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Thus far, genome-wide association studies (GWAS) have been dis-
appointing in the inability of investigators to use the results of
identified, statistically significant variants in complex diseases to
make predictions useful for personalized medicine. Why are sig-
nificant variables not leading to good prediction of outcomes? We
point out that this problem is prevalent in simple as well as com-
plex data, in the sciences as well as the social sciences. We offer a
brief explanation and some statistical insights on why higher sig-
nificance cannot automatically imply stronger predictivity and il-
lustrate through simulations and a real breast cancer example. We
also demonstrate that highly predictive variables do not necessar-
ily appear as highly significant, thus evading the researcher using
significance-based methods. We point out that what makes vari-
ables good for prediction versus significance depends on different
properties of the underlying distributions. If prediction is the goal,
we must lay aside significance as the only selection standard. We
suggest that progress in prediction requires efforts toward a new
research agenda of searching for a novel criterion to retrieve highly
predictive variables rather than highly significant variables. We offer
an alternative approach that was not designed for significance, the
partition retention method, which was very effective predicting on a
long-studied breast cancer data set, by reducing the classification
error rate from 30% to 8%.

statistical significance | prediction | high-dimensional data |
variable selection classification

An early 2013 Nature Genetics article (1), “Predicting the
influence of common variants,” identified prediction as

an important goal for current genome-wide association studies
(GWAS). However, a puzzle that has recently arisen in the
GWAS-related literature is that an increase in newly identified
variants (variables) does not necessarily seem to lead to improve-
ments in current predictive models. Although intuitively it would
seem that the addition of information (more statistically signifi-
cant variants) should increase predictive powers, in recent models
of prediction the power is not increased when adding more signif-
icant variants to classical significance test-based approaches (2–5).
[We refer to “statistically significant” variables throughout this
paper as simply “significant.”]
A typical GWAS study collects data on a sample of subjects:

cases, who have a disease, and controls, who are disease-free.
A very large list of single-nucleotide polymorphisms (SNPs) is
evaluated for each individual where each SNP corresponds to a
given locus on the genome, and can take on the value 0, 1, or 2
depending on how many copies of the “minor” allele show up.
The SNPs are distributed over the whole genome. Typically the
researcher wants to select a subgroup of the SNPs that is associated
with the disease, so that she can study how the disease works. She
may also be interested in predicting whether a new individual has
the disease by analyzing the individual’s selected SNPs.
Whether or not an individual has the disease is regarded as the

dependent variable. [Here we focus on discrete outcomes, as is
common in GWAS studies that are case-control.] The SNP val-
ues are the explanatory variables. In a typical study there may be
several thousand subjects and hundreds of thousands of SNPs.

From the scientist’s point of view there are two basic problems,
complicated by the large size of the data set. These are variable
selection and prediction. For variable selection, we wish to find a
relatively small set of SNPs associated with the disease. For pre-
diction we wish to find how a small set of such variables can be used
to predict whether the subject has the disease. The size of the data
set is such that the typical approach to variable selection has been
to see how well correlated each SNP value is with the disease, and
to keep only those for which the statistical significance was very
high. Only recently has there been serious consideration of the
possible interactions among two or more SNPs by some in-
vestigators. The prediction problem has typically been approached
by using some variation of linear regression based on the limited
number of SNPs from the variable selection stage.
If predictivity is measured by how well the method works on

the (training) data used to derive the predictions, we are almost
bound to get overoptimistic results. Methods of cross-validation
will result in more accurate estimates. Alternatively one may use
a separate test sample, independent of the data used to produce
the prediction model. Much of our discussion is also relevant to
large data sets in other fields of study. Indeed, this problem is not
unique to genetic data; we find cases of similar problems in the
social sciences. For instance, significant explanatory variables for
civil wars serve nearly negligible input for predicting civil wars
(6). Likewise, variables found to be significant for fluctuations
in the stock market index carry no predictive power (7). This
phenomenon is pervasive across different types of data as well as
different sample sizes. Thus, the goal of this paper is to offer
theoretical insight and illuminating examples to demonstrate
precisely how finding highly significant variables is different from
finding highly predictive ones—regardless of data type. For
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illustrative purposes however, we use the lens of prediction for
genetic data throughout.
One might ask why one method of variable selection that

