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We present an analytic scheme to connect the fragility and visco-
elasticity of metallic glasses to the effective ion-ion interaction in
the metal. This is achieved by an approximation of the short-range
repulsive part of the interaction, combined with nonaffine lattice
dynamics to obtain analytical expressions for the shear modulus,
viscosity, and fragility in terms of the ion-ion interaction. By fitting
the theoretical model to experimental data, we are able to link the
steepness of the interionic repulsion to the Thomas-Fermi screened
Coulomb repulsion and to the Born-Mayer valence electron overlap
repulsion for various alloys. The result is a simple closed-form expres-
sion for the fragility of the supercooled liquid metal in terms of few
crucial atomic-scale interaction and anharmonicity parameters. In par-
ticular, a linear relationship is found between the fragility and the
energy scales of both the screened Coulomb and the electron overlap
repulsions. This relationship opens up opportunities to fabricate al-
loys with tailored thermoelasticity and fragility by rationally tuning
the chemical composition of the alloy according to general principles.
The analysis presented here brings a new way of looking at the link
between the outer shell electronic structure of metals and metalloids
and the viscoelasticity and fragility thereof.

metallic glasses | fragility of liquids | supercooled liquids | glass transition |
liquid metals

U nderstanding the mechanism which governs the emergence
of mechanical stability at the glass transition of supercooled
metallic liquids (1) calls for deeper insights into the connection
between the fragility index and the interatomic interaction. As
previous work suggested (2—4), mechanical stability in amorphous
solids is crucially linked to the repulsive part of the interatomic
interaction potential. However, no consensus has been reached on
whether interatomic repulsion softness correlates with strong glasses
(5) or with fragile glasses (6). We derive an analytical closed-
form relation between the fragility index of metallic glass formers
and the short-ranged repulsive part of the interatomic interac-
tion given by pseudopotential theory. This fundamental relation
is obtained from a one-parameter theory fit to experimental
rheological data of supercooled metallic melts. Resorting to this
combination of theory and experiments, it is established that
interatomic repulsion softness in metals goes along with strong
glasses and low fragility. Surprisingly, given the difference in
energy scale of many orders of magnitude and the nature of the
microscopic interaction, this finding is in full agreement with the
correlation observed experimentally for soft colloidal glasses by
Mattsson, Weitz, and coworkers (5). Finally, we establish a
quantitative link between our analysis and the theory of shear
transformation zones to estimate the size of the cooperatively
rearranging regions in good agreement with the findings in ref. 7.

Shear Modulus of Glasses

The starting point for linking the shear modulus and the atomic
connectivity analytically is the theoretical framework of nonaffine
elastic response (8-10). The standard affine approximation of the
classical Born-Huang theory is not applicable to amorphous as
well as other noncentrosymmetric lattices (11). This problem

13762-13767 | PNAS | November 10,2015 | vol. 112 | no. 45

arises due to the lack of local inversion symmetry in amorphous
solids. As a consequence, the deformation forces which are
transmitted to an atom by its bonded neighbors do not balance
each other by mirror symmetry. The resulting forces, which act
on every atom, are released through additional nonaffine mo-
tions on top of the standard affine displacements dictated by the
macroscopic strain. In other words, the continuum assumption
that the macroscopic deformation scales down to the micro-
scopic lattice does not generally hold for amorphous systems.

Structural disorder and nonaffine motions can be taken into
account using the theory of nonaffine elastic response. For an
amorphous solid under a shear strain y, we can express the free
energy of deformation as F(y) =Fa(y) —Fna(y) (12). The two
terms represent the standard affine contribution to the free en-
ergy, provided by the framework of Born-Huang lattice dynamics
(13, 14), and the nonaffine contribution, respectively. Resorting to
an eigenfunction decomposition of the nonaffine contribution, it
is possible to derive an analytic expression for the shear modulus
of an amorphous lattice. This has been done for example by
Lemaitre and Maloney (8), and the result for the shear modulus
is given by

G=Ga=Gna=Ga= ) fH'f. [1]

iJ

where H ;= (0°U/ dr;or;),_, represents the standard dynamical
matrix of the solid (15), U is the internal energy of the system,
and f . is the force per unit strain acting on the atoms due to
the shear deformation (8). The explicit expression for the affine
contribution to the shear modulus is given by Ga = (N /30V)xR2Z,
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which is discussed in Supporting Information. As shown in ref. 9,
assuming a central force interaction and introducing the atomic
packing fraction ¢ =vN /V/, with v a characteristic rigid core vol-
ume, Eq. 1 can be evaluated analytically as

