
3D FFTs on a Single FPGA

Benjamin Humphries, Hansen Zhang, Jiayi Sheng, Raphael Landaverde, and Martin C.
Herbordt
Department of Electrical and Computer Engineering Boston University, Boston, MA

Benjamin Humphries: bhump78@bu.edu; Hansen Zhang: hszhang@bu.edu; Jiayi Sheng: jysheng@bu.edu; Raphael
Landaverde: soptnrs@bu.edu; Martin C. Herbordt: herbordt@bu.edu

Abstract

The 3D FFT is critical in many physical simulations and image processing applications. On

FPGAs, however, the 3D FFT was thought to be inefficient relative to other methods such as

convolution-based implementations of multi-grid. We find the opposite: a simple design, operating

at a conservative frequency, takes 4μs for 163, 21μs for 323, and 215μs for 643 single precision

data points. The first two of these compare favorably with the 25μs and 29μs obtained running on

a current Nvidia GPU. Some broader significance is that this is a critical piece in implementing a

large scale FPGA-based MD engine: even a single FPGA is capable of keeping the FFT off of the

critical path for a large fraction of possible MD simulations.

Keywords

High Performance Reconfigurable Computing; FFT

I. Introduction

The FFT is one of the most important applications implemented on FPGAs with the 1D and

2D versions finding uses especially in signal and image processing, respectively. A small

sample of the massive amount of previous work includes [1]–[3]; IP for many variations of

the 1D FFT is available from Altera and Xilinx [4], [5]. The 3D FFT is also critical: it is

often the heart of electrostatics computations such as those used when computing the long-

range force in Molecular Dynamics simulations (MD). But although MD on FPGAs has

been widely studied, there have been few reports about the 3D FFT on FPGAs [3], [6], [7].

This prior work, and also that for large 2D FFTs (e.g., [8]), assumes the data set is too large

to fit on chip. It therefore concentrates on efficient orchestration of memory access and data

placement to instantiate communication, especially the transpose between phases. With

current technology, however, most useful 3D FFTs for electrostatics can be run holding all

data on chip. As is common when the traversal of a packaging boundary is removed, this

leads to a “game-changing” difference in performance. The primary contribution here is

demonstrating this difference and evaluating its consequence with respect to other compute

technologies.

Our motivation is as follows: While in previous work it has been shown that the MD range-

limited force can be effectively implemented on FPGAs [9], no comparable implementation

HHS Public Access
Author manuscript
Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in
PMC 2015 November 19.

Published in final edited form as:
Proc IEEE Int Symp Field Program Cust Comput Mach. 2014 May ; 2014: 68–71. doi:10.1109/FCCM.
2014.28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

exists for the long-range force. In fact, noting the difficulties with the 3D FFT at the time,

we previously used different approach implementing it with multigrid [10], [11]. Although

multigrid appears to be a good fit, it nonetheless proved to have neither sufficiently high

performance nor accuracy; we therefore revisit the 3D FFT on FPGAs.

We use the following approach. First, we constrain the problem size and precision to those

likely to be encountered on the critical path of electrostatics calculations. These are for

problems sizes where strong scaling is problematic, primarily those with less than a few

hundred thousand particles. These generally translate into FFTs with 323 and 643 grid points

of single precision floating point [12]. Second, we take advantage of existing IP, in this case

by Altera and Xilinx, to supply the 1D FFTs that are the basis of the design. Our rationale is

that not only do the primary vendors integrate the existing algorithmic state-of-the-art, they

also take advantage of device-specific features. Finally, we use a conservative design with

simple timing and control.

We find that even with only logic-level optimizations, the 3D FFT takes 21μs for 323 single

precision data points, a number somewhat better than that obtained from a current GPU. The

significance is that this is sufficient to keep the FFT off of the critical path for a large

fraction of possible MD simulations.

II. Approach and Implementation

Approach

Higher dimensional FFTs are decomposable into lower dimensional. Therefore the N3 point

3D FFT can be computed by executing three sets of N2 N-point 1D FFTs consecutively in

the three dimensions. We assume a number of 1D FFT IP blocks similar to the number of

points in a single dimension. With a current high-end FPGA this translates into a maximum

of 32 IPs for 163 FFTs and 64 IPs for 643 FFTs. The number of “RAMs” is equal to the

number of IPs. When necessary multiple BRAMs are ganged together to form a virtual

RAM using standard EDA methods.

There are various ways to map data onto the RAMs. Figure 1 shows perhaps the most

obvious: 2D slices (or slabs) of the cube are mapped onto each RAM. Each IP then

calculates the 2N2 N-point 1D FFTs for dimensions D1 and D2 using data only from a single

RAM. In Figure 1, each IP/RAM combination does this for four 2D slices. Computing the

FFTs for D3 requires traversing multiple RAMs, or transposing the data. We have decided

to do the former by routing data with a crossbar.

