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Grounding autonomous behavior in the nervous system is a
fundamental challenge for neuroscience. In particular, self-orga-
nized behavioral development provides more questions than
answers. Are there special functional units for curiosity, motiva-
tion, and creativity? This paper argues that these features can
be grounded in synaptic plasticity itself, without requiring any
higher-level constructs. We propose differential extrinsic plasticity
(DEP) as a new synaptic rule for self-learning systems and apply it
to a number of complex robotic systems as a test case. Without
specifying any purpose or goal, seemingly purposeful and adap-
tive rhythmic behavior is developed, displaying a certain level of
sensorimotor intelligence. These surprising results require no system-
specific modifications of the DEP rule. They rather arise from the un-
derlyingmechanism of spontaneous symmetry breaking, which is due
to the tight brain body environment coupling. The new synaptic rule
is biologically plausible and would be an interesting target for
neurobiological investigation. We also argue that this neuronal
mechanism may have been a catalyst in natural evolution.

neural plasticity | development | robotics | sensorimotor intelligence |
self-organization

Research in neuroscience produces an understanding of the
brain on many different levels. At the smallest scale, there is

enormous progress in understanding mechanisms of neural signal
transmission and processing (1–4). At the other end, neuroimaging
and related techniques enable the creation of a global under-
standing of the brain’s functional organization (5, 6). However, a
gap remains in binding these results together, which leaves open
the question of how all these complex mechanisms interact (7–9).
This paper advocates for the role of self-organization in bridging
this gap. We focus on the functionality of neural circuits acquired
during individual development by processes of self-organization—
making complex global behavior emerge from simple local rules.
Donald Hebb’s formula “cells that fire together wire together”

(10) may be seen as an early example of such a simple local rule
which has proven successful in building associative memories and
perceptual functions (11, 12). However, Hebb’s law and its suc-
cessors like BCM (13) and STDP (14, 15) are restricted to sce-
narios where the learning is driven passively by an externally
generated data stream. However, from the perspective of an
autonomous agent, sensory input is mainly determined by its own
actions. The challenge of behavioral self-organization requires a
new kind of learning that bootstraps novel behavior out of the
self-generated past experiences.
This paper introduces a rule which may be expressed as

“chaining together what changes together.” This rule takes into
account temporal structure and establishes contact to the external
world by directly relating the behavioral level to the synaptic dy-
namics. These features together provide a mechanism for boot-
strapping behavioral patterns from scratch.
This synaptic mechanism is neurobiologically plausible and

raises the question of whether it is present in living beings. This
paper aims to encourage such initiatives by using bioinspired
robots as a methodological tool. Admittedly, there is a large gap
between biological beings and such robots. However, in the last

decade, robotics has seen a change of paradigm from classical AI
thinking to embodied AI (16, 17) which recognizes the role of
embedding the specific body in its environment. This has moved
robotics closer to biological systems and supports their use as a
testbed for neuroscientific hypotheses (18, 19).
We deepen this argument by presenting concrete results

showing that the proposed synaptic plasticity rule generates a
large number of phenomena which are important for neurosci-
ence. We show that up to the level of sensorimotor contingencies,
self-determined behavioral development can be grounded in syn-
aptic dynamics, without having to postulate higher-level constructs
such as intrinsic motivation, curiosity, or a specific reward system.
This is achieved with a very simple neuronal control structure by
outsourcing much of the complexity to the embodiment [the idea
of morphological computation (20, 21)].
The paper includes supporting information containing movie

clips and technical detail. We recommend starting with Movie
S1, which provides a brief overview.

Grounding Behavior in Synaptic Plasticity
We consider generic robotic systems, a humanoid and a hexapod
robot, in physically realistic simulations using LpzRobots (22).
These robots are mechanical systems of rigid body primitives
linked by joints. With each joint i, there is an angular motor for
realizing the new joint angles yi as proposed by the controller
network, and there is a sensor measuring the true joint angle xi
(like muscle spindles). The implementation of the motors is
similar to muscle/tendon-driven systems by being compliant to
external forces.
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Controller Network. One theme of our work is structural simplic-
ity, building on the paradigm that complex behavior may emerge
from the interaction of a simple neural circuitry with the complex
external world. Specifically, the controller is a network of rate-coded
neurons transforming sensor values x= ðx1, x2, . . . , xnÞ into motor
commands y= ðy1, y2, . . . , ymÞ. In the application, a one-layer feed-
forward network is used, described as

yi = g

 Xn
j=1

Cijxj + hi

!
[1]

for neuron i, where Cij is the synaptic weight for input j, and hi is
the threshold. We use tanh neurons, i.e., the activation function
gðzÞ= tanhðzÞ to get motor commands between +1 and −1. This
type of neuron is chosen for simplicity, but our approach can be
translated into a neurobiologically more realistic setting. The
setup is displayed in Fig. 1.
This controller network may appear utterly oversimplified.

Commonly, and in particular in classical artificial intelligence, a
certain behavior is seen as the execution of a plan devised by the
brain. This would require a highly organized internal brain dy-
namics, which could never be realized by the simple one-layer
network. However, in this paper, behavior is an emerging mode
in the dynamical system formed by brain, body, and environment
(16). As we demonstrate here, by the new synaptic rule, the
above simple feed-forward network can generate a large variety
of motion patterns in complex dynamical systems.

