
An Investigation of Unified Memory Access Performance in 
CUDA

Raphael Landaverde, Tiansheng Zhang, Ayse K. Coskun, and Martin Herbordt
Electrical and Computer Engineering Department, Boston University, Boston, MA, USA

Raphael Landaverde: soptnrs@bu.edu; Tiansheng Zhang: tszhang@bu.edu; Ayse K. Coskun: acoskun@bu.edu; Martin 
Herbordt: herbordt@bu.edu

Abstract

Managing memory between the CPU and GPU is a major challenge in GPU computing. A 

programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to 

simplify the complexities of memory management while claiming good overall performance. In 

this paper, we investigate this programming model and evaluate its performance and programming 

model simplifications based on our experimental results. We find that beyond on-demand data 

transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This 

feature allows UMA to outperform full data transfer methods for certain parallel applications and 

small data sizes. We also find, however, that for the majority of applications and memory access 

patterns, the performance overheads associated with UMA are significant, while the 

simplifications to the programming model restrict flexibility for adding future optimizations.

I. Introduction

GPUs have been used extensively in the past 7-8 years for a wide variety of computational 

acceleration. For many applications, the level of parallelism introduced by the GPU 

architecture and enabled by the use of Nvidia CUDA have allowed for orders of magnitude 

of acceleration [1]. Examples of a few problem spaces accelerated by GPU acceleration 

include molecular docking [2], numerical weather prediction [3], and geophysical signal 

processing [4].

Although GPUs provide many mechanisms for accelerating a wide variety of programs, its 

use is not a silver bullet for time consuming calculations. There are significant limitations, 

particularly concerning memory bandwidth latency and GPU utilization. Along with these 

difficulties, acceleration over mature and highly optimized CPU implementations of 

computations for many problem spaces may not provide the order of magnitude 

improvement that people have come to expect from GPUs [5]. These issues are exacerbated 

by the already difficult nature of mapping existing algorithms to the unique and parallel 

design of a GPU.

To partially alleviate this issue, Nvidia has introduced Unified Memory Access (UMA) in 

their most recent CUDA 6 SDK [6]. UMA is primarily a programming model improvement 

created to simplify the complicated methods which GPUs require for memory 

communication with a host device, typically a CPU. Nvidia's primary goal in this design is 

HHS Public Access
Author manuscript
IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 
November 19.

Published in final edited form as:
IEEE Conf High Perform Extreme Comput. 2014 September ; 2014: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to create an SDK feature that enables quick acceleration of simple applications, while 

providing high bandwidth for data transfers at runtime for shared CPU and GPU data.

In this paper, we investigate the performance and behavior of UMA on a variety of common 

memory access patterns, especially the communication behavior between a host CPU and 

GPU. In particular, we investigate the behavior of UMA memory transfers and analyze 

whether UMA provides better performance over the standard data transfer implementation 

as was done prior to the introduction of CUDA 6. We also analyze whether certain sparse 

memory access patterns provide an immediate and simple performance benefit with UMA 

usage. To test this feature, we develop multiple customized microbenchmarks for the GPU 

architecture. Furthermore, to investigate UMA performance on representative problems and 

applications, we provide a brief classification of the Rodinia benchmark suite [7], categorize 

the benchmarks by their behavior, and then create UMA implementations for a subset of 

them to investigate the changes in performance. We find that for the vast majority of 

applications, UMA generates significant overhead and results in notable performance loss. 

Furthermore, the UMA model only marginally simplifies the programming model for most 

applications.

The rest of this paper is organized as follows. We first introduce the background of current 

GPU architecture as well as the means of communication between CPU and GPU in section 

II. Section III presents our general experimental methodology, including the benchmarks we 

develop and experimental setup we use in this paper. In section IV, we show the 

classification of Rodinia benchmarks based on our setup. We evaluate and discuss our 

experimental results in section V and section VI concludes this paper.

II. GPU Memory Model and UMA

GPUs originated from the need to dedicate off-chip processors for handling the 

computationally intensive tasks of rendering computer graphics. However, this dramatically 

different design for a microprocessor enabled massive gains in parallelism that could 

accelerate time-consuming computations unrelated to graphics. For this reason, Nvidia 

introduced compute unified device architecture (CUDA), a language and programming 

interfaces for interacting with GPUs using C/C++, providing the mechanisms for organizing 

threads on to the GPU architecture [6], [1].