1 «

G=GA—-Gna=—
A NA 57 Ro

(Zz-2Z.). 2]

The nonaffinity of the amorphous solid is encoded in the quan-
tity —Z,, which denotes the critical number of bonds at which the
shear modulus vanishes by virtue of the nonaffine softening
mechanism. This expression still does not include the direct con-
tribution of thermal effects to the elastic response. Thermal vi-
brations, in fact, soften the shear modulus by an additional
negative term —3(N/V)kT*(Inha/kT)/dy* (9, 16). For many
materials, including metallic and polymer materials, this contri-
bution is very small compared with the other terms in Eq. 2. It
determines a decreasing trend of G with T which is negligible
compared with the combined effect of nonaffinity and thermal
expansion (17).

Temperature Dependence of the Shear Modulus

The crucial effect which controls the temperature dependence of
the shear modulus is the change in atomic connectivity Z due to
Debye-Griineisen thermal expansion (9). Approaching the glass
transition temperature T, from below, this effect is responsible
for the loss of mechanical stability. We will show that the same
effect is responsible for the decrease of the high-frequency shear
modulus with increasing 7 in the supercooled liquid above 7.

The atomic packing fraction ¢ is reduced upon increasing the
temperature 7, an effect mediated by the thermal expansion
coefficient defined as ar =y, (0V'/0T) =~ (9¢/0T). Integrating
this, we see that the atomic packing fraction evolves with T
according to log(1/¢)=ar T +c. For an amorphous metal, a
decrease in Z arises if the separation between two particles is
larger than the typical length scale of attraction defined by the
first minimum of the interatomic pseudopotential 7yin. For ex-
ample, if the separation of an atom from one of its caged
nearest-neighbors exceeds r > ryin, the neighbor effectively leaves
the coordination shell or cage (9) and no longer contributes to
the cage elasticity.

When increasing 7, the average spacing between atoms in the
coordination shell becomes larger, and the probability of nearest
neighbors leaving the connectivity shell increases. It is then possible
to use the radial distribution function g(r) to relate the change in
packing fraction ¢, due to an externally imposed change in tem-
perature 67, to the change in connectivity 6Z. Following along
the lines of ref. 9, the change of atomic connectivity 6Z=2 - Z,,
relative to the critical stability (isostatic) point Z., can be cal-
culated when the density of the system increases by an increment
O¢p = ¢p — ¢, according to

1+6¢

Z—Z, ~ / r’g(r)dr, [31
1

where r represents a dimensionless distance defined with respect
to the rigid core diameter ¢. Because the radial distribution
function g(r) is not known in analytical form for real materials,
we introduce an approximation scheme. The basic idea is to
represent the repulsive side of the first peak of g(r) by means
of the power law approximation g(r) ~ (r —o)". In this way, the
parameter A uniquely characterizes the steepness of the left-hand
side of the first peak of the radial distribution function. The
dashed lines shown in Fig. 14 represent the power law approx-
imation to the actual radial distribution function.

Krausser et al.

Shear Modulus

wr K 1
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Fig. 1. (A) Approximation of the repulsive part of the first peak of g(r)
using two different values for the steepness A. An increase in 1 is linked to a
steeper slope of g(r). (B) In the high-frequency regime the affine shear modulus
represents a good approximation to the actual behavior of the shear modulus
G=Ga —Gpa.

We know that the potential of mean force (18) between two
atoms is related to the radial distribution function by Vy,/kT =
—In g(r) ~ —In(r — 6)*, where the ion core diameter & indicates
the mutual separation between two ions at which the interaction
energy is practically infinite. If the separation between two ions is
small, ;,, reduces to the short-range part of the ion—ion repulsion.
Hence, 4 is proportional to the steepness of the short-range ef-
fective repulsion and inversely proportional to the softness of the
pseudopotential, which scales as 1/4.

Subsequently, with the power law approximation for g(r) in
Eq. 3, the change in connectivity becomes a function of the re-
pulsion steepness 1: 8Z ~ 8¢+ It is assumed that the spherical
integration is well approximated by Cartesian coordinates at
short separations. When decreasing the temperature by 67 <0,
the atomic packing fraction grows by 6¢ =—¢parsT >0. Conse-
quently, the connectivity Z increases more strongly for steeper
pseudopotentials than for the softer counterpart. Analogously, an
increase of temperature, §7 > 0, causes the atomic connectivity to
decrease more abruptly with 7 for a steep ion—ion repulsion and
more gradually for a softer interaction.

