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Abstract. While many approaches exist to segment retinal vessels in fundus photographs, only a limited number
focus on the construction and disambiguation of arterial and venous trees. Previous approaches are local and/or
greedy in nature, making them susceptible to errors or limiting their applicability to large vessels. We propose
a more global framework to generate arteriovenous trees in retinal images, given a vessel segmentation. In
particular, our approach consists of three stages. The first stage is to generate an overconnected vessel network,
named the vessel potential connectivity map (VPCM), consisting of vessel segments and the potential connec-
tivity between them. The second stage is to disambiguate the VPCM into multiple anatomical trees, using a
graph-based metaheuristic algorithm. The third stage is to classify these trees into arterial or venous (A/V)
trees. We evaluated our approach with a ground truth built based on a public database, showing a pixel-
wise classification accuracy of 88.15% using a manual vessel segmentation as input, and 86.11% using
an automatic vessel segmentation as input. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.

JMI.2.4.044001]
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1 Introduction
A retinal fundus image is a two-dimensional (2-D) color photo-
graph of the retina at the back of the eye and is used by clinicians
to diagnose and manage ophthalmic diseases. The retinal vascu-
lature is clinically important, because in addition to showing the
typical changes in eye diseases, its properties can also be used as
biomarkers for systemic diseases and the general state of health.

For example, in diabetic retinopathy, which is a complication
of diabetes mellitus, the vascular vessels show abnormalities
including caliber changes1 and widening of veins.2 Similarly,
cardiovascular disease3 such as hypertension and atherosclerosis
are also associated with such changes like the narrowing of arte-
rioles and the widening of venules. One method of quantifying
these changes is the arteriolar-to-venular diameter ratio (AVR).4

Specifically, a decrease in the AVR, i.e., thinning of the arteries
and/or widening of the veins, is associated with an increased risk
of stroke and myocardial infarction.5,6 In addition, a smaller
AVR is associated with smoking, hyperglycemia, obesity, and
dyslipidemia.7

In addition to measures like AVR and the widths of arteries
and veins, other clinically relevant features are junctional expo-
nents,8 vascular bifurcation angles,9 vascular tortuosity,10

length-to-diameter ratios,11 and the detection of arteriovenous
crossing phenomenon.12 To facilitate these measurements and
collect data on a large-scale number of images, a solid auto-
mated method is required to analyze arterial and venous (AV)
vasculatures.

However, this requires an automated method to determine
which vessel segments are arterial and which are venous.
Unfortunately, the disambiguation and the construction of AV
vasculatures is a complex problem, because the images provide
flat superpositions of multiple trees in the plane of the retina,
where the three-dimensional structure of the trees is not very
helpful. It also requires to determine the anatomical connectivity
between arteries and veins; in other words, to recognize all land-
marks such as bifurcations and crossing points.

Classical approaches for constructing arterial and venous
trees are the tracking-based methods.13–20 The common strategy
is to first detect vessels as separated segments usually in terms of
centerlines, and then to detect all different types of landmarks
including bifurcations, crossing points and/or vessel end points.
The vascular trees are built by iterating through the vessel seg-
ments and their connected landmarks. For example, an early
semiautomatic method to build the retinal vascular trees based
on the vessel segmentation image was developed by Martinez-
Perez et al.18 They first skeletonized the segmentation image and
then identified three types of significant points: bifurcations,
crossing points, and terminal points. They tracked vessels
from every manually-indicated root segment to iteratively con-
struct the trees. Tsai et al.19 proposed a model-based method
using the tracking-based strategy that iteratively traces the vessel
centerline pixels using local neighborhood information, and
then distinguishes bifurcations using a mathematical model
with angle information. Lin et al.20 developed a tracing algo-
rithm combining a grouping method to build the vascular
tree. They first obtained a set of disconnected vessel segments
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by using a tracing algorithm. Then, a grouping algorithm was
applied to reconnect these segments to form trees. The grouping
algorithm iteratively connected ungrouped segments to grouped
ones by maximizing the continuity of the vessel using an
extended Kalman filter.

One main drawback of these types of methods is they recog-
nize the landmarks with local information, thus correspondingly
are susceptible to local errors. These errors might be generated
due to the imperfect image itself, or during any image preprocess-
ing like vessel segmentation, skeletonization, and others. Some
typical mistakes due to these errors are: (a) the misclassification
of a crossing point as a bifurcation when one vessel is missing or
disconnected; (b) the disconnection of the tree due to a missing
part of vessels; and (c) the identification of false bifurcations and
crossings due to spurious vessels. In addition, some complex
landmarks are difficult to recognize with local knowledge, e.g.,
overlapping landmarks.

Our group recently tried to construct A/V trees using graph-
based methods. Joshi et al.21 used morphological information and
a graph search method based on vessel probability maps. Vessels
were initially separated into centerline segments, and then a vessel
network was constructed by recognizing every landmark.
Then, using graph search, the network was separated into arteries
and veins. Other groups have followed similar approaches:
Dashtbozorg et al.22 also extract vessel centerlines and partitions
them into segments first. In a graph where each node represents
an intersection point and each edge represents a segment, the vas-
cular trees were built by determining the node types and vessel
types together. However, these two graph-based methods use a
graph with static structure and the nodes representing landmarks
are determined using local information in advance; thus their
solutions are locally optimal.

Rothaus et al.23 proposed to solve the problem in a more
global way. Based on a presegmentation image, they obtained
the skeletonized vessel segments and identified bifurcations and
crossing points. Then, they modeled the problem of labeling
vessel segments as arteries or veins as a satisfiability problem
and propagate the labels of vessels from some initial labels.
Although they incorporated some global information into the
satisfiability problem, the model was still relatively local, and
the algorithm to solve the problem was greedy in nature.
Furthermore, manual inputs were required to determine the ini-
tial labels and more manual inputs were required if there were
conflicts that could not be resolved by the algorithm. In addition,
a very recent technique proposed by Estrada et al.24 used a semi-
automatic graph-based method to construct A/V trees. They first
semiautomatically extract a graph representing the vasculature

from a fundus image, then separate it into A/V trees by maxi-
mizing the likelihood of A/V trees. The drawback of their
method is that the graph is semiautomatically constructed and
thus requires human effort.

Therefore, in the present study, we propose an automated,
novel and global framework to build the A/V vascular tree
from a vessel segmentation. By taking advantage of properties
of the retinal vasculature, we combine global and local informa-
tion to recognize landmarks. Instead of recognizing each land-
mark independently, we consider landmark relationships, thus
recognize them simultaneously and globally. By doing so, local
noise in the images and local errors during preprocessing are
corrected to some degree, and small vessels that are difficult
to classify locally can also be recognized. The strategy of the
proposed method is to build an overconnected vessel network,
separate it into vascular trees, and then classify them into A/V
trees. With a special graph design, we are able to give each land-
mark multiple possible configurations and corresponding costs,
and the optimal solution follows from the global property of the
whole vascular network. With each landmark recognized, the
A/V trees are easily inferred. The preliminary work was presented
at MICCAI.25 In this paper, the complete method is presented
with updated cost functions, which incorporates vessel intensity,
width, and orientation information. Also, an A/V classification
method is included. In addition, a publicly available ground truth
is generated based on a public dataset for the evaluation.

2 Methods
Our approach to build A/V trees is based on a property of the
retinal vasculature that arteries only cross with veins, but never
with themselves. Using this constraint, labeling vessels into A/V
vessels and determining vessel connectivity is the same problem
under some assumptions. In general, the method consists of
three stages, summarized in Fig. 1. Taking a vessel segmentation
as the input, in the first stage it generates a vessel potential con-
nectivity map (VPCM). A VPCM is an overconnected vessel
network consisting of vessel segments and the potential connec-
tivity between them. In the second stage, the VPCM is disam-
biguated into multiple anatomical trees with two labels. The tree
disambiguation problem is modeled as a constrained optimiza-
tion problem, and solved by using a special graph with a meta-
heuristic optimization algorithm. To separate the VPCM, both
local and global costs are calculated on the VPCM for the
optimization problem. Finally, at the third stage, these separated
anatomical trees, as well as independent trees, are classified
into A/V trees using a machine-learning method. Because our
approach incorporates some well-known techniques, in this

1: VPCM construction

VPCM
     Vessel
segmentation

 A/V
trees

Overlapping
      trees

VPCM

2: VPCM separation

Independent
      trees

3: AV classification

Complex VPCM

Simple VPCM

Fig. 1 The flowchart of the proposed framework.
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paper we only describe the new techniques in detail, and refer
to the Appendices for implementation details of the other
techniques.