works perfectly well for a significance-based research question
might not work so well for a classification-based research ques-
tion. Fundamentally, the main difference is that what constitutes
a good variable for classification and what constitutes a good
variable for significance depend on different properties of the
underlying distributions. The test for significance is a test of the
null hypothesis that the distributions of X under the two states
are the same, whereas the classification error is a test of whether
X belongs to one state or the other. Different properties of the
distributions are involved. The tests used also may or may not be
efficient. In fact, significance was not originally designed for the
purposes of prediction.
Some might also comment that perhaps it is clear and intuitive

why it is that some significant variables do not appear as highly
predictive. After all, variables may be significantly associated
with the outcome simply for a small group of individuals in the
population, thereby leading to poor prediction on the population.
This is true to an extent. However, there is still a fair amount of
research using significant variables to predict, perhaps because of a
lack of obvious alternative options for variable selection. For in-
stance, currently, prediction-oriented GWAS research uses genetic
variants for constructing additive prediction models for estimating
disease risk. A recent New England Journal of Medicine article il-
lustrates one example of such an approach, whereby researchers
constructed a model based on five genetic variants from GWAS
results on prostate cancer; the researchers report that the variants
do not increase predictive power (8). Likewise, Gränsbo et al. show
that chromosome 9p21, although significantly associated with car-
diovascular disease, does not improve risk prediction (9).
In addition, whereas the intuition behind significant variables

not appearing predictive might be reasonably obvious, the fact
that highly predictive variables do not appear necessarily as highly
significant is perhaps less so. We discuss and then demonstrate this
phenomenon with both a theoretical explanation and a series of
examples. Finally, whereas superficially we might reason that in-
deed, significance cannot be the same as predictivity, why this is
precisely so and what makes for their differences is also not quite
so obvious.
With this in mind, we provide a short theoretical explanation

for the differences between highly significant and highly pre-
dictive variables. We then demonstrate, with a series of artificial
examples of increasing relevance, how and why seeking signifi-
cance and prediction can lead to very different decisions in variable
selection. These examples are artificial, partly because they assume
that the underlying probabilities are known, whereas the scientist
can only infer these from the data. In these examples we compare
significance and prediction, and show how the relatively simple I
score, defined in Materials and Methods, which we have used in our
partition retention (PR) approach to variable selection (10–13),
seems to correlate well with predictivity. We offer the I score as one
possible useful tool in the study of increasing predictivity. We show
a highly successful real application of the PR approach for in-
creasing predictivity in the analysis of a longstanding data set on
breast cancer, for which we show some results. Finally, some
conclusions are offered to aid in the study of improving predictivity
in GWAS research.
There is a long-established literature in statistics on classifi-

cation with major applications to biology. In recent years the
fields of pattern recognition, machine learning, and computer sci-
ence became heavily involved, often with different terminology and
new ideas adapted to the increasing size of the relevant data sets. In
the Supporting Information, we present a very brief description of
some of the techniques, approaches, and terminology.