Typically, the huge performance improvement gained from a GPU lies in the massive 

quantity of cores that behave in a single instruction multiple threads (SIMT) manner [1]. 

However, in order to keep these cores active, data must remain local to the GPU. The 

memory hierarchy of a Kepler generation GPU, the current state of the art, is shown in 

Figure 1. Global memory is the bulk of the memory on the GPU device, stored in off-chip 

DRAM, and with the slowest latency on board. The fastest memory is shared memory for 

each of the Steaming Multiprocessors (SMs), accessible directly by threads and programmer 

managed. This hierarchy enables a programmer to control data flow and minimize access 

latency.

Landaverde et al. Page 2

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, the data to be operated on is always generated on the host CPU first, as the GPU 

is simply a slave device when using CUDA. Thus, the common programming model is as 

follows:

1. CPU serial code and data initialization

2. Data transfer to the GPU

3. Parallel computation execution

4. Data transfer back to the CPU.

5. CPU serial code

Without significant changes to the design of the parallel computation for the purposes of 

optimization, there is no possible overlap between data transfer and GPU computation. The 

introduction of Nvidia UMA does not change this, but rather simplifies the model to:

1. CPU serial code and data initialization

2. Parallel kernel execution

3. Synchronization between CPU and GPU.

4. CPU serial code

Here there is no more need for explicit data transfer in the code. Nvidia claims that the data 

transfer occurs on demand for both GPU and CPU, requiring the use of only one array of 

data, and no need for duplicate pointers as data is transferred between the two processors. 

Furthermore, they emphasize that this new method both simplifies the programming model 

and enables close to maximum bandwidth for the data transfer [6], [9]. This model is best 

seen in Figure 2, where from the developer's point of view, the CPU and GPU memory are 

the same. The simplified data model expands the ease of GPU programming and ideally, 

provides immediate performance benefits of full bandwidth data transfer to the GPU. Along 

with this, Nvidia hints that the future of UMA lies in providing more automatic performance 

benefits within a simplified programming model [9]. Unfortunately, the details of UMA are 

hidden from the programmer's perspective. When profiling applications with Nvidia tools, 

neither the destination of transferred data nor the actual size or length of transfers is 

observable. Thus, it is important to analyze the performance and behaviors of UMA for 

different memory access patterns from a raw latency perspective.

Other than Nvidia's UMA, there is very little work in the field of improving the 

communication between CPU and GPU. A fine grained GPU-CPU synchronization scheme 

using full/empty bits is one of the only articles directly addressing the communication 

pattern [10]. However, their work requires both modifications to the GPU architecture, and a 

more robust and complicated programming model in order to yield raw performance gains. 

We instead focus on examining UMA and discussing the potential of UMA to become a 

more performance oriented tool.

Our goal in this paper is analyzing the performance of this simplified model, and 

discovering the details of how UMA transfers data between GPU and CPU. Since UMA 

Landaverde et al. Page 3

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operates similarly to a standard paging mechanism [6], we focus on analyzing the particular 

effects this mechanism has on the overall performance.

III. Methodology

A. GPU Microbenchmarks

To analyze the behavior of UMA, we develop microbenchmarks that address common 

computation and memory access patterns between the GPU kernel and CPU code. In 

particular, we choose that the data is always organized as a matrix of floating point values 

arranged in a one-dimensional array. The computation then follows the following steps:

1. Memory allocation on the Host CPU

2. Initialization of data on the Host CPU

3. (Non UMA) Transfer data to the GPU

4. Perform matrix computation on the GPU

5. (Non UMA) Transfer data to the Host CPU

6. Iterate over matrix on the Host CPU

The items listed as non UMA are not performed for the UMA version of the benchmarks, as 

UMA removes the need for explicit data transfers. Our goal is generalizing the process of 

GPU acceleration of a core computation, followed by further analysis performed on the 

same data on the host CPU.

Since UMA operates similarly to a paging mechanism [6], a UMA enabled version of a 

CUDA program has the potential to optimize certain memory transfer operations. If CUDA 

UMA were to transfer data in small blocks between devices, there is the potential that UMA 

may perform better than the standard data transfer methods while being simpler to 

implement for cases in which only a subset of the total data is used on the CPU or GPU. 

Thus, we analyze various access patterns that may alter the data transfers created by UMA.