Design Overview

As shown in Figure 2 the design has four main parts: RAMs, Crossbars, FFT Pipelines (the

1D IP), and Controller. The RAM's primary purpose is simply to store the data throughout

the computation. The Crossbars work in conjunction with the RAMs to select the flow of

data so as to effect transpose and untranspose as needed. The Controller is a large state

machine that drives all of the inputs to the RAMs, Crossbars, and FFT Pipelines. For the

Xilinx FFT pipelines we have used the Xilinx LogiCORE FFT v8.0 IP generator, in

particular, Float32 with natural order output, pipelined streaming I/O, non-configurable

Humphries et al. Page 2

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

transaction lengths, and real-time throttling. We have used the analogous IP for the Altera

FPGAs.

This crossbar-based design is somewhat more general than strictly needed, but justified for

two reasons. The first is that, while not scalable, the 32×32 and 64×64 crossbars require only

a small fraction of the overall chip resources and so are a small price to pay for uniformity.

The second is that the crossbars instantiate a communication mechanism sufficiently general

for integration into FPGA-centric clusters. This is mentioned very briefly in the Discussion.

Dataflow

The 1D FFT blocks selected behave similar to FIFO delay elements and are used by

inputting and outputting one word per clock. A full FFT is calculated by clocking in all

words, waiting a fixed number of cycles, and then clocking all words out. The IPs selected

allow for words from subsequent FFT frames to be input as it is calculating and outputting

prior frames.

We now very briefly describe the dataflow. Overall, given that a particular RAM index and

RAM address is always the home of any given data point, the controls to route data out of

the FFT Pipelines are delayed mirrors of the controls to route data into the FFT Pipelines.

This greatly simplifies the modeling of the dataflow to the point that only the input flow has

to be modeled and the output flow will simply be the input flow delayed by the latency of

the FFT Pipeline. The one caveat is that the input routing flow must ensure that the data

points from the prior FFT dimension have been written back to RAM before they are read

out for the current FFT dimension. This data dependency is what limits the number of FFT

Pipelines in the current design and hence the overall latency of 3D FFT calculation as a

whole.

The D1 and D2 phases are straightforward, but the D3 phase imposes an additional timing

requirement on the prior two phases. The reason is that the third phase operates on data that

spans multiple RAMs and each FFT requires data from the same RAM on the same clock

cycle. The solution is to skew the data driven to each FFT Pipeline so that only a single

point of data is required from any particular RAM in any given cycle. When the skewing is

propagated to the prior phases, it does not change the data flow control but merely skews it

by the same amount as what it is in the third phase. The penalty for skewing the data is equal

to the number of IPs and therefore minor; it only adds cycles for the data to fill up and drain

out, which is negligible over the entire calculation. Otherwise all of the FFT Pipelines stay

completely saturated.

III. Results

Design method

We have created a 3D FFT generator that allows us to parameterize designs by problem size

and by number of 1D FFT IPs (and RAMs). Varying the number of IPs per problems size

allows us to examine the trade off between total cycles and cycle time, the latter becoming a

consideration as the chip is filled. The design has gone through one iteration of optimization

with registers being inserted in the critical path (controller). The most complex part of the

Humphries et al. Page 3

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

generator is for the controller microcode (see [13] for details). We have synthesized a

number of instances for both Xilinx Virtex and Altera Stratix product lines, some of which

are described here.

Target hardware

We target two FPGA platforms for detailed study. The first is a Gidel PROCStar-III

260E-4AP development board with four Altera Stratix-III EP3ES260-F1152C2 FPGAs of

which one is used. This implementation is used to demonstrate a working version, to fully

validate the design, and to demonstrate a performance trend both across device vendors and

generations of process technology. The second is the Xilinx Virtex-7 xc7v2000t-lflg1925.

This is a large, new device built with a 28nm process. We use the Virtex-7 to demonstrate

performance on current technology. Results for the Virtex-7 are from simulation and post

place-and-route. We have also synthesized designs for a number of other FPGAs–in

particular, the Stratix-V from Altera and Virtex-6 from Xilinx–and obtained results in line

with those presented here.

Tools

For the Xilinx parts we used the Xilinx ISE design suite for simulation, synthesis, and

mapping. This contains all of the Xilinx FPGA synthesis and targeting tools as well as the

ISIM mixed language simulator and the LogiCORE IP core generator [5]. For Altera we

used Quartus II design software for synthesis and mapping and Modelsim SE for simulation.