First, we introduce the VPCM, which is a vessel network
consisting of partitioned vessel segments in terms of centerlines
and their potential anatomical neighbors. In a VPCM, each seg-
ment vi has two ends ep2i and ep2iþ1, which are connected to
the ends of neighboring segments. (While use of vi to represent
segments may seem counterintuitive at this stage because the
segments do not yet reflect vertices of a graph, this notation was
chosen because each segment will eventually have a one-to-one
correspondence with a vertex of a graph, as discussed in
Sec. 2.2.2.) A neighborhood, denoted as N k, is a set of end
points whose segments are connected on the VPCM. If end
points eph; epg ∈ N k, then they are neighbors and segments
that they belong to, vbh∕2c and vbg∕2c, are also neighbors. The
size of a neighborhood, denoted as jN kj, is the number of
segment ends within N k, or the number of segments connected
within. An example is shown in Fig. 2. Figure 2(b) shows a
set of vessel segments, and Fig. 2(c) shows the corresponding
VPCM virtually. In this example, segment v0 has two indexed
ends ep0 and ep1, and ep1 has two neighbors ep2 and ep4.
Altogether they form a neighborhood N 1 ¼ fep1; ep2; ep4g,
and therefore segments v0, v1, and v2 are neighbors as well.

Here, two assumptions about the VPCM are introduced as
the prerequisite of the proposed method. The first is based
on the property of the vasculature in 2-D retinal images that
arteries do not cross arteries and veins do not cross veins.
With this property, we assume that within each neighborhood,
segments of the same type are connected anatomically and seg-
ments of different types are not anatomically connected. In other
words, if two segments are of the same type in a neighborhood,
we assume that they are connected. If they are of different
types, they are not connected. Because of this constraint, for
each neighborhood, determining the anatomical connectivity
between segments is equivalent to determine the types (artery
or vein) of the segments. The second assumption is that the
anatomical connectivity between segments is included within
a neighborhood. It means that to determine the anatomical

connectivity between segments, we only need to check whether
two segments within each neighborhood are anatomically con-
nected or not. In other words, it means that all neighborhoods
cover all possible landmarks of the vasculature. With these two
assumptions, to build A/V trees, we only need to determine
the anatomical connectivities of segments (ends) within every
neighborhood, which is equivalent to determining the segment
types within every neighborhood. Neighborhoods cannot be too
small which will violate the second assumption and pre-exclude
the true anatomical neighbors, and cannot be too large which
will violate the first assumption, and may cause two segments
of the same type not anatomically connected to be included
within one neighborhood.

2.1 Construction of Vessel Potential Connectivity
Map

Assuming we have a vessel segmentation, either manually or
automatically generated, we first extract the vessel centerlines
using a general skeletonization algorithm,26 and then we break
it into segments by finding two unique end points for each seg-
ment. First, we check the 3 × 3 neighborhood for all centerline
pixels and classify them into normal points and special points.
Normal points are centerline pixels which have two neighboring
centerline pixels; special points are centerline pixels which have
either one or more than two neighboring centerline pixels. Then,
we divide the centerlines into segments by finding pairs of spe-
cial points.

After separating the skeleton into segments, we overconnect
them to build the VPCM. This is done in two steps. The first step
is to find initial neighbors for both end points of a segment within
a close region. The second step is to find additional potential
neighbors in a larger region. During the construction of the
VPCM, we remove short independent vessels because many of
them are false positive vessels or not important for clinical mea-
surements. In addition, we use a method based on the work of
Niemeijer et al.27 to approximately mask out the optic disc (OD)
due to the ambiguity of vessels within, as well as locate the
fovea if there is one. The detail of the VPCM construction is in
Appendix A and an example is shown in Fig. 3. Figure 3(d)
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Fig. 2 A vessel potential connectivity map (VPCM) example (only a portion of the image is shown).
(a) The vessel segmentation, (b) vessel segments (end points in red), and (c) the virtual VPCM.

Fig. 3 The construction of VPCM. (a) A portion of fundus image, (b) the vessel segmentation, (c) the
vessel skeleton, (d) the VPCM (the enlarged red circle shows one neighborhood).
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shows the VPCM and the enlarged red circle shows a neighbor-
hood of size 5, whose boundary is drawn in yellow.

2.2 Separation of the Vessel Potential Connectivity
Map

2.2.1 Optimization problem

After we obtain the VPCM, the next stage is to disambiguate this
overconnected vessel network into multiple trees with binary
labels by finding the true anatomical connectivity between seg-
ments. As explained in the beginning of Sec. 2.1, with the two
properties of the VPCM, determining the anatomical connectiv-
ity within each neighborhood is equivalent to determining the
segment types. Here, we define a configuration of a neighbor-
hood as a combination of connectivity between segments within
the neighborhood, or a combination of segment labels within it,
due to the actual equivalence of these two terms. In practice, a
neighborhood is a potential landmark, and the configuration is
a possible landmark type i.e., a bifurcation, a crossing point, or
others.

For each neighborhood, we can locally determine their pos-
sible configurations but it is difficult to determine exactly which
one is the correct one with only local information. Figure 4
shows neighborhoods of size 4 and 5, with some valid potential
configurations, and their retinal image equivalents, which show
the difficulty of determining the exact types with local informa-
tion. However, the global property of the retinal vasculature
constrains the choices of the potential configurations, thus we
determine types of all landmarks simultaneously using both
local and global information. Let ~L denotes the labels for all
segments in a VPCM. The problem of separating the VPCM
is to determine ~L that minimizes Eq. (1) with an additional
global constraint that the constructed trees contain no cycles.
Here, a cycle is a set of connected segments starting and ending
at the same segment, with no repetition of other segments.

EQ-TARGET;temp:intralink-;e001;63;363Eð~LÞ ¼
XK−1
k¼0

EN ð~lN k
Þ þ βFðGÞ; (1)

where

EQ-TARGET;temp:intralink-;e002;63;302EN ð~lN k
Þ ¼ 1

Pð~lN k
jN k; AN k

Þ
: (2)

The first term of Eq. (1) represents the configuration cost for
all neighborhoods, thus is the local cost. Let li reflects the label
of segment vi {li ∈ ½0;1�, li ¼ lðviÞ ¼ lðep2iÞ ¼ lðep2iþ1Þ},

then ~lN k
represents the configuration, or the segment labels

for the neighborhood N k. The second term of Eq. (1) is a
weighted global term which evaluates the topological properties
of constructed trees G after segment labels are determined.

For each neighborhood there are multiple possible configu-
rations, and the corresponding cost is computed generally as the
reciprocal of its probability, expressed in a general matrix as
AN k

in Eq. (2). While we keep the general form of the terms
here for describing the overall algorithm, we present the details
of how to compute Pð~lN k

jN k; AN k
Þ and FðGÞ in Sec. 2.3.

The optimization model is designed not only to choose the best
configurations from all possible configurations in a local point of
view (the first term), but also to obey the global property of the
retinal vasculature (the second term and the global constraint). To
solve this problem, we divide the VPCM for an image into several
independent sub-VPCMs to solve them individually, without loss
of generality. Since the OD is masked out, separation into sub-
VPCMs is easily done with breadth-first search (BFS). Small
sub-VPCMs which are far away from the OD (i.e., trees with
fewer than 40 centerline pixels and for which the nearest distance
to the OD is larger than twice of the OD radius) are removed from
further analysis due to their insignificance in clinics. The difficulty
of the optimization problem stems from the global constraint,
which is related to the complexity of a VPCM, and thus we cat-
egorize VPCMs into three types:

• A simple VPCM: a VPCM which has one segment [see
Fig. 5(b)].

• An acyclic VPCM: a VPCM which has more than one
segment, but without cycles [see Fig. 5(c)].

• A cyclic VPCM: a VPCM which has one or more cycles
[see Fig. 5(d)].

