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Abstract

We consider dependent functional data that are correlated because of a longitudinal-based design: 

each subject is observed at repeated times and at each time a functional observation (curve) is 

recorded. We propose a novel parsimonious modeling framework for repeatedly observed 

functional observations that allows to extract low dimensional features. The proposed 

methodology accounts for the longitudinal design, is designed to study the dynamic behavior of 

the underlying process, allows prediction of full future trajectory, and is computationally fast. 

Theoretical properties of this framework are studied and numerical investigations confirm 

excellent behavior in finite samples. The proposed method is motivated by and applied to a 

diffusion tensor imaging study of multiple sclerosis.
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1. Introduction

Longitudinal functional data consist of functional observations (such as profiles or images) 

observed at several times for each subject of many. Examples of such data include the 

Baltimore Longitudinal Study of Aging (BLSA), where daily physical activity count profiles 

are observed for each subject at several consecutive days (Goldsmith et al., 2014; Xiao et al., 

2015) and the longitudinal diffusion tensor imaging (DTI) study, where modality profiles 

along well-identified tracts are observed for each multiple sclerosis (MS) patient at several 

hospital visits (Greven et al., 2010). As a result of an increasing number of such 

applications, longitudinal functional data analysis has received much attention recently; see 

for example Morris et al. (2003); Morris & Carroll (2006); Baladandayuthapani et al. 

(2008); Di et al. (2009); Greven et al. (2010); Staicu et al. (2010); Li & Guan (2014).

Our motivation is the longitudinal DTI study, where the objective is to investigate the 

evolution of the MS disease as measured by the dynamics of a common DTI modality 

profile - fractional anisotropy (FA) - along the corpus callosum (CCA) of the brain. Every 
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MS subject in the study is observed over possibly multiple hospital visits and at each visit 

the subject's brain is imaged using DTI. In this paper we consider summaries of FA at 93 

equally spaced locations along the brain's CCA, which we refer to as CCA-FA profile. The 

change over time in the CCA-FA profiles is informative of the progression of the MS 

disease, and thus a model that accounts for all the dependence sources in the data has the 

potential to be a very useful tool in practice. We propose a modeling framework that 

captures the process dynamics over time and provides prediction of a full CCA-FA 

trajectory at a future visit.

Existing literature in longitudinal functional data can be separated into two categories, based 

on whether or not it accounts for the actual time Tij at which the profile Yij(·) is observed; 

here i indexes the subjects and j indexes the repeated measures of the subject. Moreover, 

most methods that incorporate the time Tij focus on modeling the process dynamics (Greven 

et al., 2010) and only few can do prediction of a future full trajectory. Chen & Müller (2012) 

considered the latter issue and introduced an interesting perspective, but their method is very 

computationally expensive and its application in practice is limited as a result. We propose a 

novel parsimonious modeling framework to study the process dynamics and prediction of 

future full trajectory in a computationally feasible manner.

In this paper we focus on the case where the sampling design of Tij's is sparse (hence sparse 

longitudinal design) and the subject profiles are observed at fine grids (hence dense 

functional design). We propose to model Yij(·) as:

(1)

where  and  are closed compact sets, μ(·, Tij) is an unknown smooth mean response 

corresponding to Tij, Xi(·, Tij) is a smooth random deviation from the mean at Tij, and εij(·) is 

a residual process with zero-mean and unknown covariance function to be described later. 

The bivariate processes Xi(·, ·)'s are independent and identically distributed (iid), the error 

processes εij's are iid and furthermore are independent of Xi's. For identifiability we require 

that Xi comprises solely the random deviation that is specific to the subject; the repeated 

time-specific deviation is included in εij. Here {ϕk(·)}k is an orthogonal basis in  and 

ξik(Tij)'s are the corresponding basis coefficients that have zero-mean, are uncorrelated over 

i, but correlated over j. We assume that the set of visit times of all subjects, {Tij : i, j}, is 

dense in . Full model assumptions are given in Section 2.

The class of model (1) is rich and includes many existent models, as we illustrate now. (i) If 

ξik(Tij) = ζ0,ik + Tijζ1,ik for appropriately defined random terms ζ0,ik and ζ1,ik, model (1) can 

be represented as in Greven et al. (2010). (ii) If cov(ξik(T), ξik(T′)) = λkρk(|T – T′|; ν) for 

some unknown variance λk, known correlation function ρk(·; ν) with unknown parameter ν, 

and n = 1, model (1) resembles to Gromenko et al. (2012) and Gromenko & Kokoszka 

(2013) for spatially indexed functional data. (iii) If ξik(Tij) =  with 

orthogonal basis functions ψikl(T)'s and the corresponding coefficients ζikl's, then model (1) 

is similar to Chen & Müller (2012) who used time-varying basis functions ϕk(·|T) instead of 

our proposed ϕk(·) in model (1) and assumed a white noise residual process εij.
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The use of time-invariant orthogonal basis functions is one key difference between the 

proposed framework and Chen & Müller (2012); another important difference is the flexible 

error structure that our approach accommodates. The key difference leads to several major 

advantages of the proposed method. First, by using a time-invariant basis functions, the 

basis coefficients, ξik(Tij)'s extract the low dimensional features of these massive data. The 

longitudinal dynamics is emphasized only through the time-varying coefficients ξik(Tij)'s of 

(1) and, thus, this perspective makes the study of the process dynamics easier to understand. 