The High-Frequency Shear Modulus

Experimental measurements of the viscosity and shear modulus
of supercooled liquid metals at the glass transition can be obtained
using ultrasonic techniques, which probe the material response at
frequencies in the GHz range (19). These high frequencies exceed
the typical relaxation frequency of a metallic glass by several
orders of magnitude (20). Under such conditions, the response
to an applied oscillatory shear strain generally is dominated by
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Table 1. Summary of the experimental data

Alloy Tg K 102ar T, A Cs, GPa V., 107m3  m() m

Zrge.75 Tigas Nijg Cuzs Beyzs 597 (19)  0.591 99.7 34,52 — — —

Pd43 Cuy; Niqg Pao 567 (19) 0.935(39) 1159 30.44 —_ — —

Pts75 Nis3 Cuqs7 Paas 489 (19) 0.776 164.2  30.56 — — —

Lass Alys Niyo 465 (39) 0.711(39) 196.2 15.4 (20) 0.0148 37.16 37450k (19) 33462« (40)
Zrgr; Tinsg Nirg CUrzs Besys 623 (39)  0.617 (39) 2764 332 (19) 0.0085 38.74 40613« (19) 39ask (41)
Pd4o Nigo P2o 551(39) 0.856 (39) 286.5 36.5(20) 0.0069 49.91 50560k (19) 41580k (42)
Pd77.5 Cug Sites 625 (39) 0.865(39) 381.2 32.9(20) 0.0084 60.04  6163ak (19) 52635« (42)

the instantaneous (affine or quasi-affine) limit of the shear modulus.
For frequencies @ much larger than the inverse of the Maxwell
relaxation time 7, that is for wr > 1, the shear modulus cannot
decay through a nonaffine relaxation process. This situation is
sketched in Fig. 1B together with the low-frequency case, where
the nonaffine decay is possible.

At high frequency, the atoms cannot leave their affine positions
to reach the nonaffine positions because the deformation is too
quickly reverted. Hence, the elastic response at GHz frequencies
is predominantly affine, as shown in Supporting Information using
the full nonaffine response theory. Considering Eq. 2, this means
that the shear modulus is reduced to its affine contribution in the
sense that GZZ3G 5. Consequently, in this regime the expression
for G is proportional to Z (13) but no longer depends on the
critical connectivity Z.. Therefore, it holds true that §Z — Z and
8¢ — ¢p. Setting Z, and ¢, to zero is the defining feature of the
high-frequency quasi-affine limit (14).

Going back to Eq. 1 we recognize that in the regime wr > 1
this leaves us with G =5 z-¢Z. We recall that the packing fraction

depends on T, ¢(T) ~ e‘”TT, and thus, we obtain Z(T') ~ e~ (1+darT,
Upon replacing this result in the above equation for G, we find
that the T dependence of the shear modulus is dictated by

G(T)~ ioexp[—(zu)aﬂ]. [4]

The high-frequency shear modulus now explicitly depends on the
softness of the interaction potential and on the thermal expansion
coefficient ar. Both these crucial effects are reflections of the
anharmonicity of the elastic response.

As already hinted above, we remark that in general there is also a
phonon contribution to the shear modulus proportional to kTe=r7.
However, this contribution is typically negligible with respect to the
one in Eq. 4 (17), even more so if one considers, as it will be shown
below, that typical values of A are in the range 100-400.

Comparison with Experimental Data

The above expression for the high-frequency affine shear mod-
ulus can be rewritten as

G(T)=Cg exp {arTg(2+/l) (1 —TZ)} [5]

8

where Cg =& fe™":(2*) is a prefactor independent of 7. The

constant & stems from the integration of ay and from the di-
mensional prefactor in the power law ansatz for g(r). All of the
parameters in this expression, which are given in Table 1, are fixed
by the experimental protocol, apart from the fitting parameter 1
related to the ion-ion repulsion steepness. With Eq. 5 at hand, we
can generate a one-parameter fit to the experimental data pro-
vided from ref. 19, which accurately captures the datasets for the
three metallic glass alloys, as can be seen from Fig. 24. The
different slope of the three depicted curves reflects the fact that
the repulsion steepness A in Eq. 5 controls the behavior of G(T).

13764 | www.pnas.org/cgi/doi/10.1073/pnas.1503741112

A decreasing 4, among the different alloys, correlates with a
slower decrease of the shear modulus upon increasing the
temperature.