Quartus II contains all of the Altera FPGA synthesis and P&R tools as well as the MegaCore

IP generator [14]. For the GIDEL board the design was compiled with Quartus II tool chain

and the bit file downloaded onto the board through Gidel's ProcWizard tool [15].

Validation

For the Gidel/Altera version we compared the results from the FPGA board with Matlab.

The maximum relative difference was less than 0.008%. For the Virtex-7, running a full

structural simulation is impractical. Instead we validated the overall designs using cycle

accurate behavioral versions of the 1D IPs. These in turn were validated with respect to the

structural versions which themselves were validated with respect to Matlab.

Results

Results are shown in Tables I and II. For the Virtex-7 each FFT size was implemented using

various numbers of 1D FFT IPs. Designs with more IPs were also generated but either did

not fit on chip or had very poor cycle times. Basic optimization was performed by inserting

registers into critical paths. For the 323 FFT with 32 IPs this reduced the cycle time from

7.5ns to the 5.6ns shown. A similar optimization had little effect on the 643 64 IP design,

probably because with high resource utilization there are multiple critical paths. Overall,

since the IP blocks on their own run at 300MHz there should be substantial room for

improvement with floor planning. We also generated results for fixed point FFTs. These

showed little improvement over the floating point versions.

Humphries et al. Page 4

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Comparison

We compare the results from the FPGA FFTs with those of sample CPUs, GPUs, and ASICs

and present them Table III. We compare two cohorts of compute devices corresponding

roughly to 2008- and 2012-era, respectively. For CPU and GPU we ran vendor library

functions (from MKL [16] and CUFFT [17]) on the platforms shown. While there is a

substantial literature on optimizing FFTs for CPUs and GPUs, we believe that these

packages give (at least) close to the best available performance single devices. For MKL we

note that performance is close to the theoretical peak. For CUFFT we note that for the 643

FFT the relative performance with respect to the analogous MKL FFT is in line with

previously published ratios [18]. For CUFFT we note that other reported implementations

(e.g., [19]) are not publicly available and that CUFFT has been substantially updated since

the last published comparisons. ASIC results are from Anton [12] a 512-node ASIC-based

dedicated MD compute engine. These results are not representative of the best possible on a

single ASIC but rather are shown because of the high profile of that project and its similar

goals.

IV. Discussion and Future Work

With the continued increases in device density ever larger problems fit on chip. In this study

we observe that a class of 3D FFTs that dominates an important domain now fits entirely on

a high-end FPGA. As expected this results in an order-of-magnitude improvement in

performance over previous FPGA implementations. We also note that for 163 FFTs FPGAs

yield substantially better performance than CPUs and GPUs and that this trend has carried

across multiple process generations. For 323 FFTs FPGAs remain competitive with GPUs.

This work is part of a project that is exploring FPGA-centric clusters with direct connections

among FPGAs through the multi-gigabit tranceivers. The work by DE Shaw has shown how

effective low-latency communication can be to achieve strong scaling, particularly in MD.

The significance of the current work is that it demonstrates two things: (i) a design that can

scale to take additional inputs/outputs directly from the MGTs and (ii) performance that

indicates that the long range force will not be on the critical path for MD on such systems.

Acknowledgments

This work was supported in part by the NSF through award #CNS-1205593 and the NIH through award #R41-
GM101907-01A1.

References

1. D'Alberto P, Milder P, Sandryhaila A, Franchetti F, Hoe J, Moura J, Pueschel M, Johnson J.
Generating FPGA-Accelerated DFT Libraries. Proc IEEE Symp on Field Programmable Custom
Computing Machines. 2007

2. Dick C. Computing Multidimensional DFTs Using Xilinx FPGAs. 8th Int Conf Signal Processing
Applications and Technology. 1998

3. Yu CL, Irick K, Charkrabarti C, Narayanan V. Multidimensional DFT IP Generator for FPGA
Platforms. IEEE Trans Circuits and System I. 2011; 58(4)

4. Altera. [accessed 1/18/2014] FFT MegaCore Function: User Guide. 2014. http://www.altera.com/
literature/ug/ug_fft.pdf

Humphries et al. Page 5

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.altera.com/literature/ug/ug_fft.pdf
http://www.altera.com/literature/ug/ug_fft.pdf

5. Xilinx. [accessed 10/26/2013] LogiCORE IP Fast Fourier Transform v9 0: Product Guide for
Vivado Design Suite. 2014. http://www.xilinx.com/support/documentation/ip_documentation/xfft/
v9_0//pg109-xfft.pdf

6. Lee, S. Master's thesis. University of Toronto; 2005. An FPGA Implementation of the Smooth
Particle Mesh Ewald Reciprocal Sum Compute Engine (RSCE).