Second, our approach involves at most two dimensional smoothing and as a result is 

computationally very fast; in contrast, the time-varying basis functions {ϕk(·|T)}k at each T, 

require three dimensional smoothing which is not only complex but also computationally 

intensive and slow.

Nevertheless, selecting the time-invariant basis is nontrivial. One option is to use a pre-

specified basis; Zhou et al. (2008) considered this approach in modeling paired of sparse 

functional data. Another option is to use data-driven basis functions, such as eigenbasis of 

some covariance. The challenge is: what covariance to use ? We take the latter direction and 

propose to determine {ϕk(·)}k using an appropriate marginal covariance. In this regard, let 

c((s, T), (s′, T′)) be the covariance function of Xi(s, T) and g(T) be the density of Tij's. Define 

Σ(s, s′) =  for s, s′ ∈ : we show that this bivariate function 

is a proper covariance function (Horváth & Kokoszka, 2012). Section 2 shows that the 

proposed basis {ϕk(·)}k has optimal properties with respect to some appropriately defined 

criterion. From this view point, the model representation (1) is optimal. The idea of using 

the eigenbasis of the pooled covariance can be related to Jiang & Wang (2010) and Pomann 

et al. (2013), who considered independent functional data.

The rest of paper is organized as follows. Section 2 introduces the proposed modeling 

framework. Section 3 describes the estimation methods and implementation. The methods 

are studied theoretically in Section 4 and then numerically in Section 5. Section 6 discusses 

the application to the tractography DTI data.

2. Modeling longitudinal functional data

Let [{Tij, Yij(sr) : r = 1, . . . , R} : j = 1, . . . , mi,] be the observed data for the ith subject, 

where Yij(·) is the jth profile at random time Tij for subject i, and each profile is observed at 

the fine grid of points {s1, . . . , sR}. For convenience we use the generic index s instead of 

sr. The number of ‘profiles’ per subject, mi is relatively small to moderate and the set of time 

points of all subjects, {Tij : for all i, j}, is dense in . Without loss of generality, we set 

. We model the response Yij(·) using (1), where we assume that εij(s) is the 

sum of independent components εij(s) = ε1,ij(s) + ε2,ij(s). Here ε1,ij(·) is a random square 

integrable function which has smooth covariance function Γ(s, s′) = cov{ε1,ij(s),ε1,ij(s′)} and 

ε2,ij(s) is white noise with covariance cov{ε2,ij(s), ε2,ij(s′)} = σ2 if s = s′ and 0 otherwise.

Let c((s, T), (s′, T′)) = E[Xi(s, T)Xi(s′, T′)] be the covariance function of the process Xi(·,·) 

and let Σ(s, s′) = ∫ c((s, T), (s′, T))g(T)dT, where g(·) is the sampling density of Tij. In 

Section 4 we show that Σ(s, s′) is a proper covariance function (Horváth & Kokoszka, 

2012); due to its definition we call Σ as the marginal covariance function induced by Xi. The 
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unpublished work Chen et al. (2015) independently considered a similar marginal 

covariance in a related setting. Denote by Wi(s, Tij) = Xi(s, Tij) + ε1,ij(s); Wi is a bivariate 

process defined on [0, 1]2 and its induced marginal covariance is Ξ(s, s′) = Σ(s, s′) + Γ(s, s′). 

Let {ϕk(s), λk}k be the eigencomponents of Ξ(s, s′), where {ϕk(·) : k} forms an orthogonal 

basis in L2[0, 1] and λ1 ≥ λ2 ≥ . . . ≥ 0. Using arguments similar to the standard functional 

principal component analysis (FPCA), the eigenbasis functions {ϕk(·) : k = 1, . . . , K} are 

optimal in the sense that they minimize the following weighted mean square error: 

MSE(θ1(·), . . . , θK(·)) = , 

where  is the usual inner product in L2[0, 1].

