle information, we have
used the F-measure to gauge the performance of the meth-
ods: we define sensitivity (SEN) = TP/(TP+FN), accuracy
(ACC) = TP/(TP+FP) where TP, FP and FN are true-
positives, false-positives and false-negatives, respectively; F-
measure = 2(SEN*ACC)/(SEN+ACC). As we do not have
true-negatives in our simulated experiments, accuracy will
be used interchangeably with specificity.

Comparison of alignment performance by stratifying against
all reported mapQ scores. As the original locations of sim-
ulated reads were known, we have assessed the sensitivity
and accuracy of each method using simulated reads in this
section. For each method and each data set, we discarded
mappings with mapQ = 0 for all methods as they were
deemed ambiguous. Then, we recorded the cumulative num-
ber of correct and wrong alignments by their respective de-
creasing mapQ and plotted these results in a form similar
to an ROC curve; the corresponding cumulative number of
correct and wrong alignments at a particular mapQ cut-off
will be the respective x-axis and y-axis values for a single
data point on the Receiver Operating Characteristic (ROC)
curve. In addition, due to the inability to align some indels
to their exact locations and the presence of soft-clippings,
an alignment will be considered as a correct mapping if the
leftmost position was within 50 bp of the position simulated
by the simulator on the same strand.

For real data sets, to address the lack of oracle informa-
tion, we have mapped the paired-end reads as single-end
reads and calculated the fraction of reads that were mapped
concordantly. We consider a pair of reads to be concor-
dant if they have the correct orientation and maps within
1000 bp of each other with a mapQ > 10. (The distance
1000 is chosen since Illumina GA II machines normally can-
not sequence paired-end reads from DNA fragments of size
longer than 1000 bp.) If both ends of the paired-end reads
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are mapped but are not located within a distance of 1000 bp
to each other, they will be marked as discordant mappings.
To plot the full spectrum of concordance/discordance in
our experiments on real data set for the ROCs, we recorded
the number of concordant and discordant alignments strat-
ified by the mapQ score of the ‘head’ read. We must also
emphasize that although the rate of concordant mappings
was taken as a performance measure for aligning real reads,
it can only give a lower bound of performance when used
on mapping data sets of expectedly high paired-end concor-
dance rates. Mapped reads with unmapped mate/pair-read
will not be considered as they only form a minimal portion
of the mappings and there are no oracle data to readily ver-
ify the correctness of their alignments.

Method of cross-comparison. It was noted that GEM is the
only method among the six compared methods which does
not calculate a mapQ for its alignments. We run the default
modes of the compared programs unless otherwise stated.
We have also adopted the performance measure ‘first cor-
rect’ (or best) alignments from GEM’s paper into our ex-
periments to make sure our comparisons were extensive and
correct.

In this paper, we have compared the full spectrum of map-
pings by stratifying alignments by their reported mapping
quality scores. However, it is hard to compare the absolute
differences in performance between methods as the calcu-
lation of mapQ of an alignment differs from one method
to another. To resolve this problem and to present the rel-
ative differences in the performances numerically between
the different methods, we will have to pick a baseline perfor-
mance indicator. For instance, we can compare the different
rates of sensitivity of the methods at similar rates of speci-
ficity while using the program with the best specificity as
a baseline performance indicator for sensitivity. In general,
more false-positive mappings will come with increasing sen-
sitivity. Hence, we picked and compared the sensitivity and
specificity of the various methods as described to remove
bias due to the calculation of mapQ.

Our proposed solution: BatAlign = (Reverse-alignment +
Deep-scan) + Unbiased mapping of paired reads