The simple VPCM is only a single segment, so we only
need to focus on the other two, altogether referred as complex
VPCMs. Because of the difficulty of this problem with cyclic
VPCMs, we design a graph-based algorithm to approximate an
optimal solution. We first transfer a complex VPCM into a spe-
cial graph which incorporates the global constraint, and we use it
to find candidate solutions with low costs of the first term of
Eq. (1). These candidate solutions are then evaluated to generate
the final solution by combining the global cost FðGÞ, which is
the second term of Eq. (1).

2.2.2 Graph model

In the proposed graph model, each vertex ni represents a seg-
ment vi, and each edge eij represents a relation between

Fig. 4 (a) Neighborhoods of size 4 and 5, (b)–(d) possible configurations, and (e) the retinal image parts.
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segments vi and vj within a neighborhood. For each neighbor-
hood, with jN j ¼ n, n − 1 edges are built to connect the n ver-
tices as a linear tree such that the starting and ending vertices
have degree of 1, and other interior vertices have degree of 2.
Here, the concept of a cluster Ck is introduced in the graph cor-
responding to the neighborhood N k on the VPCM, which is a
set of edges generated by the vessel ends within one neighbor-
hood. If in the image domain, epi; epj ∈ N k, and there is an
edge eij constructed in graph domain, then ebi∕2cbj∕2c ∈ Ck.
Figure 6(a) shows an example of how a 3-p N and a 4-p N
is transformed to clusters in the graph domain, respectively.
Using this cluster-based transformation, a VPCM is transferred
into a planar graph. Figure 6(b) shows a virtual VPCM with four
neighborhoods transferred to a graph. In this example, four
neighborhoods in the image domain correspond to the four clus-
ters in the graph, the edges of which are labeled in different
colors.

In the graph, each vertex needs to be labeled in one of two
colors, corresponding to a vessel segment being assigned one of
two types; each edge is associated with one of two constraints:
equality or inequality, which simulates the connectivity between
segments on image domain. The equality constraint dictates the
two vertices connected by the edge must be in the same color;
the inequality constraint dictates they must be in different colors.
Within each cluster, a combination of edge constraints is equiv-
alent to a two-color scheme on vertices, which corresponds to a
configuration for the neighborhood. Also, the costs of configu-
rations for each neighborhood are attached to the corresponding
combinations of edge constraints for clusters.

Corresponding to the VPCM, vertex labelings and edge con-
straints for one cluster are mutually inferable. Figure 7 shows
the cluster and its edge constraints and vertex labelings, corre-
sponding to the neighborhood of size 4 in Fig. 4. Specifically,
Fig. 7(a) shows the segments with local indexes and Fig. 7(b)
shows its corresponding cluster. Figures 7(c)–7(e) show the
three configurations in the graph corresponding to those on the

VPCM. Figure 7(c) indicates v0 and v2 are the same type and
thus connected, v1 and v3 are the other type, meaning the neigh-
borhood represents a crossing point. Figure 7(d) indicates v0 and
v1 are the same type thus connected, v2 and v3 are the other
type, meaning the neighborhood represents the case of two ves-
sels being close. Figure 7(e) indicates v0, v1, and v2 are the same
type and connected, v3 is another type and disconnected with
them, meaning v0, v1, and v2 form a bifurcation, and v3 is
falsely connected to it.

By this transformation, the optimization problem in the
VPCM then can be transferred on the graph to the following
problem: find a combination of edge constraints for each cluster,
which also equals to the vertex color assignment, under three
conditions, and meanwhile have the minimal cost in Eq. (1).
The three conditions are:

1. The number of inequality edges on a cycle must
be even.

2. The number of inequality edges on a cycle must be
larger than zero.

3. The inequality edges on a cycle cannot come only
from one cluster.

Here, a cycle on the graph is a set of connected vertices start-
ing and ending at the same vertex, and without repetition of other
vertices. The first condition guarantees that there is a feasible
edge assignment on the graph such that vertices can be colored
using two colors. The second and third conditions guarantee that
the solution on the graph can be transferred to a feasible solution
in the VPCM, which are multiple trees with binary labels.

We define a conflict cycle when the edges on the cycle
violate any of the three conditions, and a solution on the graph
without a conflict cycle as a feasible solution, and a solution
with conflict cycles as an infeasible solution. To find the optimal
solution, besides the feasibility, we also need the cost in Eq. (1)
to be minimal.

Due to the difficulty of this problem when there are cycles
in the graph, we propose a metaheuristic algorithm to find a

(a) (b)

ep

ep
ep ep

epep

Fig. 6 (a) Neighborhoods transferred into clusters and (b) a graph
transferred from the VPCM in Fig. 2.

(a) (b) (c) (d) (e)

Fig. 7 (a) The neighborhood with local indexes of segments, (b) the
cluster, (c)–(e) three configurations corresponding to three landmark
types for the neighborhood of size 4 in Fig. 4.

Fig. 5 (a) Independent VPCMs in different colors, (b) simple VPCMs in different colors, (c) acyclic
VPCMs in different colors, and (d) cyclic VPCMs in different colors. (All centerlines are thickened for
better visualization.)
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near-global solution, illustrated in Fig. 8. Metaheuristic algo-
rithms are a type of common algorithms in optimization field
which give a near-optimal solution for difficult problems within
a reasonable amount of time. The first step of the algorithm is to
find a set of feasible candidate solutions with low costs of the
first term of Eq. (1). Then, these candidate solutions are evalu-
ated with the second term of Eq. (1) and the one with the mini-
mum cost of Eq. (1) is the final solution. At the first step, we
develop different algorithms to generate the candidate solutions
depending on whether a graph has cycles or not. If there is no
cycle, which only happens when the graph is small, all solutions
are feasible; thus we consider all solutions as candidate solu-
tions. If there is at least one cycle, which is the core of the prob-
lem, we use a heuristic algorithm to generate feasible solutions
with low costs of the first term of Eq. (1), which is explained in
detail in the following section.

2.2.3 Heuristic algorithm

Here, we denote a solution on the graph domain i.e., the choices
of edge constraints, as s. As is common in many metaheuristic
algorithms, the overall idea is to maintain a candidate solution
pool, with candidate solutions generated as in Algorithm 1. If
there are conflict cycles, the algorithm permutes the edge con-
straints to reduce them. The solution pool is updated during
every conflict cycle reduction to reduce at least one conflict cycle.
The algorithm stops when enough feasible solutions are gener-
ated, or the iteration number reaches the maximum limit.

To avoid the trap of local optima, we generate different seed
solutions to feed into Algorithm 1. Seed solutions are generated
from the solution with the lowest local cost, which might not be
feasible in most cases, with random permutation of configura-
tions of random clusters. For each seed solution, Algorithm 1
outputs a pool of candidate solutions, and the final candidates
are the union of all pools.

For Algorithm 1, it starts from a seed solution, and checks for
conflict cycles first. This is done by detecting a cycle basis first
and then checking each cycle of the basis. A cycle basis is a min-
imal set of cycles that any cycle can be written as a union
of the cycles in the basis.28 A cycle basis is found using BFS,
and the conflict cycles are detected by checking the three con-
ditions in Sec. 2.2.2 [implemented as FindConflictCycle(s, B)
in Algorithm 1]. If a solution contains conflict cycles, the algo-
rithm randomly chooses a conflict cycle to resolve. If there are
adjacent conflict cycles, they have a higher priority to be chosen.

Within Algorithm 1, permutateEdgeConstraint (s, C, m)
(Algorithm 2) is the component to permute the edge constraints
of clusters to remove conflict cycles, and to generate offspring
solutions. The algorithm iterates edges on the conflict cycle and
finds their corresponding clusters. All the potential configura-
tions of these clusters are sorted based on their costs. A random
Gaussian noise is added during the sorting to enlarge the search

region and prevent being trapped in local minima. The algorithm
starts by changing the configuration based on their costs one at a
time, and proceeds to check if the number of conflict cycles are
reduced. Here,m is the number of offspring required, and j con-
trols the relaxation of the cycle reducing criteria. If there are
only a couple of solutions with less cycles, this indicates that
the algorithm might meet a local minimum. To escape from
the local minimum and increase the search space, the algorithm
needs to generate offspring that have more cycles than the cur-
rent solution.