Highly Significant vs. Highly Predictive Variables
Data has substantially grown in recent years with both expo-
nential increases in the number of variables and, in many cases,
increases in sample sizes as well. This has served as stimulation
for a large number of applications via the novel retooling of well-
known concepts. Two popular concepts, statistical significance
and prediction (including classification), serve as the focus of this
article. Historically, significance has played a larger role in sta-
tistical inference whereas prediction has served more in identifying
future data behavior. The retooling of significance has found a role
in data dimension reduction for prediction, that of guiding the
feature selection/variable selection step (14). We evaluate this
retooling and consider how significance and predictivity are re-
lated in the goal of good prediction.
We have mentioned that a key difference between what makes

a variable highly significant versus highly predictive lies in dif-
ferent properties of their underlying distributions. We elaborate
on this point a bit more here.
Suppose a statistician is given a variable set denoted by X. It is

assumed that among control observations X follows a distribu-
tion fH and among cases X follows a distribution fD. The statis-
tician wishes to test the null hypothesis H0 that fD = fH against the
alternative hypothesis Ha that fD ≠ fH, where fD is not specified,
using observed data, and assess the statistical significance of the
observed data with respect to the null hypothesis. He also wishes
to evaluate how strong a predictor based on this variable set could
be in predicting the case/control label of future data. Particularly, in
a case-control study, he is interested in whether case samples (from
fD) are significantly differently from control samples (from fH).
To carry out a test between H0 and Ha based on variable set x,

the statistician chooses a test statistic Tn and, based on the ob-
served values x of X for the n cases and n controls, calculates
tn =TnðxÞ. Then one can claim that fH and fD are significantly
different if the probability PðTn ≥ tnÞjH0Þ, which we call the P
value, is sufficiently small.
To decide whether x, the observed value of X for a single in-

dividual, comes from the distribution fD or from fH, when the
costs of false positives and false negatives are equal and both possi-
bilities are equally likely, the appropriate Bayes decision rule is to
decide in favor of the larger of fDðxÞ and fHðxÞ. Then the corre-
sponding error rates are

P
x : fDðxÞ<fH ðxÞfDðxÞ and

P
x : fDðxÞ≥fH ðxÞfHðxÞ.

The average of these two is 0.5
P

xminðfDðxÞ, fHðxÞÞ which, to-
gether with 0.5

P
xmaxðfDðxÞ, fHðxÞÞ, add to 1. [We note that the

prediction rate can be seen as equal to 1 minus the average error
rate. For continuous distributions, Eq. 1 would be written with
integrals rather than summations.] Thus, we may write

prediction  rate= 0.5
X

x

maxðfDðxÞ, fHðxÞÞ. [1]

Here x represents the possibly multivariate observation that can
assume a finite number of values; fD and fH are its probability
distributions, under case and control, respectively. Eq. 1 defined
above requires the knowledge of the true probability distribu-
tions, whereas, in practice, the statistician can only infer such
knowledge from the data.
The key difference between finding a subset of variables to be

highly significant versus finding it to be highly predictive is that
the former uses assumptions on, but no knowledge of, the exact
distributions of the variables, whereas the latter, as shown in Eq. 1,
requires knowledge of both fD and fH.
Should the statistician still wish to pursue the significance

route to identify variables that are highly predictive, he might
wish to compare two subsets of explanatory variables, x and x′,
for their usefulness in the prediction problem. Here x′ has dis-
tributions f ′D and f ′H. It is a current practice to carry out the
comparison by testing the null hypotheses fH = fD and f ′H = f ′D and
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seeing which has a smaller P value. Because of his limited
knowledge on the underlying distributions he is restricted to use
tests that are not necessarily powerful enough. Often he is reduced
to using a χ2 technique, recommended, for example, in the studies
of complex diseases, which is not very powerful for the multiple
variable cases. The suboptimality of the test procedure makes the
significance level an unreliable basis for comparing subsets of var-
iables and for the usefulness in prediction. It is no surprise that
searching for variables based on significance level and based on
correct prediction rate can lead us in conflicting directions.
The statistician’s P value for the test is a random variable and

here we have assigned the significance value to be the median of
the P values, which we may calculate, knowing the probability
distributions. The statistician sees only the P value. To make his
prediction using x, in the case of equal sample sizes and equal
costs of error, he can select for each observed value x, either D or
H depending on whether there are more cases or controls in his
samples corresponding to x. A naive estimate of the correct
prediction rate, the training prediction rate, is obtained by simply
using this method on the observed samples. It tends to be
overoptimistic. Many sampling properties, such as the signifi-
cance, the expected training prediction rate, and the median of
the I score, can often be calculated conveniently by simulation.
Our next section uses artificial examples to illustrate how highly

significant variables and highly predictive variables might differ.