Furthermore, we can use our model for the high-frequency
shear modulus to evaluate the activation energy E(7T) involved in
restructuring the glassy cage and, hence, the viscosity # of the
melts. Within the framework of the shoving or elastic model of
the glass transition (21-24), the activation energy for local cooper-
ative rearrangements is E(7) = GaV.. The characteristic atomic
volume V appearing here is accessible through the theoretical
fitting to the viscosity data, although its value is approximately
specified by the atomic composition of the alloy.
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Fig. 2. The experimental data points for various glass-forming alloys from
ref. 19 and the respective fitting curves for the shear modulus in A and the
viscosity in B. The solid lines are the one-parameter fitting curves obtained
using the expressions in Eqs. 5 and 6, for the shear modulus and viscosity,
respectively. The values used for the fittings are reported in Table 1.
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Replacing the expression for the activation energy in the Arrhe-
nius relation given by the shoving model of the glass transition and
using Eq. 5 for the high-frequency shear modulus G inside E(7T),
we obtain the following analytical expression for the viscosity:

T V.C T
%:exp{ kTG exp {(2+ﬂ)aTTg (1 —Tg)] }, [6]

where 7, is a normalization constant.

It is important to note how the double-exponential of the viscosity
versus T arises. The first exponential stems from the elastic activation
described in the framework of the shoving model, whereas the second
exponential is due to the Debye—Griineisen thermal expansion
rooted in lattice-dynamical considerations and ultimately related
to anharmonicity.

We compare the theoretical predictions to the experimental
data of ref. 19 in Fig. 2B. In this case there is also an excellent
agreement between theory and experiment with the adjustable pa-
rameters being 4, the steepness of the short-ranged ion—ion re-
pulsion, and V., the characteristic atomic volume.

Interatomic Repulsion and Fragility
With the analytical theory developed above, we are in the position
to relate the atomic-scale properties of the interaction between
ions to the experimentally observable macroscopic response of the
material. We now consider the behavior of the viscosity in Fig. 2B
together with the corresponding behavior of the interaction param-
eter 4 for various alloys in Table 1. Evidently, upon approaching the
glass transition, the slope of the viscosity #(T) is controlled by the
interatomic repulsion steepness 4, which depends on the atomic
composition of the alloy. A steeper pseudopotential repulsion
between two nearest-neighbor ions goes hand in hand with a steeper
rise of viscosity, when T is increased.

This observation leads us straight to connecting the softness of
the potential to the fragility of metallic glasses. The fragility is
given as the slope of the viscosity evaluated at the glass transition

‘”3%}17%;’0))’ (25). Using the analyt-

ical expression for 5, Eq. 6, we obtainzagsimple relation between
the fragility m and the steepness of the interatomic repulsion 4
given by

temperature Ty, i.e., m= (

1 V.Cs

M =110 &7,

1+ 2+ )arT]. [71

Metallic glasses with a steeper repulsive part of the interatomic
interaction are thus more fragile. The values of the fragility
obtained for the various alloys of ref. 19 are listed in Table 1,
together with the fitted values of the interatomic repulsion steep-
ness 4. Good agreement is also found with independent experi-
mental measurements of m from the literature.

This prediction is in full agreement with the experimental
findings of ref. 5. In that work the softness of the interparticle
potential was varied in a model colloidal glass, where the energy
scale is orders of magnitude smaller than in metals.

The model also can capture the behavior of m observed in
simulation studies of Lennard—Jones glasses, where the attractive
anharmonicity controls the fragility via the thermal expansion
coefficient, and by construction, a high anharmonicity is accompa-
nied by a low repulsion steepness (26).

Extracting Pseudopotentials from Experimental Data

Given the schematic form of the repulsive short-range part of the
interaction, —In(r —6)”, used in the fitting, it is desirable to map
this semiempirical repulsion onto a physically realistic interatomic
pseudopotential. This can be achieved by using an Ashcroft-type
pseudopotential for modeling the Thomas—Fermi screened interionic

Krausser et al.
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Fig. 3. (A) The Ashcroft-Born-Mayer pseudopotential is depicted for four

different glass-forming alloys. The fragility m increases with the pseudopo-
tential steepness. (B) The value of the Born—Mayer energy scale increases
linearly with the fragility. Also, it is observed that the average ionic diameter
decreases linearly with the fragility.