7. Sasaki T, Betsuyaku K, Higuchi T, Nagashima U. Reconfigurable 3D-FFT Processor for the Car-
Parrinello Method. Journal of Computer Chemistry, Japan. 2005; 4(4):147–154.

8. Akin B, Milder P, Franchetti F, Hoe J. Memory Bandwidth Efficient Two-Dimensional Fast Fourier
Transform Algorith and Implementation for Large Problem Sizes. Proc IEEE Symp on Field
Programmable Custom Computing Machines. 2012

9. Chiu M, Herbordt M. Molecular dynamics simulations on high performance reconfigurable
computing systems. ACM Trans on Reconfigurable Technology and Systems. 2010; 3(4):1–37.

10. Gu Y, Herbordt M. FPGA-based multigrid computations for molecular dynamics simulations. Proc
IEEE Symp on Field Programmable Custom Computing Machines. 2007:117–126.

11. Gu Y, Herbordt M. Amenability of multigrid computations to FPGA- based acceleration. Proc
High Performance Embedded Computing Workshop. 2007

12. Young C, Bank J, Dror R, Grossman J, Salmon J, Shaw D. A 32×32×32, spatially distributed 3D
FFT in four microseconds on Anton. SC '09: Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. 2009:1–11.

13. Humpries, B. Master's thesis. Department of Electrical and Computer Engineering, Boston
University; 2013. Using Offline Routing to Implement a Low Latency 3D FFT in a Multinode
FPGA System.

14. Altera. Quartus-II Handbook. 2014. http://www.altera.com/literature/hb/qts/
quartusii_handbook.pdf

15. ProcWizard Product Brief. Gidel Reconfigurable Computing; 2014. http://www.gidel.com/
PROCwizard.htm

16. Intel Math Kernel Library. Intel Corporation; software.intel.com/en-us/intel-mkl [Accessed
4/2014]

17. NVIDIA. [accessed 1/18/2014] CUDA Toolkit Documentation: CUFFT. 2014. http://
docs.nvidia.com/cuda/cufft

18. Lee V, Kim C, Chhugani J, Deisher M, Kim D, Nguyen A, Satish N, Smelyanskiy M, Chennupaty
S, Hammarlund P, Singhal R, Dubey P. Dubunking the 100× GPU vs. CPU myth: An evaluation
of throughput computing on CPU and GPU. Proc Int Symp on Computer Architecture. 2010

19. Nukada A, Matsuoka S. Auto-tuning 3D FFT library for CUDA GPUs. Proc ACM/IEEE Int Conf
for High Performance Computing, Networking, Storage and Analysis – Supercomputing. 2009

Humphries et al. Page 6

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0//pg109-xfft.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xfft/v9_0//pg109-xfft.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.altera.com/literature/hb/qts/quartusii_handbook.pdf
http://www.gidel.com/PROCwizard.htm
http://www.gidel.com/PROCwizard.htm
http://software.intel.com/en-us/intel-mkl
http://docs.nvidia.com/cuda/cufft
http://docs.nvidia.com/cuda/cufft

Figure 1.
A possible mapping of points from a 163 FFT onto four RAMs.

Humphries et al. Page 7

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Block diagram for 3D FFT design.

Humphries et al. Page 8

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Humphries et al. Page 9

T
ab

le
 I

R
es

ul
ts

 f
or

 1
63

FF
T

 f
or

 th
e

A
lte

ra
 S

tr
at

ix
-I

II
 E

P3
E

S2
60

 r
un

 o
n

a
G

id
el

 P
R

O
C

St
ar

 I
II

 b
oa

rd
. L

ar
ge

r
FF

T
s

do
 n

ot
 f

it.

F
F

T
 S

iz
e

F
F

T
 I

P
s

%
 r

eg
%

 L
U

T
s

%
 B

R
A

M
s

D
SP

s
C

yc
le

s
C

yc
le

 T
im

e
L

at
en

cy

16
3

16
65

.4
%

61
.2

%
1.

9%
33

.3
%

99
5

4.
46

n
4.

5u
s

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Humphries et al. Page 10

T
ab

le
 II

R
es

ul
ts

 f
or

 1
63 ,

 3
23 ,

 a
nd

 6
43

FF
T

s
fo

r
th

e
X

ili
nx

 V
ir

te
x-

7
xc

7v
20

00
t-

1f
lg

19
25

 th
ro

ug
h

PP
&

R
.