Three Examples
Although we are concerned with large data, our first few examples
use only a few observations to cleanly illustrate the issues. The three
examples are followed by comparisons, based on a set of 546 more
relevant and related examples, each involving 6 SNPs and many
observations as summarized as example 4. These examples will
show how and why significance and predictivity can differ and that
the I score can serve as a useful sign of predictivity. They also show
that the problems we run into in prioritizing significance instead of
predictivity in our variable selection stage can grow with the com-
plexity of the data. The comparisons in the last example require
many simulations and are meant to demonstrate a complicated data
scenario, more akin to a GWAS.

Example 1. For example 1, there is a single observation X, the
distribution of which is normal with mean 0 and SD 1 under a
hypothesis H, which can be thought of as health. But, there is an
alternative hypothesis K, under which X has a normal distribu-
tion with mean 3 and SD 3. We wish to use X to determine
whether H or K is the correct hypothesis. Our problem can be
thought of as predicting or classifying the state of an individual
yielding the observation X. It is a standard problem of testing the
hypothesis H and we may regard large values of X as favoring K
and suggesting rejection of H.
Statistical theory tells us that the optimal test of H consists of

rejecting H when the likelihood ratio is large. For any choice c of

what constitutes large enough, we have two error probabilities,
eðc,HÞ and eðc,KÞ, which are the probabilities of making the
wrong decision under H and K, respectively. Notice that if c in-
creases it becomes harder to reject H and eðc,HÞ decreases while
eðc,KÞ increases. It is possible to calculate the value of c which
minimizes the average of eðc,HÞ and eðc,KÞ and to call this minimal
value eX, the minimal average error probability associated with X.
For this problem a plausible, if slightly suboptimal, test is to

reject H when X is sufficiently large. For each possible value x of
X, there is a probability aðxÞ, under H, that X will be as large as x
or larger. Then aðXÞ is called the P value when X is observed.
Before observing X, we know that X and the P value are random
variables. Under H, aðXÞ is uniformly distributed between 0 and
1, but under K, aðXÞ will have a different distribution. If X is very
good at discriminating between H and K, aðXÞ should be very
small with large probability under K. We label the median value
of aðXÞ under K as the significance sX associated with X. In this
case eX = 0.174 and sX = 0.0014. Note that eX is an optimal error
rate, but we calculated sX based on a suboptimal test that a re-
searcher, not knowing the underlying probability distributions,
could reasonably have decided to use. In that sense the signifi-
cance was treated unfairly (Fig. 1). Note also that predictivity,
measured by 1− eX, is associated with a test of the hypothesis H
against the alternative K, and is related to the classification
problem of deciding which of several (in this case two) situations
applies. Thus, prediction, classification, and hypothesis testing
are different names for the same problem.
Now suppose that there is another variable Y which is also

normally distributed with mean 0 and SD 1 under H, but normally
distributed with mean 0 and SD 0.05 under K. Here we calculate
eY = 0.06 and if we insist on using the silly test of rejectingH when Y
is large, we obtain sY = 0.5. (Surprisingly, in this strange case a
much better test would consist of rejecting H when the absolute
value of Y is too small.) Forgetting for the moment how silly the test
is, let us consider the dilemma of the scientist who must decide,
based on these numbers, whether to observe X or Y. He prefers Y if
he decides on the basis of error rate or predictivity and X if the
decision is based on significance. We refer to this situation where
the preferred choice between X and Y depends on the use of sig-
nificance or predictivity as a reversal.
There are several explanations for the reversal. One is that

there was some arbitrariness in our choices of measures of pre-
dictability and significance (measures eX and sX). Another is that
even though the two choices are aimed at measuring the force of
inference, they depend on different properties of the probability
distributions involved. Another important point is that because
we know the probability distributions in this admittedly artificial
example, we used that knowledge to calculate the ideal average
error probabilities. On the other hand we did not use the optimal
test procedure based on the likelihood ratio for calculating the
significance. This may be important because for real data sets we
have to use the data to calculate significance levels and predictability.