To align a read, existing approaches first find putative hits of
short seeds from the query read. These putative partial hits
are usually exact or 1-mismatch occurrences with respect
to the reference genome. When there are high mismatches
and/or indels in the read, it is likely that the seeded loca-
tions do not represent the original location of the queried
read. To address the problem of missing hits from using low
edit-distance short seeds, BatAlign uses high edit-distance
in a long-seed (five mismatches, one gap and 75 bp) in-
stead to search for a global base-call-quality-aware least-
cost hit in the reference genome. To find the least-cost
hits, BatAlign uses ‘Reverse-alignment’ to enumerate pu-
tative candidate hits in increasing order of alignment cost
(i.e. increasing number of mismatches and gaps). Since the
hit having a minimum number of mismatches may not be
correct (as shown in the Discussion and Results section),
‘Deep-scan’ was developed to selectively scan deeper into
the search space of putative hits even after the least-cost

hit has been found. The alignments of all candidate hits re-
ported by ‘Reverse-alignment’ and ‘Deep-scan’ will be ex-
tended to their original full read-length. Then, base-call-
quality-aware scores for these hits are computed. For the
single-end mode, BatAlign will report the hits in the order
of this quality-aware score to the users. For the paired-end
mode, BatAlign will align both reads in the paired-read in-
dependently as if they were from a single-end sequencing
experiment. Next, BatAlign will report the alignments for
the paired-reads that best represent the estimated insert-size
of the prepared library.

Details of algorithms in BatAlign

Problem definition and overview of the method. The prob-
lem of mapping genomic reads is defined ideally as follows:
given a set of genomic reads, find the origin of each read in
the reference genome, along with their correct alignments.
However, in practice, this problem cannot always be solved
and we have to resort to finding the most likely point of ori-
gin and alignment for each read.

The outline of BatAlign algorithm is as follows. As a
pre-processing step, a one-time indexing of the reference
genome is done. Next, it will start scanning for the most
probable hits of the read in the reference by using ‘Reverse-
alignment’. ‘Deep-scan’ is then applied to scan and pick the
most probable hit of the read from the reference genome.
BatAlign then calculates a mapQ score for this hit and re-
ports it. Below, we will discuss the novel components that
aid BatAlign to gain accuracy and efficiency.

Reverse-alignment

Seed-based aligners search for candidate hits of its seeds;
then, these hits are extended and the best alignment is se-
lected based on a set of pre-defined criterion. In contrast,
‘Reverse-alignment’ does the opposite by searching for the
best possible hits in the reference first.

With a set of match/mismatch/gap scores assigned,
we pre-compute the combination and the order of
matches/mismatches/gaps that each ‘step’ of the scan-
ning routine will need to scan the reference genome with.
Reverse-alignment scans the read in increasing ‘steps’ of
alignment-cost. In this step, we pick non-overlapping 75-
bp segments from the 5′ end of a read as seeds. For each hit
of the seed, a maximum of five mismatches and one gap are
allowed in a single-seeded region.

Deep-scan

The best-scoring alignment need not be the correct align-
ment, even if it turns out to be the only hit with such a
mismatches/gap combination. It is best if we can get the
set of next-best alignments too. With these additional hits
and using the quality information of the sequencing base-
calls, we can better differentiate the correct hit from a pool
of putative candidate hits. Furthermore, these extra hits will
help BatAlign to assess the quality of the final alignment
better as the mapping quality of the final alignment is com-
puted from the two-best hits. If the first hits found during
‘Reverse-alignment’ are multiple hits, then we return all of
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these hits. Otherwise, if it is a unique hit pertaining to such
a mismatch/gap combination, then ‘Deep-scan’ will be ac-
tivated to scan for the next-best alignments.

Handling long reads

For reads longer than or equal to 150 bp, we will split the
read into non-overlapping 75-bp reads. Each of the 75-bp
segments will be aligned as described above. For instance,
for 250-bp reads, BatAlign will obtain three consecutive seg-
ments of a read starting from the first base of the read and
map each of them individually. If the first or best hits from
each segment are non-repetitive and fall within the locality
of each other, we will try to align the original read onto this
region of the reference. By doing this, we avoid realigning
the original read to more than one location of the reference.
However, if the first or best hits from each segment are repet-
itive or not mapped to the locality to one another, BatAlign
will examine and align the whole read onto each of the pu-
tative locations reported by each of the segments. Among
these alignments, the best-scoring hit is reported.