Coulomb repulsion (27) and, in addition, a Born—-Mayer inter-
action term which accounts for the effect of electron overlap and
Pauli exclusion repulsion between valence electron shells of two
interacting ions (28). A more detailed discussion of this matter
can be found in Supporting Information. This combination of the
two contributions to the interaction is the most meaningful
choice for the present situation, as discussed in ref. 29.

The softness of the pseudopotential is predominantly controlled
by the Born-Mayer parameters because electron overlap repulsion
between valence electrons is more energetic over a broader length
scale compared with the Ashcroft contribution, as illustrated in
Supporting Information. Physically, a slower decay of the electron
overlap repulsion with distance reflects the softness of the effective
interaction. The glass stability, however, is optimized by the co-
existence of both softness and substantial repulsion, as is the case
for technologically important alloys, like binary Zr-Cu alloys (30).

Microscopically, it is the strongly anisotropic density distribu-
tion of d-shell electrons, due to the quadrupolar d-wave symmetry,
which provides significant softness (upon taking a spherical average),
compared with the more isotropic electron density distribution of
elements whose outer shells are dominated by s-electrons. Hence,
the form of the pseudopotentials may explain the difference in
stability and fragility based on the composition of the alloy. In
our model, this effect is expressed by the energy scale of the
Born—-Mayer repulsion B. In particular, we find that B correlates
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linearly with the fragility index m, as shown in Fig. 3B. This
correlation reflects the fact that d-shell orbitals effectively soften
the interatomic repulsion, whereas s-shell electrons are associ-
ated with steeper repulsion and higher fragility.

The second effect which is captured by this approach is the ion
size mismatch. If smaller metal atoms are added to larger atoms,
fragility decreases and strong glasses can be formed. This mechanism
which affects multicomponent alloys is analyzed and discussed in ref.
31. Again, this is the consequence of an effectively softer interatomic
repulsion. Smaller atoms of metalloids like P, B, or Si can easily
come closer to larger ions like Pd, La, Zr, or Cu by fitting into
the voids of the quadrupolar d-shell structure. In general, this
topological effect also leads to a softer average pseudopotential.

This connection between macroscopic flow behavior, encoded
in m, and electronic structure is an important step toward a
unifying framework for understanding and controlling mechani-
cal properties of metallic glasses on the atomic scale.

Connection with Cooperative Shear Events

As already pointed out, the energy necessary to trigger a shoving
event is E(T) = Ga(T)V,. The characteristic atomic volume V is
not the volume change which is connected to a shoving event.
This quantity, also called the activation volume AV, is connected
to V. and the initial shoving volume V' via the relation

_2(AV)?
Ve=3 " (8]

which can be derived in the framework of the elasticity theory of
an isotropic expanding sphere (23).

It is widely believed that shear transformation zones (STZs)
are the fundamental plastic entities responsible for the yielding
mechanism in metallic glasses. STZs are clusters of atoms which
can cooperatively rearrange under shear stress and are directly
connected to the local accumulation of free volume (32). It is in
this sense that the activation of STZs allows the involved atoms
to rearrange more easily under shear stress. Assuming that the
initial shoving volume V corresponds to the volume of a STZ, we
find a direct relation between the characteristic volume V. and
the activation volume AV in the following way.

According to ref. 33, the total energy barrier W between two
basins in the potential energy landscape can be evaluated to give
W = (1/320) GAQ (Supporting Information). We assume that W
in the cooperative shear model is approximately equal to the shoving
energy, that is, W ~ E. It directly follows that GAV, ~ (1/320)GA €,
which leads us to conclude that the effective volume of a STZ is
Qr320V..

It is physically meaningful that the effective STZ volume Q is
approximately equivalent to the initial shoving volume V, hence-
forth calling it Vsrz. Using the identification Q= Vsrz =~ 320V, we
can use the values for I/, to extract values for STZ volumes from
our theoretical analysis and compare them to experimental results
for Vsrz from ref. 7. We find that the calculated STZ volumes for
the respective alloys are in very good agreement with the experi-
mental results for similar alloys, which is displayed in Table 2.

Table 2. Experimental and theoretical STZ volumes

Alloy Ve, nm3 Q, nm3
Pd,o Nisg P2o 0.0069 2.21
Pdsg Nizz P2o — 2.36 (7)
Zr41_2 Ti13_8 Ni10 CU12_5 Be22_5 0.0085 2.72
Zrg6.75 Tig.as Nijg Cuzs Beyys — 3.13 (7)
Lass Alps Nio 0.0148 4.74
Lass Alys Nizo — 5.31 (7)

13766 | www.pnas.org/cgi/doi/10.1073/pnas.1503741112
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Fig. 4. (Left) The distance between the atoms decreases as the temperature
is increased, leading to a smaller overlap of the effective interaction po-
tentials. (Right) The growth of the cage by AR when increasing the tem-
perature by AT and the corresponding loss of stabilizing energy AE. The
potentials are shifted for the sake of clarity.