Fig. 1. Simple example of reversals.
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Our estimates may depend as much on the limited capability of our
methods of analysis as on the unknown probabilities.
The following two examples, illustrated in Fig. 2, are more

relevant and show the same sort of reversal under considerably
more reasonable circumstances. They are also more conven-
tional examples of obtaining significance for the test of a null
hypothesis.

Example 2. In example 2 the outcome variable is case or control
status. The explanatory variable X is the reading on one SNP for
each of 500 cases and 500 controls, for which the probabilities
under cases and controls are listed in the blue table in Fig. 2. In
this case the minor allele frequency (MAF) is 0.5 and the odds
ratio is close to 1 for each of the three possible observations 0, 1,
and 2. For Y, based on the other SNP described in the red table
in Fig. 2, the MAF is between 0.1 and 0.2 depending on what
proportion of the population is healthy. For Y, the odds ratio
varies from 4 to 1. In this example we have eX = 0.476 (prediction
rate = 0.524) and eY = 0.485 (prediction rate = 0.515). We calcu-
late the significance level using the standard χ2 test for the null
hypothesis that the two distributions for case and control are the
same. This yields sX = 0.06 and sY = 0.0035. Once more we have a
reversal because the smaller average error rate is not accompanied
by the smaller median P value. The figure also lists the median
I score for both X and Y, which favors X as does the prediction rate.

Example 3. Example 3 is also presented in Fig. 2. Here the vari-
able X in the blue table consists of the outcome of two SNPs
(two-way interaction effect). This outcome can fall in one of the
9= 32 cells ð0,0Þ, ð0,1Þ, . . . , ð2,2Þ. Again there is a reversal and
the median I score favors X as opposed to Y (in the red table) as
does the prediction rate. Whereas the prediction rates are com-
parable, the median P values are wildly different. Note in both plots
of distributions of the predictive variable sets (predictive VS) and
significant variable sets (significant VS) in examples 1 and 2, there
is overlapping between variable sets but large portions of predictive
variable sets are not significant and vice versa. In addition, in both
examples the I score follows the preferred prediction rate and not
the significance (median P values).

Comparing Significance Tests with the I Score
Before drawing conclusions from the three examples, we present
a more complex data simulation for example 4, which consists of
a comparison of 546 related, more relevant cases with large
numbers of subjects.
In these cases we deal with six independent but similar SNPs

(encapsulating six-way interaction effects), and the observation
for a given subject falls into one of 36 = 729= cells. The 546
levels of disease are controlled by 26 MAFs and 21 odds ratios
(ORs). The results in Fig. 3 present truth, training prediction
rate, and significance. Truth is the ideal prediction rate given the
MAF and OR. The training prediction rate is the overoptimistic
rate based on deciding according to the observed number of
cases and controls in each of the 729 cells. The significance level
depends on the use of the χ2 test. The latter two are medians of
measures based on observed data and their calculation requires
extensive simulations. The graphs show how poorly these cor-
relate with truth until the number of subjects becomes very large.
Whereas the I score and its median are also based on the data,
Fig. 4 shows that it is very well correlated with the truth for
modest sample sizes; at large sample sizes I is still better corre-
lated with truth than are the training prediction rate and χ2 test.