Mapping with mate-pair information

BatAlign will first align all paired-reads in unpaired-
fashion. If the top hits from each of the paired reads are con-
fidently mapped and are within expected distance to each
other, BatAlign will report this pair of alignments. However,
if the reads cannot be paired up within the expected dis-
tance or one of the pair-reads is unmapped, SW-algorithm
will be applied to the neighboring region of the anchored
alignments to rescue the mate of the anchored reads. From
here, we can calculate the mapQ for all the hits of the paired-
reads. Instead of using just a cutoff for the alignment score
of the rescued read, we also try to discriminate the goodness
of the rescued seeds using mapQ, alignment score and mate-
pair information simultaneously. Thus, for unbiased detec-
tion of SVs caused by discordant paired-reads, the calcu-
lated alignment scores will precede mate-pair information.

Supplementary alignment of SV breakpoint-spanning read

The part of the read, which spans across a genomic rear-
rangement breakpoint, will have many mismatches with re-
spect to the reference genome, possibly incurring a negative
alignment score, and will be soft-clipped away. For exam-
ple, a CIGAR alignment string of ‘65M35S’ is possible for
a length-100-bp read. In this example, we might be clipping
away useful information, which can be crucial to identifying
the partnering breakpoint of an SV.

Hence, BatAlign will realign the clipped portion from the
primary alignment of a read whenever the clipped length of
the alignment exceeds 20 bp. A fast 0-mismatch scan is ap-
plied to the last 20 bp of the clipped bases to find the candi-
date locations near potential SVs. Next, the same read will
be realigned locally to the candidate locations to recover
the auxiliary alignments. The chosen auxiliary alignment
should complement the primary alignment of a read and
together with the primary alignment, be able to represent
the full length of the original read. In other words, the pri-
mary and auxiliary alignment can be used interchangeably
for the same read.

Figure 1. Example of recovering a delete in a reference from a read.

Faster semi-global alignment and SW alignment

After the seed alignments are found for a read, BatAlign
can perform either SW alignment or semi-global alignment
to extend the alignment of the read. We have devised a semi-
global alignment method that is faster than SW-alignment
by ∼30%, and the default mode of BatAlign is to extend the
seeds using this semi-global alignment method. When the
alignment score of the semi-global alignment drops below
90% of the maximum alignment score (i.e. the score for an
exact match), an SW-alignment is done. If the user wants to
perform SW-extensions only, an option is provided to do so.
Below, we describe the SW alignment and the semi-global
alignment methods.

The SW alignment is SIMD accelerated via SSE2 instruc-
tions. Our implementation is based on an extension of SSW
library (26) that modifies Farrar’s method (27). This algo-
rithm determines the best alignment in two steps: first it
will calculate the best SW-score and then it will perform a
banded SW alignment to get the optimal trace-back of the
alignment from the Dynamic Programming (DP) table.

For the semi-global alignment, we designed a new algo-
rithm assuming that there is at most one gap in the read.
The algorithm will divide the read into two halves and first
assume that the indel is in the left half. If the indel is in the
left half, the right half of the read must align to the refer-
ence with only mismatches. Figure 1 shows the situation for
the case of a deletion. The right half of the read (part C)
maps to location Y in the genome. Part A of the read maps
to location X in the reference. Location X will be found by
the BatAlign algorithm where a seed of length |R|/2 will be
mapped. Assume we allow a maximum of d bp for the indel,
we will set j = 1. . .d, and map part C of the read j bp away
from part A of the read. See Supplementary Sections 1 and
2 for the details on how BatAlign handles indels in differ-
ent parts of the read and for the analysis of the novel data
structure behind this routine, respectively.

Accelerating alignment

The speed of the algorithm is improved by limiting the num-
ber of SW alignments performed for each read. Another
way is to stop performing SW extensions when the best
alignment score has failed to increase after a determined
number of attempts. To trace back the optimal alignment
path in the DP table, we need to perform a non-SIMD-
banded version of SW algorithm. This step is time consum-
ing. However, we can skip this step if the SW score of the
alignment falls below the current best SW score.
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Alignment score and mapping quality

Sequencing data can contain a per-base quality score that
indicates the reliability of a base call. If the probability of a
base call at position i being correct is P[i], the quality score
Q[i] assigned to location i is given by the equation P[i] = 1 −
10−Q[i]/10. Assuming that there is no bias to a particular set
of nucleotides, the probability of a base being miscalled at
location i can be calculated by the formula 1 − P[i]/3. For a
given alignment, we compute an alignment score based on
an affine-gap scoring scheme, where the score for a match
or a mismatch at R[i] is the Phred scaled value of P[i]. See
Supplementary Section 2 for details on how the mapQ is
calculated from alignment scores.