To simulate these access patterns, we create 5 microbenchmarks categorized by the memory 

access behavior of the GPU kernel and the CPU component. With the exception of one 

microbenchmark, the GPU kernels are created simply to access and quickly change the data 

in memory. We do not implement complex algorithms because the focus is isolating the 

memory transfer behavior using UMA, not the computation performance. Our 

microbenchmarks are:

• All GPU All CPU: All of the elements in the matrix are accessed by the GPU 

during computation. Each element is simply incremented by one in place. Data is 

transferred to the CPU and all of the matrix elements are incremented by one again 

to simulate an exhaustive post processing.

• All GPU All CPU SOR: Identical to the previous method, with the exception that 

the kernel implements a single step of Successive Over Relaxation (SOR), a 

common linear algebra algorithm. For each element of the matrix, a thread 

averages its neighbors with the element itself, and modifies the element value as a 

Landaverde et al. Page 4

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weighted sum of the average and its current value. This kernel requires 

significantly more memory accesses, more threads, and is performed out of place, 

requiring an input and output matrix. We implement this kernel to observe the 

effect of more complex memory access patterns on the runtime of UMA. After the 

GPU kernel completes, the CPU computes the difference between the output and 

input for each element, and compares the difference to a threshold.

• Subset GPU All CPU: On the host CPU, three elements are chosen at random and 

provided to the GPU kernel at launch. On the GPU, only the threads which pass 

over the matching elements perform the computation: a simple in place addition 

and multiplication to the element. Only three elements of the matrix are ever 

accessed by the GPU. After the GPU kernel returns, the CPU adds one to every 

element as an exhaustive post processing.

• Subset GPU All CPU RAND: Similar to the previous microbenchmark, with the 

exception that the elements accessed by the GPU are a random subset of the input 

matrix. This is achieved by performing the computation out of place, with an input 

and output matrix. An element of the output matrix is assigned if the input matrix 

value is below a threshold. The threshold is used to control the percentage of 

elements in the output that are touched, since A is given random values within a 

range.

• All GPU Subset CPU: This microbenchmark uses the same GPU kernel as the All 

GPU All CPU case. The CPU computation is changed so that only a subset of the 

output matrix is accessed at random on the CPU.

We run these microbenchmarks for various matrix dimensions ranging from 32 to 8192, and 

discuss the results in greater details in section V.

B. Rodinia Benchmarks

Rodinia is a benchmark suite designed for heterogeneous computing infrastructures with 

OpenMP, OpenCL and CUDA implementations [7]. It provides benchmarks that exhibit 

various types of parallelism, data-access patterns, and data-sharing characteristics while 

covering a diverse range of application domains. In this paper, we use this benchmark suite 

(CUDA version) to further investigate other common GPU and CPU patterns when utilizing 

UMA, as well as investigate the performance effect of UMA on a full benchmark suite 

alongside our microbenchmarks. We classify Rodinia benchmarks into three categories 

according to their memory access patterns and pick representative ones from each category 

as targets for analysis. The chosen benchmarks are modified to use UMA in CUDA 6 and 

are run to test the performance difference between the UMA and non-UMA version.

C. Experimental Setup

We run the experiments using a system that contains Intel Xeon E5530 4-core CPUs 

(2.4GHz), 24GB main memory, Kepler era K20c GPUs and uses the latest CUDA 6 to 

enable UMA. UMA is only enabled to run on Kepler era GPUs. The operating system is 

CentOS 6.4. We use runtime as the performance metric, to keep in line with the ultimate 

goal of GPU computations: speed. To get accurate timings from our experiments, we apply 

Landaverde et al. Page 5

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



several different mechanisms for different cases. For our microbenchmarks and the UMA vs 

non-UMA testing of our Rodinia benchmark modifications, we put gettimeofday timing 

functions inside the programs to extract the execution time for memory copies and kernel 

computations. For Rodinia benchmark classification, we use nvprof, a profiling software 

provided by Nvidia, to get the detailed timing of each function call (e.g. cudaMalloc, 

cudaMemcpy and kernel function). We do not use nvprof for timing any UMA computations 

as data transfers are hidden from profiling when using UMA. Since the runtime of 

experiments varies for different runs, we average the results of ten runs for all experiments.

IV. Rodinia Benchmark Characterization

The Rodinia benchmark suite contains 19 benchmarks in total. Due to compiling issues, we 

do not include mum-mergpu and lavaMD in our experiments. For Speckle Reducing 

Anistropic Diffusion (SRAD), there are two versions in the benchmark suite released and 

these two versions expose quite different behaviors, so we include both of them in the 

experiments. Since these benchmarks only support up to CUDA 5, we need to modify them 

to use UMA for memory management. Thus, we first categorize the benchmarks according 

to their memory access patterns and then select representatives from each category to 

address the modifications.