Applying the I Score to Real Breast Cancer Data
To reinforce the previous section we turn to a brief examination
of real disease data. As noted before, our research team has
made heavy use of the I measure in a variable selection method
called “partition retention.” This method, applied to real disease
data, has not only been quite successful in finding possibly
interacting influential variable sets but has also resulted in var-
iable sets that are very predictive and do not necessarily show up
as significant through traditional significance testing (10, 15, 16).
Here “predictive” refers to both high in I score as well as having
high correct prediction rates as determined by k-fold cross-vali-
dation. We present examples of some discovered variable sets
found to be highly predictive for a real data set on breast cancer
(17) that are not highly significant. When using these newly
found variable sets, the team was able to reduce the error rate on
prediction from the literature standard of 30% to 8%. These
results are found from the analysis and data used in ref. 15.

Fig. 2. Reversals of predictive and significant vari-
able sets in SNP examples. Example 2 has one ex-
planatory variable (1 SNP) for which the probabilities
under cases and controls are listed in the tables. Ex-
ample 3 has two explanatory variables (2 SNPs) for
which the probabilities under cases and controls are
listed in the tables. Left-hand-side tables (in blue) are
for more predictive variable sets, whereas right-hand-
side tables (in red) are for more significant variable
sets. The prediction rate (proportion of correct
predictions) of each variable set (of size 1 or 2) can
be directly computed using the genotype frequen-
cies specified. Using sample sizes of 500 cases and
500 controls, we simulate B= 1,000 random case-
control data sets by simulating genotype counts
among cases and controls using the genotype fre-
quencies specified. I score and the χ2 test statistic
were computed for each simulated data set. Simulation
details can be found in the Supporting Information.
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In Table 1 we investigate the top five-variable module (subset
of interacting variables) in the breast cancer data found to be
predictive through both top I score and performance in prediction
in cross-validation and an independent testing set in ref. 15. To find

how significant these variables are, we calculate the individual,
marginal association of each variable in the marginal P value. When
testing 1,000 variables having no effect, it is likely that some will
have P values of around 0.001. Here, we have 4,918 variables and

A B

C

Fig. 3. Disconnect between true prediction power of a variable set and its empirical training set prediction rate and test-based significance. We use 546
variable sets of 6 SNPs with varying levels of disease information (both MAFs and ORs). This results in a partition of 729 cells, each corresponding to a ge-
notype combination on the 6 SNPs represented by this variable set. Three levels of sample size are considered, 500 cases and 500 controls, 1,000 cases and
1,000 controls, and 1,500 cases and 1,500 controls. For each variable set, the theoretical Bayes rate is computed based on the population frequencies and odds
ratios. Two thousand independent simulations under each variable sets—given a sample size specification—were used to evaluate the average training
prediction error, P value from the χ2 test, and the I-score prediction rate. A depicts the true prediction rate for each of the 546 variable sets for the varying OR
and MAF levels. B shows the corresponding training prediction rate as the sample size increases from 500 cases and 500 controls up to 1,500 cases and 1,500
controls. C depicts the corresponding χ2 test P value for each of the variable sets across the three sample sizes. Simulation details can be found in the
Supporting Information.

Fig. 4. Proposed estimated prediction rate based on I scores correlates well with the truth.
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therefore desire a P value of 7  ×   10−5, the familywise threshold, to
announce significance. None of these variables show up as statis-
tically significant. Measuring the joint influence of all five variables
does not have a P value that is significant either.

Comments and Conclusion
In our exposition of the differences between highly predictive
versus highly significant variable sets, we use artificial examples.
We need to know the true relevant underlying probability dis-
tributions to treat the problem as one of testing a simple hy-
pothesis against a known alternative for which statistical theory
can calculate optimal tests and predictive rates. Our four simulated
examples can demonstrate with clarity the reversals we see in
choosing significant versus predictive variable sets. Real examples
are more difficult because the researcher must rely on a limited
number of individuals to infer the relevant distributions and the
number of possible variables is huge. However, to demonstrate the
potential usefulness of our proposed measure, we additionally pro-
vided the highly promising results of applying the I score to the real
and well-known van’t Veer breast cancer data set (ccb.nki.nl/data/).
One may wonder whether the shortcoming of using signifi-