DISCUSSION AND RESULTS

Mapping biases, which occur in genomic regions with
strong homology to other genomic locations (28), con-
tribute to erroneous callings of SNVs, indels and SVs. This
problem should be given more attention as misalignments
by a particular aligner tend to be recurrent among reads that
share similar genomic contexts. As such, we are strongly
motivated to study the alignment performance of officially
published methods on reads with and without spanning
variants. Based on our study, we developed BatAlign for ac-
curate, sensitive and efficient alignment of next generation
sequencing (NGS) reads.

Simulation study showing that existing methods have difficul-
ties mapping reads with high mismatches or located near SVs

The alignment of reads in the presence of SNVs, and/or
SVs, still remains challenging despite developments already
made by published aligners. This section intends to study
the alignment accuracy of existing published methods us-
ing simulated reads that span across genomic regions with
a high number of SNVs or near SVs.

Simulated reads with k mismatches can be mapped with less
than k mismatches. Mismatches (like Single Nucleotide
Polymorphisms (SNPs)) can cause misalignments of reads
to homologous genomic regions, especially when reads are
sequenced from highly polymorphic regions. We simulated
reads (see ‘Simulation of data’) to study the effects of mis-
matches in producing misalignments. For each read, we re-
ported the lowest-mismatch unique hits (using BatMis (5),
an exact k-mismatch alignment algorithm). We then com-
pared the number of mismatches at which the reads were
simulated with (we call this value A) and mapped at (we call
this value B). Interestingly, if A = B, the respective align-
ments from BatMis were mapped correctly. However, when
A �=B, the mappings were wrong, as it must be so due to
being aligned to a location different from where it was sim-
ulated.

We should note that with the increase of simulated mis-
matches in a read, the occurrences of it being misaligned
with a lesser number of mismatches also increase; statisti-
cally, this is true as mismatches act as wild cards in string-
matching problems. From the mappings of BatMis, the rates
of misalignment for reads simulated with one to five mis-
matches increased from 0.3 to 0.9%, respectively. This result

Figure 2. Panel (A) The sensitivity and specificity of compared methods
on k-mismatch reads which can be mapped uniquely with k-mismatch.
Panel (B) shows similar statistics to Panel (A) by mapping k-mismatch
reads which have alternate unique alignment of ≤k-mismatch.

implies that, in SNV-aberrant genomic reads, it is unwise to
always pick the lowest-mismatch hit as it might misrepre-
sent the original location of a read.

To further investigate the impact of high-mismatch reads
on the performance of the current published methods,
we procured two groups of reads from the current set
of simulated reads. The first and second groups consisted
of k-mismatch reads that can be mapped uniquely by k-
mismatch and less than k-mismatch, respectively. On the
first group of reads, all the compared published methods
have an average sensitivity of ∼90% and the specificity ap-
proaches 100%. However, on the second group of reads,
both sensitivity and specificity never exceeded 2% (see Fig-
ure 2). This highlights the difficulty faced by current meth-
ods on mapping high-mismatch reads and will later be re-
solved by using BatAlign’s ‘Deep-Scan’.

Mate-pair information can falsely disambiguate alignments.
Mate-pair information is useful in aligning two individually
repetitive mate-paired reads unambiguously to the local-
ity of each other in the reference genome. An ideal aligner
should be able to align concordant and discordant paired-
reads without bias, i.e. same rates of specificity while main-
taining high sensitivity on mapping these two types of reads.
(A concordant paired-read is a pair of reads that are se-
quenced from the vicinity of each other, within the expected
wet-lab insert-size, with respect to the reference genome;
otherwise, it is a discordant paired-read.) However, if mate-
pair information is used too aggressively, an aligner might
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Figure 3. The differences in sensitivity and specificity between mapping paired-end data sets with simulated concordant and discordant paired-end infor-
mation.