We use the reference input size for each benchmark (provided by the developers) and nvprof 

to profile the execution period. As introduced in section III, this profiling software gives us 

the time spent in kernel computation, memory copy between device (GPU) and host (CPU) 

respectively. Figure 3 displays the profiling results (distribution of runtime to different 

tasks) for all 19 benchmarks we test, ranked in descending order based on the proportion of 

time spent on the kernel computation. In this figure, red blocks represent the percentage of 

time spent on kernel computation; yellow blocks stand for that of the memset function; white 

ones represent device to device (DtoD) copy, typically referring to data duplication in GPU 

memory when only one GPU is being used; green blocks indicate device to host (DtoH) data 

transfers; and blue blocks show host to device (HtoD) data transfers. Since memset and 

DtoD always take less than 1% of execution time for the benchmarks, they do not stand out 

in this figure.

From this figure, we see that the benchmarks express significant variances on runtime 

composition. For example, cfd, luekocyte etc. spend more than 90% of execution time on 

kernel computation while for benchmarks such as pathfinder and nn, data transfer time 

predominates over the kernel computation time. Therefore, we categorize the first type as 

kernel-intensive benchmarks and the second type as memory-intensive benchmarks. 

Additionally, it is clear to see that among memory-intensive ones, b+tree and pathfinder 

have far more HtoD transfers than DtoH transfers while the rest ones show more comparable 

transfers between HtoD and DtoH. Thus we further categorize memory-intensive 

benchmarks into HtoD-memory-intensive and Balanced-memory-intensive benchmarks. The 

benchmark categorization is shown in Table I. Due to such variation in the Rodinia 

benchmark suite, we pick one benchmark from each category and modify them for the UMA 

test. We pick lud, pathfinder and nn as the representative kernel-intensive, HtoD-memory-

intensive and Balanced-memory-intensive benchmarks, respectively.

Landaverde et al. Page 6

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To modify these benchmarks to use UMA, we remove all references to device pointers and 

memory transfers, and convert all host pointers containing working data to CUDA managed 

pointers. Of note is that these conversions are not always trivial, as some algorithms were 

designed to work with multiple pointers for output and input, or merged data into single 

pointers. Furthermore, the number of lines saved between the two versions of code (UMA vs 

non-UMA) is in the single digits for these benchmarks. While the programming model is 

easier to understand when using UMA, as memory is treated as a single space, it is not a 

significant amount of code saved, nor does it necessarily simplify the design of the program.

V. Experimental Results

A. Results for GPU Microbenchmarks

For a subset of our microbenchmarks, Subset GPU All CPU, Subset GPU All CPU RAND, 

and All GPU Subset CPU, our expectation is that the UMA version would perform better 

across all sizes. This is anticipated if UMA operates similarly to a paging mechanism, 

because these benchmarks operate on only subsets of the input data and would have a 

distinct advantage in UMA, requiring only a subset of data to be transferred. Interestingly, 

the experimental results do not support this theory, but rather, the performance of the UMA 

version is consistently worse than non-UMA version.

Figure 4 shows the performance of the microbenchmarks for a varying matrix dimension 

normalized to the runtime of the non-UMA version. The red line is the performance of the 

UMA version and the black dashed line shows the performance of the non-UMA version. 

The performance is measured as the time between the initial transfer to the GPU up to the 

finish of the CPU computation that follows kernel execution. The CPU portion of the 

computation is included in the timing in order to ensure that all UMA transfer latencies are 

also included. From this figure, it is clear that for almost all cases, the performance of the 

UMA version is worse than the performance of the non-UMA version. Furthermore, the 

difference in performance is not static, but changes as the data set size changes.

Although each microbenchmark has different performance scaling between the UMA and 

non-UMA versions, there are evident trends in the data that reveal some details on the UMA 

mechanism. First, the performance of UMA appears to be split up into two phases based on 

the dimension of the matrix. As soon as the matrix dimension hits 1024, there is an 

immediate performance loss. Thereafter, the performance stabilizes as a constant factor 

differences compared to the non-UMA version, up to sizes of 8192. One key observation we 

can glean from these experiments is that 1024 corresponds to the paging value UMA uses: 4 

KB. Prior to that size, the performance is more variable due to shifting access patterns for 

small matrices where a page of data may span multiple rows of the input matrix. This also 

implies that controlling the page size to match the problem size can improve UMA 

performance in general.