When Algorithm 1 cannot generate enough feasible solu-
tions, it stops when the iteration number hits the limit. In an
extreme case, there might not be feasible solutions. This might
happen when there are false vessels in the VPCM that form
a false cycle, or when vessels of the same type form a cycle
mistakenly in the fundus images. In these cases, the algorithm
generates the most favorable infeasible solutions, which are sol-
utions with the least number of cycles and lower costs.

2.3 Cost Function Design

The costs represented by Eq. (1) is essential for the proposed
algorithm. The first term is the costs of various possible

Candidate
 solutions  Final solution

(Vascular trees)

Graph
No

Yes

Configurations and costs

Second term of  Eq.(2)

Configurations and costs

Fig. 8 A concise flowchart of the metaheuristic algorithm.

Algorithm 1 Algorithm for finding candidate solutions, given a graph
G with cycle basis B, l (number of feasible solutions required), m,
initial sol t , and iter (maximum iteration number)

Initialize sol pool S with t , initialize feasible sol pool F←∅

while jF j < l & i < iter do

Initialize sol pool S 0

for each solution s ∈ S do

C ← FindConflictCycle(s, B)

if jCj ¼ 0 then

put s into F if s ∈= F

else

sol pool N← permutateEdgeConstraint (s, C, m) (see
Algorithm 2)

for each solution n in N do

put n in F if it is feasible; otherwise put n in S 0 if n ∈= S 0

end for

end if

end for

S 0←S 0, i←i þ 1

end while

if jFj ¼ 0 then

F←S 0

end if

return F
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configurations for each neighborhood, which are calculated by
using local vessel features and some global features. The second
term is the costs of the constructed trees, which is calculated
after the candidate trees are generated.

2.3.1 Feature extraction

First, we introduce the types of vessel features which are used to
calculate the costs, which are:

• the vessel end point direction

• the vessel width

• the vessel profile intensities

• the vessel dominant orientation.

The vessel end point direction is a pair of directions along the
segment at both end points, with the positive direction being
away from the segment, represented as a pair of unit vectors.
Principal component analysis is used to calculate the direction
with the first n ¼ 15 pixels starting from each end of the
segment.

The feature of vessel width includes the absolute width and
the relative width, which are the average vessel width of a

segment and its relative average width compared to others.
The absolute width is calculated using Xu’s method29 and the
relative width is a 4-scale integer representing the vessel
width compared with the quartiles of the vessel widths from
the whole image.

The vessel profile intensities are a set of average intensities
along the vessel cross section on a set of color channels.
To reduce the effect of potential errors introduced at vessel
width measurement, we use the average intensity within the
center half of the vessel width. Intensities are collected in six
channels, including red, green, and blue in RGB, intensity chan-
nel (I) in HSI, and L and b channels in Lab space. Before the
calculation, to remove the luminance imbalance, single-channel
images are subtracted by their background images and then nor-
malized. The background image is obtained by filtering the
original image with a large mean filter. An example of the bal-
anced images is shown in Fig. 9, for the fundus image in Fig. 10.

The vessel dominant orientation is the expected direction of
the blood flowing via a vessel segment, based on its geometric
and topological properties. Although the blood flows in reversed
directions in arteries and veins, for the purpose of this feature,
we define all dominant orientations using an arterial convention
where blood flows from the OD to the periphery of an image and
the fovea. A binary status flowi is attached to each segment vi,
representing if the dominant orientation is determined for vi or
not. Appendix B contains the details of the computations to
determine the vessel dominant orientation. Then, the dominant
orientation feature is transferred to the end point level by giving
one of three labels to each point: head (h), tail (t) or unknown
(u). These labels of end points are used to calculate costs for
potential configurations of each neighborhood. If the dominant
orientation is determined for vi, its end points are labeled as h
and t, representing the head and the tail of vi. The head and the
tail for a segment are determined in a way that blood flows from
the tail to the head. If the dominant orientation cannot be deter-
mined, both end points are labeled as u, which means end points
are unknown. In the following, head, tail, and unknown are indi-
cated by the symbols h, t, and u, respectively. With this rule and
the two assumptions about the neighborhood defined at the
beginning of Sec. 2, some constraints can be inferred within
each neighborhood:

• For any neighborhoods, blood cannot flow from one h to
another h.

• For any neighborhoods larger than 2, there must be at least
one h and at most 2h.

2.3.2 Configurations and costs of local neighborhoods

A configuration for a neighborhood, denoted as ϕ, represents the
separation of end points within the neighborhood into two cat-
egories. Denoting all the possible configurations for a neighbor-
hood as jΦj, and the number of neighborhoods in a VPCM as l,
then the solution space is OðjΦjlÞ. It is very expensive to locate
the optima in such a big space thus we shrink it by decreasing
jΦj with retinal vasculature features. Logically, jΦj ¼ 2jN kj−1,
with the constraint that 1 < jN kj < 7. However, when jN kj > 3,
many configurations can be pre-excluded by checking the labels
of end points. Specifically, when jN kj ¼ 5, we require that there
must be two heads and three tails; when jN kj ¼ 6, there must be
two heads and four tails. With the constraints that heads have to
be separated, and one head cannot connect to more than three

Algorithm 2 PermutateEdgeConstraint given s, C, m

Initialize sol pool S←∅, i←0

while jSj < m & i < i terMax do

c ← CycleSelection (C)

find clusters on c, k←0, l←0

for j←0; j < m∕jCj do

select a configuration config based on costs added with
random noise

s 0 ← UpdateSolution (s, config)

C 0 ← FindConflictCycle(s 0, B)

if C 0 ¼ C or jC 0j ≥ jCj þ l then

disregard s 0, k←k þ 1

else

put s 0 in S if s 0 ∈= S

j←j þ 1, k←0

end if

if k ≥ jmj then

k←0, l←l þ 1

end if

end for

i←i þ 1

end while

return S
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tails, when jN kj ¼ 5, jΦj ¼ 8; and when jN kj ¼ 6, jΦj ¼ 14.
Then, the probabilities or costs of all possible configurations are
calculated using different algorithms designed for neighbor-
hoods of different sizes using features explained in Sec. 2.3.1.
The details are in Appendix C.

2.3.3 Global cost

The candidate solutions generated by Algorithm 1 might not fit
the topology of the retinal vasculature since it only uses the first
term of Eq. (1). A set of global costs are thus imposed to select
the optimal solution which fit the topology of the vasculature
best, which is composed of three components in Eq. (3). For
our experiment β in Eq. (1) is set as 1.

EQ-TARGET;temp:intralink-;e003;63;257 FðGÞ ¼ DðGÞ þ BðGÞ þ CðGÞ : (3)

The first term is the sum of the distances of every constructed
tree t to the OD in Eq. (4), which is the Euclidean distance from
the nearest pixel of a tree to the center of OD.

EQ-TARGET;temp:intralink-;e004;63;193DðGÞ ¼
X
t∈G

dðtÞ: (4)

The second term is the bifurcation evaluator at each bifurca-
tion in Eq. (5). Here, b represents each bifurcation; θ1 and θ2 are
the angles between two children vessels and the parent vessel
for each bifurcation; and l1 and l2 are the lengths of children
vessels.

EQ-TARGET;temp:intralink-;e005;326;408

BðGÞ ¼ P
t∈G

P
b∈t

hðbÞ where; hðbÞ ¼ l1e
π
2
−θ1 þ l2e

π
2
−θ2 :

(5)

The third term CðGÞ is the consistency of the vessel domi-
nant orientation. After trees are constructed from the VPCM, the
vessel dominant orientations are determined for all segments,
and a penalty is imposed for the segments whose dominant ori-
entations are opposite compared with the VPCM. The penalty is
the sum of the lengths of these segments.

2.4 A/V Classification

After separation of complex VPCMs into multiple trees of two
types, with each separated tree being referred to as an overlap-
ping tree, the next step is to determine which trees (including
those from simple VPCMs) are arterial and which are venous.
For overlapping trees, the most difficult part was completed as
part of the separation of the trees into two types since we now
are able to rely on differences between the overlapping trees to
help in the final A/V classification. However, for simple VPCMs
(each of which is its own tree, by definition), we need to decide
on its A/V category independently. Thus, the simple VPCMs are
referred to as independent trees. In both cases, we use a pixel-
based classification method to help make the arterial/venous
determination.