Moreover, using Vsrz = 320V, together with Eq. 8, we obtain a
relation between the activation volume and the characteristic
volume V, given by AV ~ /480 V.. With the values for V, from
the viscosity fitting, we can calculate the activation volume for
the corresponding alloys to be in the range 151 — 324 A’ For a
Pd-based metallic glass, an activation volume of 106 A was
found experimentally (34), which is not too far from our estimate
for the alloys discussed here.

Elsewhere the activation Volursne for Zry > Tijzg Cuyas Nijg
Be,, 5 is determined to be 75 A (35). For the same alloy, we
calculate the value for the activation,volume from the corre-
sponding V. with the result AV =186 A", which is about 2.5 times
larger in comparison. This difference may be explained by the
different deformation protocols (shear amplitude, applied stress
rate, etc.) in the respective experiments. It is argued in refs. 36 and
37 that a higher degree of applied stress leads to an increase of the
size of the individual flow units, which means that both the STZ
volume and the activation volume tend to increase.

Conclusions

The basic mechanism controlling the mechanical response and
the fragility of liquid metals close to vitrification can be summa-
rized in the following way. Due to thermal expansion, an increase
in the temperature leads to a decreasing atomic packing fraction
and, thus, to a decrease of atomic connectivity.

The latter effect softens the material, causing the shear modulus
to decrease with T. The rate of this process is controlled by the
steepness of the repulsive short-range interatomic interaction.
This mechanism propagates to the viscosity, and it controls its
temperature dependence and leads to fragile behavior with steep
interatomic repulsion and to strong glasses when the repulsion is
softer. In an amorphous solid we can picture this situation by
considering a reference atom which is surrounded by a number of
neighboring atoms, forming a disordered cage. The repulsive in-
teraction between these particles provides stability to the cage.
When the temperature is increased, a corresponding change of
packing fraction takes place, implying that the disordered cage
around the reference atom becomes larger and less stable (Fig. 4).

With this moving farther apart of the nearest neighbors from
the reference atom, the local stabilizing energy felt by the atoms
decreases due to a smaller overlap of the repulsive interatomic
interactions by AE. At the onset of the glass transition, the sta-
bilizing effect of the atomic cage breaks down, which ultimately
leads to the vanishing of the zero-frequency shear modulus at 7.
It is the steepness of the repulsive pseudopotential which con-
trols how rapidly or abruptly the stabilizing energy decreases as
the temperature is increased. For an alloy whose constituents
exhibit a steeper interatomic repulsion, this process of destabi-
lization will be more abrupt, resulting in a faster variation of the
shear modulus and viscosity with 7" and, correspondingly, to a
more fragile glass.
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We also show that the steepness of the interatomic repulsion
for various metallic alloys can be mapped one-to-one onto a
pseudopotential with two contributions. The overall softness of
the pseudopotential is mainly controlled by Born-Mayer repul-
sion stemming from the overlap of valence shell electrons. A
direct relation of linear proportionality between the fragility in-
dex m and the Born—-Mayer energy B is obtained from the fitting
to experimental data. Lower values of B may correlate with
mixtures of elements having outer electrons in d-shells, as is the
case of Cu in Zr-Cu alloys, or with the concentration of metalloid
in metal-metalloid mixtures. Systematic studies in the future
using ab initio simulations may shed light on the link with the
detailed electronic structure.

Furthermore, we connect the characteristic atomic volume V,
with the size of STZs. In this regard, STZs appear to be regions
in the amorphous solid with a relatively low average atomic
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connectivity Z. These regions are prone to elastic stress accumu-
lation, leading to an increase in individual shoving events, which
eventually results in macroscopic plasticity.

Although there exists a clear linear relation between the fra-
gility and the repulsive steepness 4, the correlation between the
size of a STZ and the fragility exhibits no simple form and remains
to be understood in future investigations. We believe that the
present framework may open up the possibility, in future work,
of a priori designing metallic glasses with tailored rheological
and mechanical properties (e.g., plasticity and ductility) (38) based
on the alloy elemental composition.
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