A further observation is that the benchmarks that are expected to perform well, marked c to 

e in Figure 4, at times perform worse than All GPU All CPU and All GPU All CPU SOR. 

This is most evident with the All GPU Subset CPU case, which at its worse, is 2.2× slower 

than the non-UMA version. For high performance computing applications, a case like this 

Landaverde et al. Page 7

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



would be unacceptable. The Subset GPU All CPU RAND case displays some favorable 

results for smaller matrix sizes up to a dimension of 512, and has the best scaling for large 

sizes as well, but it still performs worse than the non-UMA version.

Unusually, the All GPU All CPU SOR case performs better than the non-UMA version for 

small matrix sizes. This may be because UMA attempts to place data in a position in 

memory to best improve performance and maintain consistency [9], and for SOR which 

requires multiple memory accesses, this is highly advantageous. In particular, these small 

sizes are close to the UMA page size, and may have more efficient transfers compared to the 

non-UMA version.

Overall, these results demonstrate that the performance hit taken by these microbenchmarks 

when using UMA is not trivial at large sizes, and weigh heavily against the positives of a 

simplified memory model.

B. UMA Tests for Rodinia Benchmarks

After implementing UMA in representative Rodinia benchmarks LUD, Nearest Neighbor 

(NN) and Pathfinder, we perform similar timing as with our microbenchmarks, but using 

varying parameters as is appropriate for each of the benchmarks. Figure 5 presents the 

experimental results for these benchmarks, normalized to the case without using UMA. We 

find interesting trends that demonstrate that UMA may indeed have a use case in which it 

performs better than non-UMA CUDA.

For Pathfinder and LUD, with smaller input sizes, the UMA version performs comparably, 

or better than the non-UMA version. These results differ from those seen with the mi-

crobenchmarks. In particular, these two benchmarks represent a special case which is not 

included in the microbenchmarks: subset data access on the GPU with multiple consecutive 

kernels before the need for data transfers back to the host.

In this case, a subset of the data is moved to the GPU via UMA and is repeatedly accessed 

across multiple kernels before other data is ever referenced by the GPU. CUDA UMA 

prioritizes memory coherence and locality when transferring data to GPU, and the location 

of data is invisible to the program [9]. Because of this, if a subset of data is repeatedly being 

operated on, our results demonstrate that the location of the data via UMA may provide a 

performance benefit over a non-UMA version of memory transfer. Along these lines, LUD's 

performance appears to decrease as the input matrix dimension approaches and passes the 

page size we mentioned in the previous section. The memory locality benefit attained from 

UMA thus seems linked to the data dimensions, how the data is accessed on GPU, and how 

many times the data is accessed before data is required to be returned to the CPU.

LUD is a kernel intensive application, and the performance degradation due to the migration 

of data when using UMA for large data sizes is larger than that of Pathfinder, a memory 

intensive application. This indicates that kernel intensive applications are more adversely 

affected when memory overhead becomes larger.

Landaverde et al. Page 8

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The performance of NN, however, aligns much more closely to results from the 

microbenchmarks. NN is a balanced memory intensive application which operates on all 

elements of the input data, but only on a subset of the output. Thus, for the different input 

sizes, the UMA version is simply a scale factor worse than the non-UMA version, similarly 

to our results from the microbenchmarks.

C. Implications for UMA

These results demonstrate that the performance of UMA varies greatly based on program 

design, kernel intensity, and memory access patterns. In particular, we demonstrate that 

there are indeed cases where a UMA version can perform better than a non-UMA 

implementation. One particular note is that in both our microbenchmarks and the Rodinia 

benchmarks, the difference in code complexity between the UMA and non-UMA version is 

little, with no more than 10 lines of code changing across versions. For the majority of GPU 

applications which operate on arrays of data, the introduction of UMA does not provide a 

large simplification. However, for more complex data structures where porting to the GPU 

may prove difficult, UMA provides a simplification, albeit at a potentially large 

performance cost. In our experimentation, we see an up to 2.2× decrease in performance.

In order to improve UMA performance, we find that the application must use kernels which 

operate on subsets of the output data at a time. In this way, the paging mechanism provided 

by UMA provides the most benefit. Beyond this, UMA should only be used when the data 

structures of a CPU program are particularly difficult to arrange on the GPU, and further 

optimizations are not necessary. Once a program is designed for UMA, the use of streams 

for data overlap, as well as various other data transfer optimizations, is made more difficult 

and less obvious.