In particular, first, the probability of each centerline pixel
being arterial or venous is obtained. The algorithm is similar
to the machine-learning method proposed by Niemeijer et al.30

Briefly, 31 features regarding vessel intensity are extracted and
19 features are selected as the final features. The 19 features

Fig. 9 (a) Images in R, G, B, I, L, and b channels. (b) Images after the imbalance removal and intensity
normalization.

Fig. 10 (a) A Retinal Images vessel Tree Extraction fundus image, (b) the vessel reference standard of
(a), and (c) the A/V reference standard of (a).
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include the vessel width and 18 intensity-related features on the
6 channels mentioned in Sec. 2.3.1: the average and standard
deviation of vessel intensity transectionally, and the ratio of
intensities inside and outside of the vessel profile. The intensity
inside is the average vessel intensity, and the intensity outside is
the average intensity between the vessel boundary and twice the
width away from the boundary. Here, a support vector machine
(SVM) with the radial basis function kernel is used as the clas-
sifier, which is trained on the data of 48 images from our pre-
vious work.25 The dataset is evenly separated into two subsets to
select these final features.

After each centerline pixel is classified, the probability of a
tree being arterial and venous is the normalized summation of all
its centerline pixel probabilities. For overlapping trees, which
are already separated into two types, the one with higher arterial
probability is arterial tree and the other is venous tree. For each
independent tree, if the tree probability is larger than 0.5, it is
arterial; otherwise it is venous.

3 Experiments and Results

3.1 Image Data

We used two datasets to test the performance for the proposed
method. First, we created a publicly available dataset Retinal
Images vessel Tree Extraction (RITE) based on a well-known
public available dataset DRIVE.31 We had two experts correct
the vessel reference standard on nine images, and add arterial
and venous labels. The RITE contains 40 sets of images, equally
divided into a test subset and a training subset, as the DRIVE
does. Each set contains a fundus image, inherited from DRIVE,
a vessel reference standard, and a A/V reference standard. For
the test subset, the vessel reference standard is the vessel refer-
ence standard 2nd_manual in DRIVE. For the training subset,
the vessel reference standard is a modified version of the vessel
reference standard 1st_manual in DRIVE. The A/V reference
standard is generated by labeling each vessel pixel, with one
of four labels on the vessel reference standard: artery (A),
vein (V), overlap (O), and uncertain (U), encoded by four colors,
respectively: red, blue, green, and white. An example of a RITE
fundus image, its vessel reference standard and A/V reference
standard are shown in Fig. 10. RITE is available at Ref. 32.

Another dataset we used is the same dataset we previously
used in our preliminary work.25 It contains 48 low-contrast color
mosaiced fundus images [see Fig. 12(a)]; thus we refer to this
dataset as the Mosaic dataset in this paper. Since there is no ves-
sel reference for this dataset, the A/V reference is generated by
manually labeling the generated VPCM image into an A/V skel-
eton image [see Fig. 12(d)].

3.2 Experiments

Two experiments are conducted separately for these two data-
sets. For the RITE dataset, since the approach is about the dis-
ambiguation of arterial and venous trees from a given vessel
segmentation, we use two vessel segmentations as the input:
the manual ground truth and an automatic vessel segmentation,
generated using our well-known method,31 with a hysteresis
threshold.

For the manual segmentation, since many very thin vessels
are often of little clinical interest, they are removed after we
obtain partitioned vessel segments. In our experiment, the seg-
ments with width smaller than 1.5 pixels are removed, given the

fact the median vessel width is around 4 to 5 pixels and vessels
narrower than 1.5 are very difficult to recognize even for
humans.

For the Mosaic dataset, we only use the automatic vessel seg-
mentation as the input since there is no manual one. All other
parameters and procedures are as the same as those for the RITE
with the automatic vessel segmentation as the input.

3.3 Evaluation and Results

The direct output of our algorithm is the labeled A/V vessel cen-
terlines. For the RITE dataset, we evaluate the A/V vessels with
respect to the A/V reference standard using the coverage rate
and the accuracy. The coverage rate is the ratio of classified ves-
sel pixels over all of the vessel pixels defined in the RITE refer-
ence standard, excluding pixels labeled as U or O. The accuracy
is the ratio of correctly classified pixels over all classified pixels.
Here, both pixel-wise accuracy and centerline accuracy are used.

To calculate the pixel-wise accuracy and the coverage rate, a
postprocessing step is conducted to dilate the result of A/V cen-
terlines into A/V vessel images, using the vessel reference stan-
dard as a mask. This results in a new image with each vessel
pixel in the original vessel reference standard being labeled
as A, V, or unclassified, based on the label of the corresponding
centerline pixel in the algorithmic result. An unclassified vessel
pixel occurs when no corresponding vessel is present in the
input vessel segmentation or when the vessel segment has been
removed during the VPCM construction. Then, this recovered
pixel-based A/V vessel image is compared with the A/V refer-
ence standard. To calculate the centerline accuracy, the A/V
reference standard is skeletonized first and then is compared
with the result. During the measurement of the accuracy, all
U is excluded, and all O is considered as correctly classified
if classified. The comparison is summarized in the matrix
in Table 1 and the measurements are summarized in Eqs. (6)
and (7). The test is performed on the whole RITE 40 images
and the results on both vessel segmentation inputs are presented
in Table 2, with the classification for the overlapping trees, the
independent trees and all trees. An example of results for both
inputs is shown in Fig. 11.

EQ-TARGET;temp:intralink-;e006;326;315Coverage rate ¼ TAþ FAþ TAg þ FAþ TVþ TVg

TAþ FAþ TAg þ FAþ TVþ TVg þU
;

(6)

EQ-TARGET;temp:intralink-;e007;326;256Accuracy ¼ TAþ TAg þ TVþ TVg

TAþ FAþ TAg þ FAþ TVþ TVg
: (7)

Table 1 Evaluation matrix.

A/V reference

A/V algorithm result A V Overlapping Uncertain

A TA FA TAg /

V FV TV TVg /

Unlabeled U U U /
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From the table, we see that the results for manual vessel seg-
mentation are better than those for automatic vessel segmenta-
tion, which have both higher coverage rate and accuracies. This
is reasonable since the manual vessel segmentation has higher
quality than the automatic one. However, the difference of accu-
racies is not large, showing that the proposed method can
process vessel segmentations with different qualities. Also, the
classification accuracies for overlapping trees are better than
those for independent trees, especially the centerline accuracy.

For the Mosaic dataset, we only measure the centerline accu-
racy. The result is shown in Table 3, along with the result of
previous version,25 which only worked on overlapping trees,
but ignored independent trees. The higher accuracy of our cur-
rent approach indicates a cost function combining vessel width,
intensity, direction, and dominant orientation is advantageous,

since the previous one only used vessel directions. Example
results are shown in Fig. 12.

4 Discussion
A novel method to construct the arterial and venous vasculature
from retinal images is proposed in this paper. Using the topo-
logical property of the retinal vessels, we are able to use both
local and global information to recognize the landmarks of the
vessel network thus to construct the anatomical trees. The gen-
eral strategy is to build an overconnected vessel network first,
a VPCM, and then separate it into multiple trees with binary
labels. During the construction of the VPCM, neighborhoods
are properly constructed to represent potential landmarks.
Then, separating the VPCM is modeled as an optimization prob-
lem and solved using a special graph-based metaheuristic algo-
rithm. The major merit of the method is that it avoids being
trapped at local optima due to local errors (image noise, vessel
segmentation, and preprocessing errors), because it utilizes a
variety of features both locally and globally. The proposed
method also can recognize some small vessels that are difficult
to classify using only local knowledge.

To demonstrate its performance, we build a publicly avail-
able dataset RITE based on the well-known dataset DRIVE
and test on it, as well as another dataset previously used.
The result from RITE indicates that our method performs
well on both manual and automatic vessel segmentation inputs.
Our reported results are also comparable with recent work by

Table 2 A/V classification results for manual and automatic vessel inputs on Retinal Images vessel Tree Extraction.