Using the orthogonal basis in L2[0, 1] {ϕk(·)}k, we can represent the square integrable 

smooth process Wi(·, T) as Wi(s, Tij) = , where ξW,ijk = ∫Wi(s, Tij)ϕk(s)ds = 

ξik(Tij) + eijk, and ξW,ijk are not necessarily uncorrelated over k. Here ξik(Tij) = ∫Xi(s, 

Tij)ϕk(s)ds and eijk = ∫ ε1,ij(s)ϕk(s)ds are specified by the definition of Wi; for fixed k these 

terms are mutually independent due to the independence of the processes Xi and ε1,ij. For 

each k, one can easily show that, ξik(·) is a smooth zero-mean random process in L2[0, 1] and 

is iid over i. Furthermore eijk are zero-mean iid random variables over i, j; denote by 

their finite variance.

One way to model the dependence of the coefficients, ξik(Tij)'s, is by using common 

techniques in longitudinal data analysis; for example by assuming a parametric covariance 

structure. As we discussed in Section 1, this leads to models similar to Greven et al. (2010); 

Gromenko et al. (2012); Gromenko & Kokoszka (2013). We consider this approach in the 

analysis of the DTI data, Section 6. Another approach is to assume a nonparametric 

covariance structure and employ a common functional data analysis technique. We detail the 

latter approach in this section.

For each k ≥ 1 denote by Gk(T, T ′) = cov{,ik(T), ,ik(T′)} the smooth covariance function in 

[0, 1] × [0, 1]. Mercer's theorem provides the following convenient spectral decomposition 

, where ηk1 ≥ ηk2 ≥ . . . ≥ 0 and {ψkl(·)}l≥1 is an 

orthogonal basis in L2[0, 1]. Using the Karhunen-Loève (KL) expansion, we represent ξik(·) 

as: ξik(Tij) = , where ζikl = ∫ ξik(T)ψkl(T)dT, have zero-mean, variance 

equal to ηkl, and are uncorrelated over l. By collecting all the components, we represent the 

model (1) as Yij(s) = μ(s, Tij) + , for 

. In practice we truncate this expansion. Lek K and 

L1,...,LK such that Yij(s) is well approximated by the following truncated model based on the 

leading K and  respective basis functions

(2)
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where . The truncated model (2) gives a parsimonious 

representation of the longitudinal functional data. It allows to study its dependence through 

two sets of eigenfunctions: one dependent solely on s and one solely on Tij. This approach 

involves two main challenges: first, determining consistent estimator of the marginal 

covariance and second determining consistent estimators of the time-varying coefficients 

ξik(·).

3. Estimation of model components

We discuss estimation of all model components. The mean estimation is carried out using 

existing methods (Chen & Müller, 2012; Scheipl et al., 2014); here we briefly describe it for 

completeness. Our focus and novelty is the estimation of the marginal covariance function 

and of the eigenfunctions ϕk(·)'s (see Section 3.2), as well as the the estimation of the time-

varying basis coefficients ξik(·)'s (see Section 3.3). Prediction of Yi(s, T) is detailed in 

Section 3.4.

3.1. Step 1: Mean function

As in Scheipl et al. (2014) we estimate the mean function, μ(s, T), using bivariate smoothing 

via bivariate tensor product splines (Wood, 2006) of the pooled data Yijr = Yij(sr)'s. Consider 

two univariate B-spline bases, {Bs,1(s), . . . , Bs,ds(s)} and {BT,1(T), . . . , BT,dT(T)}, where ds 

and dT are their respective dimensions. The mean surface is represented as a linear 

combination of a tensor product of the two univariate B-spline bases μ(s, T ) = 

 Bs,q1(s)BT,q2(T)βq1q2 = B(s, T)Tβ, where B(s, T) is the known dsdT-

dimensional vector of Bs,q1(s)BT,q2(T)'s, and β is the vector of unknown parameters, βq1q2's. 

The bases dimensions, ds and dT, are set to be sufficiently large to accommodate the 

complexity of the true mean function, and the roughness of the function is controlled 

through the size of the curvature in each direction separately, i.e. 

 in direction s, and 

 in T. The penalized criterion to be minimized 

is ,, where λs and λT are 

smoothing parameters that control the trade-off between the smoothness of the fit and the 

goodness of fit. The smoothing parameters can be selected by the restricted maximum 

likelihood (REML) or generalized cross-validation (GCV). The estimated mean function is 

 = . This method is a very popular smoothing technique of bivariate data.