UMA can become a more performance oriented tool if it is extended to support more 

features and controls. Dynamically specifying the paging size between CPU and GPU 

memory would be critical, as the data transfer can then be tuned to match memory access 

behavior for a given application. As is seen in Figure 4, once the input hits the page size, 

performance decreases notably. Along with this, if CUDA were more transparent in the data 

transfer mechanism using UMA, the program design could be better optimized to match data 

transfer patterns. Finally, if UMA allowed kernels to access data on demand during transfer, 

similarly to the work done in [10], significant performance benefits over a non-UMA version 

would be attained.

VI. Conclusions

In this work, we present an investigation of unified memory access performance in the latest 

CUDA version. We have designed GPU microbenchmarks to probe the performance 

features of UMA. Based on the results we collect from a system with Kepler GPUs, we have 

demonstrated that the performance of UMA varies significantly based on the memory access 

patterns. We also show that there are cases in which UMA versions can perform better than a 

non-UMA implementation. However, in its current form, UMA has limited utility due to its 

high overhead and marginal improvement in code complexity. Further work on UMA should 

Landaverde et al. Page 9

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



include greater transparency in the paging mechanism, greater control of the internal 

mechanism, as well as further analytical tools for optimizing UMA behaviors.

References

1. Lindholm E, Nickolls J, Oberman S, Montrym J. Nvidia tesla: a unified graphics and computing 
architecture. IEEE Micro. Mar; 2008 28(2):39–55.

2. Sukhwani B, Herbordt MC. Gpu acceleration of a production molecular docking code. Proceedings 
of 2nd Workshop on General Purpose Processing on Graphics Processing Units, ser GPGPU-2. 
2009:19–27.

3. Michalakes J, Vachharajani M. GPU acceleration of numerical weather prediction. Parallel 
Processing Letters. 2008; 18(04):531–548.

4. Wei SC, Huang B. GPU acceleration of predictive partitioned vector quantization for ultraspectral 
sounder data compression. IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing. Sep; 2011 4(3):677–682.

5. Vuduc R, Chandramowlishwaran A, Choi J, Guney M, Shringarpure A. On the limits of GPU 
acceleration. Proceedings of the 2Nd USENIX Conference on Hot Topics in Parallelism. 2010:13–
13.

6. Nvidia. [accessed: 2014-4-29] CUDA. 2014. https://developer.nvidia.com/cuda-toolkit

7. Che S, Boyer M, Meng J, Tarjan D, Sheaffer J, Lee SH, Skadron K. Rodinia: a benchmark suite for 
heterogeneous computing. Proceedings of IEEE International Symposium on Workload 
Characterization. Oct.2009 :44–54.

8. Nvidia. [accessed: 2014-3-31] Nvidia kepler GK110 architecture. 2012. http://www.nvidia.com/
content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

9. Nvidia. [accessed: 2014-4-29] Unified memory in CUDA 6. 2014. https://devblogs.nvidia.com/
parallelforall/unified-memory-in-cuda-6/

10. Lustig D, Martonosi M. Reducing GPU offload latency via fine-grained CPU-GPU 
synchronization. Proceedings of IEEE International Symposium on High Performance Computer 
Architecture. 2013:354–365.

Landaverde et al. Page 10

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://developer.nvidia.com/cuda-toolkit
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/


Fig. 1. 
Memory hierarchy of the Kepler GPU architecture [8].

Landaverde et al. Page 11

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Traditional and unified memory access model [9].

Landaverde et al. Page 12

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
GPU behavior characterization of Rodinia benchmarks.

Landaverde et al. Page 13

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
UMA vs non-UMA performance for the GPU microbenchmarks. The X axis represents the 

dimension of the input matrix for the microbenchmarks.

Landaverde et al. Page 14

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Performance results of the UMA version of the Rodinia benchmarks normalized to the non-

UMA version.

Landaverde et al. Page 15

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Landaverde et al. Page 16

Table I

Categorization of Rodinia benchmarks.

Types Benchmarks

kernel leukocyte, hotspot, srad_v1, myocyte, cfd, particlefilter, lud, gaussian, kmeans

memory HtoD bfs, b+tree, pathfinder

Balanced streamcluster, nw, srad v2, backprop, nn

IEEE Conf High Perform Extreme Comput. Author manuscript; available in PMC 2015 November 19.