Manual Automatic

Coverage rate
(%)

Pixel-wise
accuracy (%)

Centerline
accuracy (%)

Coverage rate
(%)

Pixel-wise
accuracy (%)

Centerline
accuracy (%)

Overlap. trees 80.38� 9.15 89.38� 9.15 88.72� 9.62 74.48� 12.85 86.85� 8.21 86.76� 7.77

Indep. trees 7.66� 7.50 88.61� 10.11 74.45� 20.05 9.07� 9.07 85.91� 8.81 75.49� 20.67

All trees 88.04� 4.95 88.15� 8.68 87.13� 9.14 83.55� 5.35 86.11� 7.64 85.91� 7.39

Fig. 11 Examples of results from the fundus image in Fig. 10. Row (i): results from the manual input. Row
(ii): results from the automatic input. (a) Vessel segmentation, (b) VPCM with neighborhood indicated in
yellow boundary, (c) independent VPCMs in different colors (centerlines thickened for better visualiza-
tion), (d) A/V results overlapped with vessel segmentation ground truth (red for A, blue for V), and (e) A/V
results with errors in yellow.

Table 3 A/V classification results for automatic vessel inputs on
Mosaic.

Overlapping
trees

Indep.
trees All trees

Previous
method25

Centerline
accuracy (%)

87.25�
8.32

63.38�
33.98

85.32�
8.23

84.00�
9.00
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Dashtbozorg et al.22 who tested on half of DRIVE (DRIVE test
set of 20 images). In particular, using the images from the
DRIVE test set with the automatic vessel segmentation as the
input (half of the images reported in our results), our method
obtains mean and std. of the pixel-wise accuracy as 87.09%�
9.18 for the overlapping trees, and 85.68%� 8.34 for all trees.
Using a different automated vessel segmentation as input
and an A/V reference standard defined by different experts,
Dashtbozorg’s algorithm obtained a pixel-wise accuracy of
87.4%. However, Dashtbozorg et al.22 only classified the main
vessels (vessels with a width larger than 3 pixels). While they
did not provide a reported coverage rate, we assume that since
we included classification of smaller vessels that our coverage
rate is likely higher. In addition, the accuracy is of course also
dependent on the input vessel segmentation as evident by the
fact that our accuracy increased when using a manual vessel seg-
mentation as input. For DRIVE test set with manual vessel
input, our method achieves mean and std. of pixel-wise accuracy
as 90.5%� 8.98 for the overlapping trees and 88.76%� 8.83

for all trees. Note that not all methods would necessarily per-
form better when using a manual vessel segmentation as input,
given the additional vessels to classify, as indicated in our pixel-
classification-only results in the next paragraph.

It is also interesting to note that the results from both datasets
indicate that the core part of the proposed method, which
involves the separation and classification of overlapping
trees, performs better than the pixel-based classification of in-
dependent trees. To further explore the potential advantage of
including the tree separation component in final classification
results, we computed pixel-based classification results (i.e.,
determining the label of each vessel segment based only on
the majority-vote for all classified centerline pixels within the
segment) on all trees for images from RITE. Generating the
same coverage rate, the pixel-classification-only approach
obtained a mean pixel-wise accuracy and centerline accuracy
of 81.90%� 6.17 and 79.37%� 6.60 for automatic vessel

segmentation as input (which is smaller than the 86.11%�
7.64 and 85.91%� 7.64 accuracies obtained by the full
approach); for manual vessel segmentation as input, it obtained
a mean pixel-wise accuracy and centerline accuracy of
79.27%� 6.09 and 74.91%� 6.39 (which, again, is smaller
than the 88.15%� 8.68 and 87.13%� 9.14 accuracies obtained
by the full approach). The fact that using an automatic vessel
segmentation as input yields higher accuracy for the pixel-clas-
sification-only approach when compared with using a manual
vessel segmentation as input is likely because automatic vessel
segmentation has fewer thin vessels than the manual vessel seg-
mentation, which are difficult to classify merely using local
information.

The algorithm is implemented in C++ and run on a common
Linux computer (AMD Opteron Processor 8439 SE). The
median of total running time is 175 s, with the maximum case
of 573 s. For RITE dataset, the median of the running time for
solving the overlapping tree is 26.9 s, with the maximum case of
385 s. Since images in RITE are mostly fovea-centered, most of
them contain two major complex VPCMs, with several excep-
tions containing one, three, or four. A graph transferred by a
major complex VPCM normally has around 80 nodes and
100 edges, and 10 cycles. The largest graph contains 248 nodes
and 284 edges, with 37 cycles, which corresponds to the image
with the maximum running time. It happens for image 13_test in
RITE with the manual vessel segmentation as input (Fig. 13).
This is the only graph that the heuristic algorithm cannot find
a feasible solution and the solution generated contains one cycle.

In future, a smarter method to construct the VPCM could be
used for the automatic vessel segmentation so more errors can be
rectified. Also, a machine-learning method could be used to
classify false vessels and predict missed vessels. In addition,
for the independent trees that are difficult to classify with
only local intensity information, we plan to include some geo-
metric information to classify them. In summary, we have pre-
sented and validated a method for automated disambiguation of

Fig. 12 An example of result from the Mosaic dataset. (a) A fundus image, (b) the vessel segmentation,
(c) the A/V result, (d) the A/V reference. (Skeleton images are thickened for better visualization.)

Fig. 13 The image with the largest graph. (a) The fundus image, (b) the vessel ground truth, (c) inde-
pendent VPCMs in different colors, (d) A/V result overlapping with the vessel segmentation, (e) A/V result
with errors in yellow.
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retinal arterial and venous trees, and it outperforms the other
latest methods tested on the same dataset. Potentially, better sep-
aration of arteries and veins will lead to increased accuracy of
retinal image analysis, and thereby contribute to preventing vis-
ual loss and blindness.

5 Conclusion
In this paper, we present a framework to automatically construct
the arterial and venous vascular trees in retinal images given a
vessel segmentation. The proposed framework repairs connec-
tivity between vessels by building a strongly connected network
and the vessel network is separated into anatomical trees by
using a graph-based algorithm, which is further classified into
A/V trees. The proposed approach is tested on a public dataset
and promising results indicate its reliable performance and
potential applicability to large-scale datasets.

Appendix A
This appendix describes the steps to construct the VPCM from a
set of partitioned vessel segments.

The first step is to initially find neighbors for both end points
of each segment in a small region. The shape and direction of the
region is defined as shown in Fig. 14. For an end point of ep2i
from segment vi (red pixel in Fig. 14), if there is an end point
epm from other segment vbm∕2c within its search region (dark
gray pixels in Fig. 14), epm is connected with ep2i and vbm∕2c
is a neighbor of vi.

Then, short isolated segments less than 12 pixels are removed
because the majority of them are false positives, and the rest are
of little clinical significance. In addition, we use a method based
on the work of Niemeijer et al.27 (using a SVM classifier rather
than a k-NN classifier to obtain OD and fovea probability maps)
to find the centers of the OD and the fovea. We also estimate the
radius of the OD by determining the radius (between 40 and 90
pixels) that maximizes the number of overlapping edge
responses from the Gaussian-derivative-filtered OD probability
map.

The next step is to find additional potential neighbors for ves-
sel segments in a larger region using a two-step algorithm. The
first step is to explore neighbors for segment ends having no
neighbors by artificially extending the segment. The extension
is defined as a region theoretically similar to a circular sector
whose radius is r and central angle is θ ¼ 30 deg. Figure 15(a)
shows the shape in the continuous domain, and Fig. 15(b) shows

the shape in the digital image domain. The extension region is
iteratively grown by increasing r until a neighboring segment is
found, or r reaches a limit rl. Here, rl [Eq. (8) is determined by a
function of the vessel length l, the vessel tortuosity33 t, and an
arc weight ra (Eq. (9)]

EQ-TARGET;temp:intralink-;e008;326;584rl ¼
8<
:

a∕tþ ra if l < la
½aþ 0.1 × ðl − laÞ�∕tþ ra if la ≤ l
b∕tþ ra if lb ≤ l

< lb; (8)

EQ-TARGET;temp:intralink-;e009;326;527ra ¼
�
0 if da > 30

1000 cos3 δ∕da otherwise
: (9)

In our experiment, a ¼ 8, b ¼ 10.4, la ¼ 16, lb ¼ 40. The
arc weight encourages segment ends that are near and aligned
with major vessels to have a greater maximum extension. The
major vessels are the two largest vessels on a fundus image.
They are obtained by downsampling the vessel segmentation,
thresholding, and skeletonizing it, and then finding the two larg-
est connected components. Then these two major vessel arcs are
represented by 2nd degree curves (Fig. 16). In the arc weight
equation given by Eq. (9) above, da is the nearest distance
between a segment end and an arc and δ is the angle between
the direction of the segment end and the tangent line of the near-
est point on the arc.