Table 1. Cross-comparison of sensitivity at similar specificity and vice versa for simulated data sets of 75/100/250 bp

Simulated
data Bat-Align Bowtie2 BWA-SW SeqAlto BWA-short BWA-MEM

SEN ACC SEN ACC SEN ACC SEN ACC SEN ACC SEN ACC

75 bp 91.0 99.998 84.1 99.987 74.9 97.168 85.5 99.862 82.2 99.944 89.5 99.998
100 bp 91.1 100.0 83.7 99.992 75.8 96.644 87.7 99.786 47.8 - 90.2 99.999
250 bp 88.8 99.999 85.1 99.891 86.1 99.996 88.2 99.999 88.5 100.0 87.1 99.998

SEN is sensitivity.
ACC is specificity.
Best performance pertaining to each read-length are in BOLD.

wrongly align a pair of discordant read-pair concordantly
onto the reference genome.

We have studied the impact of mate-pair information on
alignment performance by aligning two types of simulated
paired-reads (see ‘Simulation of data’). The first set con-
sists of paired-reads that were simulated with a mean insert-
size of 500 bp (SD of 50 bp) and the other set consists of
paired-reads simulated with each end of the paired-reads
from different chromosomes. Figure 3 reports on the dif-
ferences in mapping sensitivity and specificity of each pub-
lished method between these two sets of reads. An ideal
aligner should exhibit minimal performance shift between
these two types of reads. However, we observed that the
alignment performance of the compared methods varied
greatly from one another between these two types of paired-
reads. The estimated bias, between mapping concordant
and discordant read-pairs, in terms of sensitivity and speci-
ficity ranged from ∼9.4 to ∼20% and ∼0.1 to ∼7.1%, re-
spectively, among the compared methods.

Evaluation on ART-simulated reads

To evaluate the performance of BatAlign on aligning reads,
we compared it with six other officially published methods.
We used ART (21) to simulate three data sets of 75, 100
and 250-bp read-lengths. Then, the reads in these data sets
were aligned using the different methods. Figure 4 depicts
the ROC plots on the ART-simulated data sets. Validation
on the alignments showed that BatAlign has a better perfor-
mance than the other compared methods in terms of both
sensitivity and specificity over a large range of mapQ on
the 75/100/250-bp data sets. We also cross-compared the
methods as described in ‘Compared methods and method

of cross-comparison’ and presented their respective sensi-
tivity and accuracy in Table 1. As shown in Table 1, BatAl-
ign consistently outperformed the other compared methods
in terms of sensitivity and specificity on simulated reads of
various read-lengths.

Similar to the experiments performed in GEM’s paper,
we also validated the top 10 hits reported by each method.
The complete breakdown of this validation by the first (or
best) alignment, as ordered by their respective aligner, can
be found in Table 2. From Table 2, we can see that BatAlign
has reported the most number of correct hits as top-ranked
hits in our simulated data. See Supplementary Table S3.1
for the validation results of the top 10 hits on 75- and 250-
bp data sets.

Evaluation on simulated indel-aberrant reads

The reads generated by ART have less than 0.01% probabil-
ity of containing an indel. Therefore, ART-simulated data
sets only show the performance of the methods on reads
containing mismatches and SNVs. We used ART to spike
in either inserts or deletions into each data set at a rate
of 0.1% to further gauge the performance of BatAlign on
indel-aberrant data.

Since BatAlign allowed one gap in the seed region, BatAl-
ign can seed locations for an indel-read with high accuracy
and without bias for mismatch-stricken locations which
will cause indel-reads to be misaligned. On this read class,
BatAlign achieved the highest F-measure of 92.0 and 91.9%
on the ‘delete’ and ‘insert’, respectively. BWA-MEM also
performed well on this read-class with an F-measure of
90.8% due to the stitching of multiple maximal exact match-
ing read-segments into the final alignment of a read. See
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Table 2. Number of first (or best) alignment reported by various methods on simulated 100-bp data set

Rank 100-bp data set #Correct hits

Aligner 1 2 3 4 5 6 7 8 9 10

Sum of
correct
hits

BatAlign 924272 7599 941 728 851 332 182 108 101 63 935177
Bowtie2 866310 8685 2833 948 254 110 69 42 23 5 879279
BWA-SW 794661 7 0 0 0 0 0 0 0 0 794668
Seqalto 890336 1821 515 194 91 44 38 11 3 8 893061
GEM 875333 10327 3533 1445 638 377 283 193 163 178 892470
BWA-Short 484558 5207 1747 662 211 112 79 48 20 13 492657
BWA-MEM 912562 0 0 0 0 0 0 0 0 0 912562

Figure 4. Sensitivity and accuracy for aligning simulated reads from ART.
Cumulative counts of correct and wrong alignments from high to low map-
ping quality for simulated Illumina-like (A) 75-bp, (B) 100-bp and (C) 250-
bp data sets.