F
F

T
 S

iz
e

F
F

T
 I

P
s

%
 r

eg
%

 L
U

T
s

%
 B

R
A

M
s

D
SP

s
C

yc
le

s
C

yc
le

 T
im

e
L

at
en

cy

16
3

8
1.

1%
1.

7%
2.

1%
5.

9%
19

16
4.

0n
s

7.
7u

s

16
3

16
2.

2%
3.

7%
4.

4%
11

.8
%

11
49

4.
6n

s
5.

3u
s

16
3

32
4.

4%
9.

4%
4.

9%
23

.7
%

77
3

4.
7n

s
3.

6u
s

32
3

8
1.

3%
2.

1%
14

.9
%

9.
6%

12
90

7
5.

4n
s

69
.8

us

32
3

16
2.

6%
4.

4%
15

.5
%

19
.2

%
67

65
5.

5n
s

37
.5

us

32
3

32
5.

2%
10

.4
%

14
.3

%
38

.5
%

36
94

5.
6n

s
20

.7
us

64
3

16
3.

0%
4.

6%
89

.2
%

22
.2

%
50

11
2

9.
8n

s
49

2.
9u

s

64
3

32
6.

0%
11

.1
%

89
.2

%
44

.4
%

25
53

8
11

.0
ns

28
1.

8u
s

64
3

64
12

.0
%

27
.4

%
84

.2
%

88
.9

%
13

25
1

16
.3

ns
21

5.
9u

s

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Humphries et al. Page 11

T
ab

le
 II

I

R
es

ul
ts

 f
or

 v
ar

io
us

 te
ch

no
lo

gi
es

 a
nd

 p
ro

bl
em

 s
iz

es
. A

nt
on

 is
 f

ix
ed

 p
oi

nt
, o

th
er

w
is

e
re

su
lts

 a
re

 f
or

 s
in

gl
e

pr
ec

is
io

n
fl

oa
tin

g
po

in
t.

A
ll

tim
es

 a
re

 in

m
ic

ro
se

co
nd

s.
 R

el
ea

se
 d

at
e

is
 f

ro
m

 c
or

po
ra

te
 a

nn
ou

nc
em

en
ts

 o
f

av
ai

la
bi

lit
y

in
 q

ua
nt

ity
. V

ir
te

x-
7

tim
es

 a
re

 f
ro

m
 P

P&
R

. A
nt

on
 r

es
ul

ts
 a

re
 f

ro
m

 [
12

].
 A

ll

ot
he

rs
 a

re
 f

ro
m

 r
un

s
by

 th
e

au
th

or
s. Im

pl
em

en
ta

ti
on

 T
ec

hn
ol

og
y

P
er

fo
rm

an
ce

 in
 μ

s

T
ec

h.
M

ak
e

M
od

el
P

ar
al

le
lis

m
P

ar
t

#
P

ro
c.

F
re

q.
R

el
. D

at
e

C
od

e
16

3
32

3
64

3

20
08

 e
ra

 te
ch

no
lo

gy

C
PU

In
te

l
N

eh
al

em
4

co
re

s
E

55
30

45
nm

1.
6G

H
z

20
09

/Q
1

M
K

L
38

11
6

98
3

G
PU

N
V

ID
IA

T
es

la
24

0
SP

s
C

10
60

55
nm

1.
3G

H
z

20
08

/Q
3

C
U

FF
T

54
66

25
7

FP
G

A
A

lte
ra

St
ra

tix
-I

II
16

 1
D

 F
FT

s
E

P3
E

S2
60

65
nm

0.
22

G
H

z
20

08
/Q

2
he

re
4.

5
D

N
Fi

t
D

N
Fi

t

A
SI

C
D

E
 S

ha
w

A
nt

on
51

2
PE

s
—

—
-

90
nm

0.
8G

H
z

20
08

/Q
3

re
po

rt
N

ot
 A

v.
4

13

20
12

 e
ra

 te
ch

no
lo

gy

C
PU

In
te

l
Sa

nd
y

B
ri

dg
e

8
co

re
s

E
5-

26
80

32
nm

2.
7G

H
z

20
12

/Q
1

M
K

L
22

55
28

8

G
PU

N
V

ID
IA

K
ep

le
r

26
88

 S
PX

s
T

es
la

 K
20

c
28

nm
0.

73
G

H
z

20
12

/Q
4

C
U

FF
T

25
29

92

FP
G

A
X

ili
nx

V
ir

te
x-

7
va

ri
ou

s
X

C
7v

20
00

28
nm

va
ri

ou
s

20
12

/Q
2

he
re

3.
6

21
21

6

Proc IEEE Int Symp Field Program Cust Comput Mach. Author manuscript; available in PMC 2015 November 19.