The extension region finds a neighbor using Algorithm 3.
Examples of the extension region with different connection
cases are shown in Fig. 17.

The second step is to merge close neighborhoods. A boun-
dary is defined for each neighborhood N k, and a neighborhood
will merge with others if their boundaries contact. The boundary
is a polygon whose shape is defined according to jN kj.

When jN kj ¼ 1, the boundary is an extending segment of
length lx ¼ rl from the vessel end.

When jN kj ¼ 2, the boundary is a quadrangle [see Fig. 18(a)].
Two of the crests P1 and P2 of the quadrangle are on the seg-
ments whose distance to their respective end points is d, which
is controlled by the width of the two segments. Another
two crests P3 and P4 are defined using Eq. (10), where θ is
the angle between the directions of the two segments; r is a con-
stant, which is set as 7 in our experiment; d1 and d2 are the
directions of the two segments. C is the centroid of epi and epj.

EQ-TARGET;temp:intralink-;e010;326;168

P3 ¼ Cþ rðcos θ þ 1Þd
P4 ¼ C − 0.5rðcos θ þ 1Þd
where; C ¼ epi þ epj; d ¼ d1þd2

jd1þd2j
: (10)

An example of the boundary on the image domain is shown in
Figs. 18(b) and 18(c).

When jN kj ¼ 3, the boundary is a triangle. The three crests
of the triangle are on the segments whose distances to their

(a)

(b)

Fig. 14 Two types of search region, which are shown in dark gray and
the end point is in red and vessel centerlines in white. (a) The vessel
direction is in either horizontal or vertical direction and (b) the vessel
direction is in a diagonal direction.

(a) (b)

2

Fig. 15 The shape of the extension region.
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respective end points are di. Assume θ1, θ2, and θ3 are the three
angles between directions of segments in a neighborhood. If
they are all larger than 110 deg, di ¼ 3 [see Fig. 19(a)];
Otherwise, di ¼ 3 for segments whose directions form the
smallest angle, and di ¼ r3 cos θmin, where r3 is a constant,

which is set as 12 in our experiment, and θmin is the smallest
angle [see Fig. 19(c)]. An example of each of the cases in actual
digital image space is shown in Figs. 19(b) and 19(d).

When jN kj > 3, the boundary is a polygon whose vertices
are the vessel pixels pi such that jpi − vij ¼ 3, where vi ∈ N k.
An example of the boundaries for neighborhood with different
sizes is shown in Fig. 20.

We also limit the size of neighborhoods smaller than 7, based
on the observation that the overlapping of three landmarks
(bifurcations or crossing points) is extremely rare. Therefore,
if a merged neighborhood is larger than 6, we do not merge
these neighborhoods. When neighborhoods are merged, if both
ends of a segment are within the new neighborhood, the segment
is removed.

Appendix B
This appendix describes the methods to determine the vessel
dominant orientations for segments, which are determined
using multiple models together.

The first model is to use the root and leaf property. First of
all, two special types of segments in a VPCM are introduced, the
root segment, from which the trees start; the leaf segment, at
which the trees end. There usually are multiple roots and leaves
in a complex VPCM. For roots, their tails have no neighbors.
For leaves, their heads have no neighbors. Therefore, we first

Fig. 16 An example of downsampled vessel segmentation with major
vessel arcs in red.

Algorithm 3 The algorithm to link neighboring segments.

for each end epj which has no neighbors do

while epj has no neighbor and r < r l do

increase r and construct the region Rj

if Rj meets an end point epk of another segment then

connect epj to epk and epk ’s neighbors if there are any
[Fig. 17(a)]

else if meet a vessel centerline p then

break vessel at p into two segments, which generates two
new end points epl and epm , form epj , epl and epm as a
neighborhood [Fig. 17(b)]

else if meet another extension Rk from end epk then

connect epj to epk and epk ’s neighbors if there are any
[Fig. 17(c)]

end if

end while

end for

(a) (b) (c) (d) (e) (f)

Fig. 17 (a)–(c) Three different cases of finding a neighbor. (d)–(f) After they are connected.

1d 2d

3P

4P

2P1P

(a) (b) (c)

Fig. 18 The boundary illustration for neighborhood with size of 2.
(a) The theoretical geometry of the boundary, (b) the vessel segments
with two 2-pt neighborhoods in the center, and (c) the corresponding
boundaries shown in yellow.

(a) (b) (c) (d)

Fig. 19 The boundary illustration for neighborhood with size of 3.
(a) The first case of boundary construction on theoretical geometric
domain, (b) an example of the boundary on image domain for the
first case, (c) the second case of boundary construction on theoretical
geometric domain, and (d) an example of the boundary on image
domain for the second case.
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find out all segments that have one end point without neighbors,
then we classify them into roots and leaves using their distances
to the OD. Roots are the ones closer to the OD, and leaves are
the ones farther away from it. After we determine roots and
leaves, we extend their labels to other segments using the fol-
lowing method. For a root or leaf, if its end point with neighbors
has only one neighbor not already labeled as the same type, then
the neighboring segment is also labeled as a root or leaf, respec-
tively. By this rule, we obtain a set of segments labeled as roots
and leaves. When a segment is labeled as root or leaf, the dom-
inant orientation is determined simultaneously, so as h and t for
this segment. Figure 21(b) shows root segments in red and leaf
segments in yellow, for the fundus in Fig. 21(a). Segments with
dominant orientations determined with this model are shown in
Fig. 21(c). Segments with dominant orientations determined
are in green, and the head part is in red and the tail part is in
yellow.

The second model is to use the radial distribution of seg-
ments with respect to the OD. For a segment vi, we calculate
the displacement of its two end points as a unit vector denoted
as Oi. We also calculate the displacement of its center pixel to
the OD as a unit vector Di. If the angle of Oi and Di is smaller
than a degree d, then the dominant orientation for vi is deter-
mined and the endpoint near to the OD is t, and the other
one is h. Figure 21(d) shows the segments with dominant ori-
entations determined after using this model.

The third model is the parallel model, which is only applied
when there is a fovea in the image. The displacement of the
fovea to the OD center is calculated as a unit vector, denoted as
Dof . For a segment vi, if the angle betweenOi and Dof is smaller
than a degree dpara, the dominant orientation is determined, and
the end point near to the OD is t, and the other one is h. Vessel
segments with dominant orientation determined using this
model are shown in Fig. 21(e).

The fourth model is the rules of neighborhood connectivity,
which are applied on the neighborhood level. Specifically
we apply the rules mentioned at the end of Sec. 2.3.1 for

neighborhoods with size of 3, 4, 5, and 6. For neighborhoods
with size of 3 and 4, there must be at least 1 h, or at most 2
h. For neighborhoods with size of 5 and 6, there must be 2
h and the rest are t. With these rules, we could label some u
as h or t for some neighborhoods, thus to determine the dom-
inant orientation of the corresponding segments. Also, we could
rectify some possible errors made by previous models if there
are more h in a neighborhood than these rules limit. The basic
algorithm to determine a u to be a h or t is based on the direction
information. We assume that in a neighborhood all heads are
aligned together, and all tails are aligned in the opposite direc-
tion. For a u, if its associated end point direction is more aligned
with other h, and more on the opposite direction of other t, then
it is labeled as h; otherwise it is labeled as t. The same rule is
applied to choose the extra h that should be changed to t. When
there are three h in a neighborhood, one h (the h that deviates the
most with other two h and is aligned the most with all other t) is
changed to t. There are special cases that these rules cannot
apply so we design different strategies or just leave them without
any process. For example, when all end points are h or t, we
break the neighborhood and disconnect every end point. For
neighborhood of size 3, when there is one h, one t and one
u, we do nothing. For neighborhood of size 4, when there is
one h, one t and two u, we do nothing. Figure 21(f) shows seg-
ments with dominant orientation determined after using these
rules.