Supplementary Table S3.2 for the detailed results of align-
ments on the indel-aberrant data sets.

The results from aligning on ART-simulated and indel-
aberrant data sets showed that BatAlign has better perfor-
mance than the other methods on aligning a general ART-
simulated data set of reads containing a mixture of mis-
matches and indels. Thus, BatAlign can be used to iden-
tify a broad spectrum of short-range intra-chromosomal
variants, in the presence of sequencing errors. We will dis-
cuss the performance of all compared methods in identi-
fying long-range intra/inter-chromosomal variants in the
next section.

Evaluation on concordant- and discordant-paired reads

Another issue of existing methods is that they may over-
aggressively assume paired-reads to be concordant on the
reference genome. In this section, we present the results
on mapping concordant (emulating a normal genome) and
discordant (emulating large deletions and SVs in a dis-
eased genome) simulated reads using the paired-end map-
ping mode available in the compared methods.

On the concordant paired-end data set, BatAlign,
Bowtie2, BWA-SW, GEM, BWA-Short, SeqAlto and BWA-
MEM reported sensitivities with their corresponding speci-
ficities of 98.4% (99.891%), 91.1% (92.601%), 93.0%
(98.711%), 97.4% (98.183%), 60.2% (99.702%), 96.2%
(99.881%) and 98.2% (99.834%), respectively. When map-
ping concordant paired-reads, almost all the compared
methods have similar accuracy. In contrast, with the dis-
cordant paired-end data set, the sensitivity dropped for all
the compared programs. Despite the drop in alignment per-
formance, BatAlign still reported the highest sensitivity and
specificity. On the discordant paired-end data set, at mapQ
> 0, the sensitivity of the compared methods with their
corresponding specificity for BatAlign, Bowtie2, BWA-SW,
GEM, BWA-Short, SeqAlto and BWA-MEM is 90.4%
(99.571%), 71.5% (96.058%), -(-), 85.2% (96.735%), 46.7%
(99.646%), 80.7% (92.759%) and 88.8% (99.565%), respec-
tively. In general, BatAlign has the highest F-measure of
99.1 and 94.8% for the concordant and discordant paired-
end data sets.

The mapping performance on these two data sets from
the compared methods is shown in Figure 5. The alignment
performances on each of the two data sets, from the same
method, were joined together by a line. One can infer the
robustness of paired-end mapping mode of a method from
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Figure 5. Sensitivity and specificity on mapping of concordant and discor-
dant data sets using paired-end mapping mode of various methods. Data
points circled in red depicts mapping performance on discordant data set.
BWA-SW was unable to complete the alignment of 2 × 500 k x 100 bp
discordantly paired reads and is plotted as a single data point.

the interpolation of the line that joins the paired data points
of the corresponding method in Figure 5. Thus, Figure 5
graphically shows how biased a method can be when align-
ing with mate-pair information. Overall, BatAlign was ob-
served to have the smallest fluctuations in its F-measure, by
only ∼0.6%, between the two data sets.

From Figure 5, an interesting trend of results was ob-
served for the compared programs excluding BatAlign. The
initial observation was that methods which had lower speci-
ficity on the concordant-paired data set will generally suf-
fer a smaller drop in specificity on the discordant-paired
data set. For instance, Bowtie2 used to have a specificity of
92.601% on the concordant set but the specificity improved
to 96.058% on the discordant set. The inverse of the ini-
tial observation on the results was also true. SeqAlto used
to have the highest specificity of 99.881% on the concor-
dant set but its specificity suffered the largest drop of 7.122–
92.759% on the discordant paired-end data set. These fluc-
tuations in specificity are due to the aggressiveness of the
pairing algorithms in the various methods to map paired-
end reads close to each other on the reference genome.