Other available bivariate smoothers can be used to estimate the mean μ(s, T): for example, 

kernel-based local linear smoother (Hastie et al., 2009), bivariate penalized spline smoother 

(Marx & Eilers, 2005) and the sandwich smoother (Xiao et al., 2013). The sandwich 

smoother (Xiao et al., 2013) is especially useful in the case of very high dimensional data 

for its appealing computational efficiency, in addition to its estimation accuracy.
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3.2. Step 2: Marginal covariance. Data-based orthogonal basis

Once the mean function is estimated, let  be the demeaned data. We 

use the demeaned data to estimate the marginal covariance function induced by Wi(s, Tij), 

Ξ(s, s′) = Σ(s, s′) + Γ(s, s′). The estimation of Ξ(s, s′) consists of two steps. In the first step, a 

raw covariance estimator  is obtained; the pooled sample covariance is a suitable 

choice, if all the curves are observed on the same grid of points:

(3)

As data Yijr's are observed with white noise, ε2,ij(sr), the ‘diagonal’ elements of the sample 

covariance, , are inflated by the variance of the noise, σ2. In the second step, the 

preliminary covariance estimator is smoothed by ignoring the ‘diagonal’ terms; see also 

Staniswalis & Lee (1998) and Yao et al. (2005) who used similar technique for the case of 

independent functional data. In our simulation and data application we use the sandwich 

smoother (Xiao et al., 2015). To ensure the positive semi-definiteness of the estimator the 

negative eigenvalues are zero-ed. The resulting smoothed covariance function, , is 

used as an estimator of . In Section 4, we show that  is an unbiased and 

consistent estimator of  in two settings: 1) the data are observed fully and without 

noise, i.e. ∈ij(s) ≡ 0 and 2) the data are observed fully and with measurement error of type 

∈1,ij(s), i.e ∈ij(s) ≡ ∈1,ij(s).

Let  be the pairs of eigenvalues/eigenfunctions obtained from the spectral 

decomposition of the estimated covariance function, . The truncation value K is 

determined based on pre-specified percentage of variance explained (PVE); specifically, K 

can be chosen as the smallest integer such that  is greater than the pre-

specified PVE (Di et al. 2009; Staicu et al., 2010).

3.3. Step 3: Covariance of the time-varying coefficients

Let  be the projection of the jth repeated demeaned curve of the ith 

subject onto the direction  for k = 1, . . . , K. Since  is observed at dense grids of 

points {sr : r = 1, . . . , R} in [0, 1] for all i and j,  is approximated accurately through 

numerical integration. It is easy to see that the version of  that uses μ(s, Tij) in place of 

 and ϕk(s) in place of  converges to ξW,ijk with probability one, as R diverges. 

The time-varying terms  are proxy measurements of ξik(Tij); they will be used to study 

the temporal dependence along the direction ϕk(·), Gk(T, T′) = cov{,ik(T), ,ik(T′)}, and 

furthermore to obtain prediction for all times T ∈ [0, 1].

Park and Staicu Page 6

Stat (Int Stat Inst). Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Consider now  as the ‘observed data’. One viable approach is 

to assume a parametric structure for Gk(·, ·) such as AR(1) or a random effects model 

framework; this is typically preferable when mi is very small and the longitudinal design is 

balanced. We discuss random effects model for estimating the longitudinal covariance in the 

data application. Here we consider a more flexible approach and estimate the covariance 

Gk(·,·) nonparametrically, by employing FPCA techniques for sparse functional data (Yao et 

al., 2005).

Let  be the pairs of eigenfunctions and eigenvalues of the covariance Gk; we 

model the proxy observations as  =  where ζikl's are random 

variables with zero mean and variances equal to ηkl, 's are iid with zero-mean and 

variance equal to  and independent of ζikl. Following Yao et al. (2005), we first obtain 

the raw sample covariance,  = . Then the estimated smooth 

covariance surface, , is obtained by using bivariate smoothing of 

. Kernel-based local linear smoothing (Yao et al., 

2005) or penalized tensor product spline smoothing (Wood, 2006) can be used at this step. 

The diagonal terms  are removed because the noise  leads to 

inflated variance function. Let  be the pairs of eigenvalues/eigenfunctions of 

the estimated covariance surface, . The truncation value, Lk, is determined based 

on pre-specified PVE; using similar ideas as in Section 3.2. The variance  is estimated as 

the average of the difference between a smooth estimate of the variance based on 

 and ; Yao et al. (2005) discusses an alternative that dismisses the 

terms at the boundary when estimating the error variance.

Once the eigenbasis functions , eigenvalues ηkl's, and error variance  are 

estimated, the above model framework can be viewed as a mixed effects model and the 

random components ζikl can be predicted using conditional expectation and a jointly 

Gaussian assumption for ζijk's and eijk's. In particular,  =  = 

, where  is the mi-dimensional column 

vector of the evaluations of  at {Tij : j = 1, . . . , mi},  is a mi × mi - matrix with (j, 

j′)th element equal to , for j = j′ and  otherwise, and  is 

the mi - dimensional column vector of 's. The predicted time-varying coefficients 

corresponding to a generic time T are obtained as . Yao et al. 