cance is due to the custom of using marginal significance and not
taking into account the possible interaction effects of groups of
variables. In our examples the problem of reversals seems to
increase when using significance-based measures on routine tests
when dealing with groups of interacting variables. In example 4,
six-way interactions are considered and traditional significance
approaches do not capture predictive variable sets. However,
using the PR approach based on the measure I for the variable
selection stage does well for prediction. Finally, even when we
can capture joint effects that are highly predictive, as in the case
of the captured variable sets in the van’t Veer example, these
groups of variables were not significant. Seeking highly pre-
dictive groups of variables through significance alone would not
have retrieved these variable sets.
If that is the case, how did we manage to get good results in

the breast cancer problem? We used the PR approach, relying

heavily on the I score for the variable selection aspect. For
reasons we only partly understand, the I score seems to correlate
well with predictivity. Having selected the relatively small num-
ber of candidate “influential” variables, an intensive use of a
variety of known techniques in classification was applied. These
were more sophisticated than simple linear regressions.
The issue of obtaining high predictivity from large data de-

mands study. We encourage exploration away from significance-
based methodologies and toward prediction-oriented ones. We
propose the I score and the PR method of variable selection as
candidate tools for the latter.

Materials and Methods
The PR approach to variable selection depends heavily on the I score applied to
small groups of explanatory variables. Suppose we have n observations on a
disease phenotype Y. When dealing with a small group of m SNPs, each indi-
vidual is represented by a value Y of the dependent variable and one ofm1 = 3m

possible cells into which the m variables fall. Then the value of I is given by

I=
Xm1

j=1

nj

n

�
Yj −Y

�2

s2
�
nj

=

P
​ m1
j=1n

2
j

�
Yj −Y

�2
P

​ n
i=1

�
Yi −Y

�2 ,

where Yi corresponds to the ith individual, Y is the mean of all n Y values, s is
the SD of all n Y values, Yj is the mean of the Y values in cell j, nj is the number
of individuals in cell j, and n is the total number of individuals. The measure I is a
statistic which may be calculated from the observed data, and does not involve
knowing the underlying distributions, as did truth in example 4.

The I score has several desirable properties. First it does not require
specification of a model for the joint effect of them SNPs on Y. It is designed
to capture the discrepancy between the conditional means of Y given the
values of the SNPs and the overall mean of Y. Unlike ORs as a measure of
effect in assessing simple 2×2 tables, I captures and aggregates all dis-
crepancy (signals) from all m1 cells and forms a flexible measure. It can be
used as a measure to assess joint influence or effect sizes, and, importantly,
is well-correlated with predictivity.

Second, under the null hypothesis that the subset has no effect on Y, the
expected value of I remains nonincreasing when dropping variables from
the subset. In other words, the I score is robust to changes to the number of
SNPs, m. And, I has the property that adjoining to the group another vari-
able which is independent of Y will tend to decrease I; the PR method is
based on selecting a group at random and sequentially eliminating those
variables which diminish I the most, and retaining those for which I can no
longer be diminished. Those variables, that are retained most often from
many randomly chosen groups are candidates for variable selection. The fact
that I does not automatically increase as more variables are added to the
group being measured is a good property of the I score.

Finally, under the null hypothesis of no effect I acts like a weighted av-
erage of independent χ2s with one degree of freedom. Therefore, I values
substantially larger than 1 are worth noting.
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Table 1. Real breast cancer example: Five genes in the top
returned predictive variable set from van’t Veer data

Systematic name Gene name Marginal P value

Contig45347_RC KIAA1683 0.008
NM_005145 GNG7 0.54
Z34893 ICAP-1A 0.15
NM_006121 KRT1 0.9
NM_004701 CCNB2 0.003

Joint I score: 2.89; joint P value: 0.005; familywise threshold: 6.98× 10−5.
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