The results in this subsection were obtained from running
data sets of 100 bp long. Experiments were also done using
75- and 250-bp data sets and the trend of results was con-
sistent among all three data sets.

Evaluation on reads from an RSVsim rearranged genome

Recent developments in SV callers have revolved around the
usage of soft-clipped reads (29,30) and spanning read-pairs
(25). By extracting soft-clipped aligned reads and spanning
read-pairs (read-pairs that are aligned outside of the ex-
pected range of insert-size or/and with different orienta-
tions from what are designed in the wet-lab sequencing pro-
tocols) alignments, an SV can be inferred from such signa-
tures using an SV-calling algorithm.

Due to efficiency reasons and insufficient soft-clipped
alignments (due to the local-realignment strategy and align-
ment scores used) from some of the compared aligners, we
have decided to use BreakDancer to call our putative SVs

Figure 6. Concordance and discordance rates of alignments on real reads.
Cumulative counts of concordant and discordant alignments from high to
low mapping quality for real sequencing reads (A) 76 bp, (B) 101 bp and
(C) 150-bp data sets.

back from the respective sets of alignments to gauge their
performance on recovering the SVs. In addition, Table 3
shows the robustness of the alignments if the samples were
to be downsized to rates of 50 and 25% from the original
simulated coverage depth of 30X. For the various down-
sampled data sets, the SVs called out from BatAlign’s align-
ments have higher F-measures consistently. Apart from call-
ing SVs, BatAlign also achieved similar trends of results
from callings SNVs and indels. Results of these experiments
are included in Supplementary Section 3.3.

Evaluation on real reads
We have downloaded 2 × 76 bp (SRA accession
DRR000614, Sample: NA18943), 2 × 101 bp (SRA
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Table 3. F-measures of SV-callings against oracle information from Bioconductor’s RSVsim package at various downsampled rates of the data set from
an original depth of 30X

Method F-measures of SV-calling (at various downsampling rates)

25% 50% 100%

BatAlign 79.87% 83.73% 89.08%
Bowtie2 75.99% 78.56% 76.21%
BWA 3.02% 7.87% 15.84%
BWA-SW 73.39% 78.88% 83.68%
GEM 75.17% 80.08% 79.09%
SeqAlto 76.11% 83.34% 88.63%
BWA-MEM 72.68% 70.87% 80.94%

Best performance pertaining to each downsampled rate are in BOLD.

Table 4A. Comparison on the number of SVs recalled across various sub-sampled data of published and validated SVs of Patient 46T through manual
counting of supporting real pairs

Methods Intersect with published 46T data (at various ‘x’ downsampling rates) - PE170-insert size

1x 2x 3x 4x 5x 6x

BatAlign 121 114 100 83 68 59
Bowtie2 98 71 64 62 57 55
BWA 78 64 62 59 57 54
BWA-SW 116 104 81 71 65 58
GEM 80 66 64 63 60 55
SeqAlto 106 77 65 62 59 56
BWA-MEM 116 103 82 68 66 58

Table 4B. Total number of putative SVs called from across various sub-sampled data of Patient 46T

Methods Number of SVs called by Breakdancer across downsampled rates

1x (base) 2x 3x 4x 5x 6x

BatAlign 39376 13105 7758 5180 3703 2800
Bowtie2 103721 29114 20133 15272 12332 10399
BWA 45184 9016 5129 3284 2330 1739
BWA-SW 52380 34729 22040 14931 10853 8259
GEM 16768 6449 3271 1969 1315 962
SeqAlto 56801 16760 10147 6831 4939 3829
BWA-MEM 68227 15062 9184 6135 4344 3237

The library used had ∼20X in sequencing depth. A total of 126 validated SVs (31) were used for this comparison.