(2005) proved the consistency of the eigenfunctions and predicted trajectories when ξW,ijk's 

are observed. In Section 4 we extend these results to the case when the proxy 's are 
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used instead and when the profiles Yij(·) are fully observed and the noise is of the type εij(s) 

= ε1,ij(s); i.e. the data Yij(·) are observed with smooth error.

3.4. Step 4: Trajectories reconstruction

We are now able to predict the full response curve at any time point T ∈ [0, 1] by: 

, where s ∈ [0, 1]. In Section 4 we show the 

consistency of .

4. Theoretical properties

Next we discuss the asymptotic properties of the estimators and the predicted trajectories. 

Our setting - sparse longitudinal design and dense functional design - requires new 

techniques than the ones commonly used for theoretical investigation of repeated functional 

data such as Chen & Müller (2012). Since the mean estimation has been studied previously, 

we assume that the response trajectories, Yij(·)'s, have zero-mean and focus on the estimation 

of the model covariance. Throughout this section we assume that Yij(·) is observed fully as a 

function over the domain, . Section 4.1 discusses the main theoretical results when 

data are observed without error, i.e. εij(s) ≡ 0 for s ∈ [0, 1]. Section 4.2 extends the results 

to the case when the data are corrupted with smooth error process εij(s)≡ ε1,ij(s). The proofs 

are detailed in the Supplementary Material; also in the Supplementary Material we include a 

discussion on how to relax some of the assumptions. Throughout this section we use  and 

 to distinguish between the domains.

We assume that the bivariate process Xi(s, T) is a realization of a true random process, X(s, 

T), with zero-mean and smooth covariance function, c((s, T),(s′, T ′)), which satisfies some 

regularity conditions:

(A1.) X = {X(s, T) : (s, T) ∈  is a square integrable element of the 

, i.e. , where  and  are compact sets.

(A2.) The sampling density g(T) is continuous and supT∈T|g(T)| < ∞.

Under (A1.) and (A2.), the function Σ(s, s′) defined above (i) is symmetric, (ii) is positive 

definite, and (iii) has eigenvalues λk's with . Thus Σ(·, ·) is a proper covariance 

function (Horváth & Kokoszka, 2012, p.24).

4.1. Response curves measured without error

Assume εij(s) ≡ 0 and thus Yij(s) = Xi(s, Tij) for s ∈ . The sample covariance of Yij(s) is 

. The following assumptions regard the 

moment behavior of X and are commonly used in functional data analysis (Yao et al., 2005; 

Chen & Müller, 2012); we require them in our study.

(A3.) E[X(s, T)X(s′, T)X(s, T′)X(s′, T′)] < ∞ for arbitrary s, s′ ∈  and T, T′ ∈ .

(A4.) E[[∥X(·, T)∥4] < ∞ for each T ∈ .
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Theorem 1—Assume (A1.) - (A3.) hold. Then  as n diverges. If 

in addition (A4.) holds, then

(4)

where ∥k(·,·)∥s =  is the Hilbert-Schmidt norm of k(·,·).

(A5.) Let  and  for k ≥ 2, where k is the 

kth largest eigenvalues of Σ(s, s′). Assume that  and λk > 0 for all k (no crossing or 

ties among eigenvalues).

Using Theorem 4.4 and Lemma 4.3 of Bosq (2000, p.104), the consistency result (4) implies 

that, if furthermore (A5.) holds, the eigen-elements of  are consistent estimators of 

the corresponding eigen-elements of Σ(s, s′).

Corollary 1—Under the assumptions (A1.)-(A5.), for each k we have , and 

 as n diverges.

Next, we focus on the estimation of the covariance Gk(T, T′), which describes the 

longitudinal dynamics. We first show the uniform consistency of ; the result follows if 

supj,s|Yi(s, Tij)| is bounded almost surely. which is ensured if (A6.) holds. Then, we use this 

result to show that the estimator of Gk(T, T′) based on 's is asymptotically identical to 

that based on . Consistency results of the remaining model components follow directly 

from Yao et al. (2005). The Gaussian assumption (A8.) is needed to show the consistency of 

.

(A6.) E[sups,T|X(s, T)|a] ≤ Ma for a constant, M > 0, and an arbitrary integer, a ≥ 1; 

This is equivalent to assume that X(s, T) is absolutely bounded almost surely.

(A7.) Let bk1 = (ηk1 − ηk2) and bkl = max[(ηk(l–1) – ηkl), (ηkl – ηk(l+1)))] for l ≥ 2, 

where ηkl is the lth largest eigenvalues of Gk(T, T′). Assume that 0 < bkl < ∞ 

and ηkl > 0 for all k and l.