Appendix C
In this appendix, we describe the algorithms to calculate pos-
sible configurations and their costs for neighborhoods with dif-
ferent sizes. First, for better description, we use the labels of end
points to denote the members of one neighborhood. For exam-
ple, a neighborhood with one head, two tails, and one unknown
is denoted as N k ¼ fh; t1; t2; ug. A configuration is denoted as
a subset of connected end points. Therefore, in the case of
N k ¼ fh; t1; t2; ug, a configuration of the head being connected
with both tails is denoted as ϕ ¼ fh; t1; t2g. Due to the duality of
the connection or the labels, it can also be expressed using the
complementary subset, thus ϕ ¼ fh; t1; t2g ¼ fug.

When jN kj ¼ 2, there are two configurations, two end points
are either connected, or disconnected. The vessel dominant ori-
entation and the vessel end point direction are used to determine
the costs of them. First, if both of end points are heads or tails,
there is only one configuration, that they are disconnected, and
the cost is set to be an extreme small number, here −3.0; other-
wise, end point directions are used to determine the configura-
tions and costs. The cost of them being connected is calculated

Fig. 20 Examples of boundary for neighborhood with size of 4, 5, and
6, respectively.

Fig. 21 An example of determining dominant orientations. (a) A fundus image, (b) vessel roots shown in
red, and leaves shown in yellow, (c) dominant orientations determined after using the root and leaf
property, (d) dominant orientations determined after using the second model, (e) dominant orientations
determined after using the parallel rule, and (f) dominant orientations determined after using the neigh-
borhood connectivity.
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by Eq. (11) and the cost of them being disconnected is calcu-
lated by Eq. (12), where o1 and o2 are the directions of the two
end points.

EQ-TARGET;temp:intralink-;e011;63;719c0 ¼ −0.1 ×
�
1 −

cos αþ 1

2

�
; (11)

EQ-TARGET;temp:intralink-;e012;63;674c1 ¼ −0.1 ×
cos αþ 1

2
; (12)

where

EQ-TARGET;temp:intralink-;e013;63;626 cos α ¼ o1 · o2
jo1j · jo2j

: (13)

When jN kj ¼ 3, there are four potential configurations
logically. Here, vessel dominant orientations and end point
directions are used. Specifically after the determination of vessel
dominant orientations, there are only three cases of how many
heads, tails or unknowns in the neighborhoods, and different
algorithms are designed to generate possible configurations
and corresponding costs.

1. For the case of one head and two tails (N k ¼ fh; t1;
t2g): we limit the potential configurations to only
three cases, Φ ¼ fϕ1;ϕ2;ϕ3g, where ϕ1 ¼ fh; t1; t2g,
ϕ2 ¼ fh; t1g and ϕ3 ¼ fh; t2g. The costs are calculated
using the end point direction vectors. For ϕ2 and ϕ3,
their costs are the cosines of the angles between the
direction vectors of two connected end points. For ϕ1,
the cost is the sum of the two cosines of the angles
between the direction vectors of the head and two tails.

2. For the case of two heads and one tail (N k ¼ fh1;
h2; tg): we limit the potential configurations to only
two cases. Φ ¼ fϕ1;ϕ2g, where ϕ1 ¼ fh1; tg, ϕ2 ¼
fh2; tg. The costs for ϕ1 and ϕ2 are the cosines of
the angles between the directions of two connected
end points.

3. For the case of one head, one tail and one unknown
(N k ¼ fh; t; ug): four cases are allowed,Φ ¼ fϕ1;ϕ2;
ϕ3;ϕ4g, where ϕ1¼fh; t; ug, ϕ2 ¼fh; tg, ϕ3 ¼fh; ug
and ϕ4 ¼ fu; tg. The costs for ϕ2, ϕ3 and ϕ4 are the
cosines of the angles between the directions of two
connected end points. For ϕ1, the cost is the sum of
the two cosines of the angles between the direction
vectors of the head and the tail, and the head and the
unknown.

We next introduce how to calculate the costs for configura-
tions when jN kj ¼ 5; 6 (the costs for jN kj ¼ 4will be discussed
last). When jN kj ¼ 5; 6, since there are two heads and the rest
are tails, the same strategy is adapted. For all the configurations,
three types of costs are calculated independently using the vessel
width, profile intensities and end point directions respectively,
denoted as Pw, Pi, and Pd. Then they are combined together to
obtain the final cost Pϕ. Specifically, it is the negative of the
multiplication of the three costs in Eq. (14). Then configurations
with the first 6 lowest costs are preserved for jN kj ¼ 5, and con-
figurations with the first eight lowest costs are preserved for
jN kj ¼ 6.

EQ-TARGET;temp:intralink-;e014;326;752Pϕ ¼ −PwPiPd: (14)

For Pw, we utilize the fact that the width of parent segment is
larger than the width of any children segments. First we use the
relative width to eliminate some impossible configurations if
qp − qc < −1, where qp is the relative width of the parent seg-
ment (one providing the head), and qc is the relative width of the
thickest child segment (one providing the tail). Then, we calcu-
late Pw using Eq. (15), where wp and wc are the absolute widths
of the parent and child segments respectively introduced in
Sec. 2.3.1.

EQ-TARGET;temp:intralink-;e015;326;631Pw ¼ log ðwp − wc þ 1.5Þ: (15)

For Pi, we evaluate the cost of every child segment being
connected to one parent over another parent using intensity
information. Specially, for child segment vc, the cost pc is cal-
culated using Eq. (16), where ~Ic is its intensity vector, ~Ipc is the
intensity vector of the parent it connects, and ~Ipd is the intensity
vector of the parent it disconnects. For a configuration, the Pi is
the multiplication of the pc of three child segments.

EQ-TARGET;temp:intralink-;e016;326;522pc ¼ j~Ic − ~Ipdj∕j~Ic − ~Ipcj: (16)

For Pd, we make three rules to model the angles between the
parent segment and its children segments. If a parent segment
has only one child, then the two segments should be as aligned
as possible. If a parent segment has two children, then the two
children segments should also be connected to the parent in a
balanced way. If a parent segment has three children, also the
three children segments should be connected to the parent in
a balanced way.

When jN kj ¼ 4, there are eight potential configurations log-
ically. Since there might be unknowns in this type of neighbor-
hood, three different algorithms are designed for different cases.
The first case is when there are two heads and two tails. In this
case there are only four possible configurations, and we use the
same method for jN kj ¼ 5; 6 to calculate the costs for them.

The second case is when there is one head and three tails.
In this case, three tails are supposed to connect to the head,
unless the neighborhood is near the OD. When it is near the
OD, we assume one tail should be a root, which should be sep-
arated from the head. Thus, there are four configurations:
Φ ¼ fϕ1;ϕ2;ϕ3;ϕ4g, where ϕ1 ¼ fh; t1; t2; t3g, ϕ2 ¼ fh; t1g,
ϕ3 ¼ fh; t2g, and ϕ4 ¼ fh; t3g. The cost of ϕ1 is given in
Eq. (17), where pD is a distance factor, vd is the distance of
segment centroid to the OD, and rOD is the radius of the
OD. The cost of three other cases is given in Eq. (18), where
Iri; i ∈ 1;2; 3 is the difference of mean intensity between the
only separated segment and the three connected segments;
Iij; i; j ∈ 1;2; 3 and i ≠ j is the difference of mean intensity
between the three connected segments.

EQ-TARGET;temp:intralink-;e017;326;179pϕ ¼ pD − 3 where; pD ¼ rOD

2 × vd
; (17)

EQ-TARGET;temp:intralink-;e018;326;137pϕ ¼ pD
Ir1Ir2Ir3
I12I13I23

− 3: (18)

The third case is when there is only one head, and the number
of unknowns is larger than 0. In this case we first determine if
there is another head. If there is not, then it belongs to the second
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case; if there is another head, then it belongs to the first case.
Here, end point directions are used to determine if there is
another head. Generally, if the direction of the segment with
an unknown has a small angle with the direction of the segment
of the determined head, and the segment with the unknown
aligns well with another segment that is not the head, then this
unknown is a head.
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