Table 5. Comparison of running times across all compared programs on 1 million reads from SRR315803

Program Runtime (s) Speedup factor

BatAlign - Default 583 1.2
BatAlign - Faster 481 1.4
BatAlign - Fastest 331 2.0
Bowtie2 459 1.5
BWA-Short 598 1.1
BWA-SW 639 1.1
GEM 214 3.2
SeqAlto 677 1.0
BWA-MEM 219 3.1

Fastest speed up in bold.

accession SRR315803, Sample: NGCII082 Mononuclear
blood) and 2 × 150 bp (SRA accession ERR057562,
Sample: ERS054071) paired-end data sets. The sequencing
platform used for the downloaded data sets was Illumina
Genome Analyzer IIx for the 76/101-bp data set and
Illumina MiSeq for the 150-bp data set. We evaluated
alignment performance on real data by performing single-

end read mapping on paired-end data sets. Subsequently,
we used the concordance and discordance mapping rates
from the alignments to estimate the correct and wrong
alignment rates (see ‘Comparison of alignment perfor-
mance using ROC graphs’ for more details on the definition
of concordance and discordance). In order to minimize
error in estimating alignment performance by using con-
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cordance information from the alignments, we have only
used sequencing data from non-cancerous origins. Figure 6
depicts the ROC plots on the real data sets. Similar to our
results on simulated data, BatAlign has reported more
concordant and less discordant alignments on the tested
real data sets over a large range of mapQ scores.

To verify if better mapping can improve variant calling,
we apply different variant callers to the alignments of reads
from some real data set. First, we inspected the discordant
read-pairs spanning validated SVs across various down-
sampled rates of a real data set (Accession: ERP001196,
Patient Sample: 46T, Read Format: 2 × 90 bp, Nominal
Insert-size: 170 bp). This patient sample was chosen as it
contained a higher number of polymerase chain reaction
(PCR)-validated genomic rearrangements compared to the
other samples in (31). In Table 4A, we reported the number
of SVs being supported by the alignments from the respec-
tive aligners. Across different downsampled rates of the data
set, BatAlign was able to recall the most number of PCR-
validated SVs across all of them. Table 4B reports on the
number of candidate SVs being called out by BreakDancer,
when compared with the number of validated SVs, we can
estimate specificity of the alignments which spanned out-
side of the expected sequenced insert-size. As compared to
the second-best method, BatAlign produced 73.3% less call-
ings but was still able to recall 4.3% more PCR-validated
SVs. From this, we can infer that BatAlign is both sensitive
and specific on aligning SV-spanning reads.

Apart from calling SVs on real data, BatAlign also
achieved similar results in the aspect of callings SNVs, using
SAMtools (32) and VCFtools (33), on Patient 11T (sample
was selected based on similar reasons as before for Patient
46T). Detailed results of these experiments were included
into Supplementary Section 4.2.

Evaluation on running times

Up till now, we reported on the F-measures (simulated
data), concordance/discordance and variant-calling perfor-
mance (real data) of the compared methods. BatAlign was
generally observed to have the highest performance on these
mentioned measures among the compared methods. BatAl-
ign was developed to focus primarily on reporting accu-
rate alignments and is also reasonably efficient. Table 5
shows the relative runtimes and speed factors among the
programs. (See Supplementary Section 5 for the usage of
parameters for all the compared methods.) The default set-
ting of BatAlign ran faster than most of the existing pub-
lished aligners except BWA-MEM, GEM and Bowtie2. As
some users need fast alignment, we have provided addi-
tional single-end modes (Fast and Turbo) by reducing the
search space of BatAlign. The additional modes were more
accurate than existing aligners (see Supplementary Section
6) while the running times were made to be comparable with
GEM and Bowtie2.

CONCLUSION

We presented a method BatAlign, for the gapped align-
ment of short reads onto a reference genome with im-
proved accuracy and sensitivity. The mapping strategies

discussed in the Materials and Methods section, such as
‘Reverse-alignment’, ‘Deep-scan’ and ‘Mapping with mate-
pair information’, produced mappings with increased ac-
curacy when compared with other methods in simulated
data (ART-simulated, indel-aberrant, paired-end, variant-
spanning). In addition, BatAlign also aligned over sites of
PCR-validated SVs and SNVs on real data more robustly
over various downsampling rates of the input data. A new
‘faster semi-global alignment algorithm’ and other heuris-
tics have also been used to replace the traditional SW rou-
tine to speed up BatAlign. In general, BatAlign is an im-
proved aligner for accurate gapped alignment of DNA se-
quencing reads.

Recently, a number of aligners such as YAHA (10) and
CUSHAW2 (34) were developed to handle long reads (500
bp or more). A possible future work is to develop an accu-
rate tool for the alignment of long reads.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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