(A8.) ζikl and eijk are jointly Gaussian.

Theorem 2—Under the assumptions (A1.) - (A6.), for each k  and 

 as n diverges. In fact a stronger result also holds, namely 

 as n diverges.

Corollary 2—Assume (A1.) - (A8.) hold for each k and l. Then the eigenvalues  and 

eigenfunctions  of  satisfy , and  as n 

diverges. Uniform convergence of  also holds: . 
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Furthermore, as n diverges, we have  and , where 

 and  is the mi-dimensional column vector of 's.

The consistency results for all model components imply prediction consistency.

Thorem 3—Assume (A1.) - (A8.), for each (s, T) ∈ , Then 

 as n, K and Lk's → ∞.

4.2. Response curves measured with smooth error

Assume next that Yij(s) are observed with smooth error εij(s) ≡ ε1,ij(s) and thus Yij(s) = Xi(s, 

Tij) + ε1,ij(s) for s ∈  and ε1,i (·) ∈ L2 ( ). The main difference from Section 4.1 is that the 

sample covariance of Yij(s) is an estimator of Ξ(s, s′) = Σ(s, s′) + Γ(s, s′), not of (Σs, s′); we 

denote the sample covariance of Yij(s) by  = 

. Using similar arguments as earlier, we show that 

 is an unbiased estimator of Ξ(s, s′). Moreover similar arguments can be used to 

show the pointwise consistency as well as the Hilbert-Schmidt norm consistency of . 

Additional assumptions are required.

(A9.) Assume εij(·) is realization of ε = {ε(s) : s ∈ }, which is square integrable 

process in L2( ).

(A10.)

(A11.)  for a constant, M > 0, and an arbitrary integer, a ≥ 1.

Corollary 3—Under the assumptions (A1.) - (A3.), and (A9.), for each(s, s′) – 

 as n diverges. And under the assumptions (A1.)-(A4.), (A9.)-

(A11.),  and .

The proofs of these results are detailed in the Supplementary Material. As the smooth error 

process ε1,ij(s) is correlated only along the functional argument, s, and ε1,ij(s) are iid over i, 

j, it follows that the theoretical properties of the predictions - of the time-varying 

coefficients and the response curve - hold without any modification.

The theoretical results are based on the assumptions that data Yij(s)'s are observed fully, 

without white noise, ε2,ij(s) ≡ 0 for all s, and have mean zero. Some of these assumptions 

are quite common in theoretical study involving functional data; Cardot et al. (2003, 2004); 

Chen & Müller (2012). They are discussed in the Supplementary Material.

5. Simulation study

We study our approach in finite samples and compare its performance with Chen & Müller 

(2012) denoted by CM. We generate Nsim = 1000 samples from model (1) with K = 2, Yij(s) 
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= μ(s, Tij) + ξi1(Tij)ϕ1(s) + ξi2(Tij)ϕ2(s) + εij(s), where μ(s, T) = 1 + 2s + 3T + 4sT, and ϕ1(s) 

= 1 and ϕ2(s) = . The grid of points for s is the set of 101 equispaced points in 

[0, 1]. For each i, there are mi profiles associated with visit times, {Tij : j = 1, . . . , mi}; Tij's 

are randomly sampled from 41 equally spaced points in [0, 1]. ξik(T) are generated from 

various covariance structures: (a) non-parametric covariance (NP) where ξik(T) = ζik1 ψk1(T) 

+ ζik2 ψk2(T); (b) random effects model (REM) ξik(T) = bik0 + bik1T, and (c) exponential 

autocorrelation (Exp) . Errors are generated from 

εij(s) = eij1ϕ1(s) + eij2ϕ2(s) + ε2,ij(s), where eij1, eij2 and ε2,ij(s) are mutually independent 

with zero- mean and variances equal to  and σ2, respectively; the white noise 

variance, σ2, is set based on the signal to noise ratio (SNR). The details of the models are 

specified in the Supplementary Material. For each sample of size n we form a training set 

and a test set. The test set contains 10 profiles and is obtained as follows: randomly select 10 

subjects from the sample and collect the subjects’ last profile. The remaining profiles for the 

10 subjects and the data corresponding to the rest (n – 10) of the subjects form the training 

set. Our model is fitted using the training set and the methods of Section 3. The mean 

function, μ(s, T), is modeled using 50 cubic spline basis functions obtained from the tensor 

product of ds = 10 basis functions in direction s and dT = 5 in T . The smoothing parameters 

are selected via REML. The finite truncations K and Lk's are all estimated using the pre-

specified level PVE = 0.95.

Estimation accuracy for the model components is evaluated using integrated mean squared 

errors (IMSE), while prediction performance is assessed through in-sample integrated 

prediction errors (IN-IPE) and out-of-sample IPE (OUT-IPE). Table 1 shows the results for 

different covariance models for ξik(T), different number of repeated curve measurements per 

subject, different SNRs, complex error process, and varying sample sizes. The performance 

of the proposed estimation (see columns for μ, ϕ1, and ϕ2 of this table) is slightly affected by 

the covariance structure of ξik(T)'s and mi, but in general is quite robust to the factors we 

investigated. As expected the estimation accuracy improves with larger sample size; see the 

3 × 3 top left block of IMSE results corresponding to n = 100, n = 300, and n = 500. 

Moreover both the prediction of ξik(T )'s and that of Yij(·) are considered; see columns 

labeled ξ1, ξ2, IN-IPE and OUT-IPE of Table 1. The underlying covariance structure of 

ξik(T)'s affects the prediction accuracy. Furthermore increasing the number of repeated curve 

measurements mi improves the accuracy more than increasing the sample size n. This 

observation should not be surprising, as with larger number of repeated measurements the 

estimation of the covariance of the longitudinal process ξik(T)'s improves and as a result it 

yields superior prediction. We compared our results with another, rather naïve approach: 

predict a subject's profile by the average of all previously observed profiles for that subject. 

The naïve approach (see columns IN-IPEnaive and OUT-IPEnaive) is very sensitive to the 

covariance structure of ξik(T). In all the cases studied the prediction accuracy is inferior to 

the proposed method.

Table 2 shows the comparison with CM, when the kernel bandwidth is fixed to h = 0.1 for 

both mean and covariance smoothing. The prediction using CM is more sensitive to the 

covariance structure of the underlying time-varying coefficients ξik(T) and its accuracy can 
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be improved by up to 50% using our proposed approach. Computation-wise, there is an 

order of magnitude difference in the computational cost between the methods: when n = 100 

CM takes over 16 minutes, while our approach takes about 7 seconds. The overall 

conclusion is that the proposed approach provides an improved prediction performance over 

the existing methods in a computationally efficient manner.

6. DTI application

DTI is a magnetic resonance imaging technique, which provides different measures of water 

diffusivity along brain white matter tracts; its use is instrumental especially in diseases that 

affect the brain white matter tissue, such as MS (see Alexander et al. (2007), Basser et al. 

(1994), Basser et al. (2000), Basser & Pierpaoli (2011)). In this paper we consider the DTI 

measure called FA along CCA; specifically we consider one-dimensional summaries of FA 

along CCA (CCA-FA). The DTI study involves 162 MS patients, which are observed at 

between one and eight hospital visits, with a total of 421 visits and a median of two visits 

per subject. At each visit, FA profile is recorded at 93 locations along the CCA. The 

measurements are registered within and between subjects using standard biological 

landmarks identified by an experienced neuroradiologist (Scheipl et al., 2014).

Our main objective is twofold: (i) to understand the dynamic behavior of the CCA-FA 

profile in MS patients over time and (ii) to make accurate predictions of the CCA-FA profile 

of a patient at their next visit. Various aspects of the DTI study have been also considered in 

Goldsmith et al. (2011), Staicu et al. (2012), Pomann et al. (2013), and Scheipl et al. (2014). 

Greven et al. (2010) used an earlier version of the DTI study consisting of data from fewer 

and possibly different patients and obtained through a different registration technique. They 

studied the dynamic behavior of CCA-FA over time in MS; however, their method cannot 

provide prediction of the entire CCA-FA profile at the subject's next visit. By being able to 

predict the full CCA-FA profile at the subject's future visit, our approach has the potential to 

shed lights on the understanding of the MS progression over time as well as its response to 

treatment.

To start with, for each subject we define the hospital visit time Tij by the difference between 

the reported visit time and the subject's baseline visit time; thus Ti1 = 0 for all subjects i. 

Then the resulting values are scaled by the maximum value in the study so that Tij ∈ [0, 1] 

for all i and j. The sampling distribution of the visit times is right-skewed with rather strong 

skewness; for example there are only few observations Tij's close to 1. The strong skewness 

of the sampling distribution of Tij's has serious implications on the estimation of the 

bivariate mean μ(s, T); a completely nonparametric bivariate smoothing would results in 

unstable and highly variable estimation. This is probably why Greven et al. (2010) first 

centered the times for each patient i, {Tij : j = 1, . . . , mi}, and then standardized the overall 

set {Tij : i, j} to have unit variance. However, such subject-specific transformation of Tij's 

loses interpretability and it is not suited for prediction at unobserved times - which is crucial 

in our analysis. One way to bypass this issue is to assume a simpler parametric structure 

along the longitudinal direction, T, for the mean function; based on exploratory analysis we 

assume linearity in T . Specifically we consider μ(s, Tij) = μ0(s) + βT(s)Tij, where μ0(·) and 

βT(·) are unknown, smooth functions of s. We estimate μ0(·) and βT(·) using a penalized 
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univariate cubic spline regression with 10 basis functions; the smoothing parameters are 

estimated using REML. The estimates  and  are displayed in Figure S1 of the 

Supplementary Material. Using the bootstrap of subjects - based methods of Park et al. 

(2015) and B = 1000 bootstrap samples we construct 95% joint confidence bands for ; 

see Figure 1. The confidence band contains zero for all s, indicating evidence that a mean 

model μ(s, Tij) = μ0(s) is more appropriate.

Next we demean the data and estimate the marginal covariance; using a preset level PVE = 

0.95 we obtain K = 10 eigenfunctions. Figure 2 shows the leading 3 eigenfunctions that 

explain in turn 62.69%, 8.37% and 6.77% of the total variance; the rest of the estimated 

eigenfunctions are given in Figure S3 of the Supplementary Material. Preliminary 

investigation (not shown here) indicates a simpler model for the longitudinal covariance: a 

random effects model ξik(Tij) = b0ik + b1ikTij, where var(blik) =  for l = 0, 1 and cov(b0ik, 

b1ik) = œ01k. This resulting model is similar to Greven et al. (2010). The fitted time-varying 

coefficient functions, , for k = 1, 2 and 3 are shown in Figure 3, and the rest are 

shown in Figure S4 of the Supplementary Material. The estimated  suggest some 

longitudinal changes, but the signs generally remain constant across time. The results imply 

that a subject mean profile tends to stay lower than the population mean, if the first 

eigenfunction corresponding to that individual is positively loaded at baseline, and vise 

versa. In contrast, , are mostly constant across visit times and imply little changes 

over time.

Finally, we assess the goodness-of-fit and prediction accuracy of our final model. For the 

goodness-of-fit we use the in-sample integrated prediction error (IN-IPE): IN-IPE= 

, where 

, and Yij(·)'s are the observed curve data. The 

square root of the IN-IPE is 2.31 × 10−2 for our model; for comparison Greven et al. (2010) 

yields 2.66 × 10−2 and Chen & Müller (2012) gives 3.76 × 10−2. For prediction accuracy we 

use leave-the last-curve-out integrated prediction error (OUT-IPE) calculated for the 106 

subjects observed at two hospital visits or more: OUT-IPE = 

, where  is the predicted curve at time 

Timi for the ith subject using the fitted model based on all the data less the mith curve of the 

ith subject. Figure 4 shows such predicted curves  obtained using our model and 

the naive model for three randomly selected subjects at their last visit. The square root of 

OUT-IPE is 3.48 × 10−2 for our model; for comparison Chen & Müller (2012) gives 8.71 × 

10−2 and the naïve approach gives 3.52 × 10−2. These results suggest that, in this short term 

study of MS, there is a small variation of CCA-FA profiles over time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Left panel: 95% pointwise and joint confidence bands of the slope function βT(s) of μ(s, T) 

using bootstrap; Right: final mean estimate, 
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Figure 2. 
Top: First three eigenfunctions of the estimated marginal covariance; Bottom: estimated 

mean function  (gray line) ±  (+ and − signs, respectively)
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Figure 3. 

Estimated time-varying coefficients  for k = 1, 2 and 3 using REM
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Figure 4. 
Predicted values of FA for the last visits of three randomly selected subjects; actual 

observations (gray); predictions using our model (black solid) and using the naive approach 

(black dashed)
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Table 2

Comparison between the proposed method and Chen & Muller (2012) in the presence of correlated errors. 

Results based on Nsim = 1000 simulations

mi ∼
iid

{8, …, 12}andSNR = 1

Chen & Muller (2012) Proposed method (from Tables 1 and S2)

IN-IPE OUT-IPE time (seconds) IN-IPE OUT-IPE time (seconds)

NP (a) n = 100 0.880 2.221 983.872 0.406 0.988 7.369

n = 300 0.622 1.468 1659.611 0.313 0.559 15.892

n = 500 0.556 1.298 2502.462 0.288 0.455 21.418

REM (b) n = 100 0.424 1.359 1084.753 0.328 1.011 9.282

n = 300 0.289 0.729 1955.193 0.265 0.675 11.347

n = 500 0.257 0.614 2947.126 0.247 0.571 22.559

Exp (c) n = 100 0.634 1.642 1556.182 0.554 1.426 7.514

n = 300 0.549 1.251 1959.219 0.508 1.143 16.229

n = 500 0.531 1.155 2865.041 0.494 1.074 17.109
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