Synaptic Plasticity Rule. When learning the controller [1] with a
Hebbian law, the rate of change _Cij of synapse Cij would be
proportional to the input xj into the synapse of neuron i multi-
plied by its activation yi, i.e., _Cij ∝ yixj. However, in concrete
settings, this rule produces typically fixed-point behaviors. It was
suggested earlier (23–25) that time can come into play in a more
fundamental way if the so-called differential Hebbian learning
(DHL) is used, i.e., replacing the neuronal activities by their
rates of change, so that _Cij ∝ _yi _xj (the derivative of x w.r.t. time is
denoted as _x). This rule focuses on the dynamics because there is
only a change in behavior if the system is active. As demonstrated in
Methods, this may produce interesting behaviors, but in general, it
lacks the drive for exploration that is vital for a developing system.
The main reason for the lack in behavioral richness is seen in

the product structure of both learning rules which involves the
motor commands y generated by the neurons themselves. Trivi-
ally, once y= 0, learning and any change in behavior stop alto-
gether. Now, the idea is to lift this correlative structure entirely

to the level of the outside world, enriching learning by the re-
actions of the physical system to the controls.
Let us assume the robot has a basic understanding of the

causal relations between actions and sensor values. In our ap-
proach, this is realized by an inverse model which approximately
relates the current sensor values x′ back to its causes, the motor
commands y having a certain time lag w.r.t. x′. The model will
reconstruct (the efference copy) y with a certain mismatch δy.
Formulated in terms of the rates of change, we write

_y+ δ _y=Fð _x′Þ, [2]

with F being the model function and δ _y being the modeling error,
containing all effects that cannot be captured by the model.
The aim of our approach is to make the system sensitive to

these effects. This is achieved by replacing _y of the DHL rule withe_y= _y+ δ _y, so that

τ _Cij =e_yi _xj −Cij, [3]

where τ is the time scale for this synaptic dynamics and −Cij is a
damping term (Fig. 1). Because of the normalization introduced
below, we do not need an additional scaling factor for the decay
time. In principle, the inverse model F relates the changes in
sensor values caused by the robot’s behavior back to the control-
ler output, and the learning rule extends this chain further down
to the synaptic weights. This is the decisive step in the “chaining
together what changes together” paradigm. The δ _y in e_y contains
all physical effects that are extrinsic to the system because they
are not captured by the model. They are decisive for exploring the
behavioral capabilities of the system. This is why we call the new
mechanism defined by Eq. 3 differential extrinsic plasticity (DEP).
Optionally, the threshold terms hi [1] can also be given a dy-

namics which we simply define as

τh _hi =−yi, [4]

where τh defines an empirical time scale. The idea is to drive the
neurons away from their saturation regions (close to y=±1). As
the experiments will demonstrate, using the threshold dynamics
favors periodic motion patterns. This is because the dynamics of
hi causes a self-switching hysteresis oscillation (26), understood
by considering that yi = 0 is an unstable fixed point and hi is
driven to the opposite sign of yi and acting in Eq. 1 to actually
invert the sign of yi. So τh prescribes the mean frequency of the
oscillations without environmental influences; however, the real

Fig. 1. (Left) Controller network connected to the humanoid robot. The proposed differential extrinsic plasticity (DEP) rule is illustrated on the Right. In
addition to the homosynaptic term _y of plain differential Hebbian learning, the DEP [3] has the exafferent signal δ _y generated by the inverse model F (Eq. 2)
that may be integrated by a heterosynaptic mechanism. In the simplest case, e.g., with the humanoid robot, the inverse model F is a one-to-one mapping of
sensor to motor values.
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frequency may be highly different. A precise tuning is not
required.
In this framework the task of the inverse model is to root back

(mostly small) changes in sensor values, given by _x′, to their
causes, the changes in motor values given by _y. Thus, a very
simple linear model is sufficient, i.e., Fð _x′Þ=M _x′, where M is a
weight matrix. The robots treated in this paper have only pro-
prioceptive sensors directly reporting the result of the motor
action, so each x′i is only effected by yi, such that we can fix M = I

in all experiments of the present paper in the cases of both the
humanoid robot and the hexapod robot. The extension of this
basic setting to include delay sensors and other sensors will be
discussed below. The approach also works with a learned inverse
model from a motor babbling step as shown inMethods where we
also discuss how it can be learned online.
To make the whole system active and exploratory, we in-

troduce an appropriate normalization of the synaptic weights C
and an empirical gain factor κ∼ 1. The latter regulates the
overall feedback strength in the sensorimotor loop. If chosen in
the right range, the extrinsic perturbations are amplified, and
active behavior can be maintained; see Methods for details. This
specific regime, called the edge of chaos, is argued to be a vital
characteristic of life and development (27–29). The normaliza-
tion is supported by neurophysiological findings on synaptic
normalization (30) such as homeostatic synaptic plasticity (31)
and the balanced state hypothesis (32, 33).
Whereas κ is seen to regulate the overall activity, τ is found to

regulate the degree of exploration. As described in Methods, the
system realizes a search and converge strategy, wandering between
metastable attractors (such as walking patterns) with possibly very
long transients. The time spent in an attractor (a certain motion
pattern) is regulated by τ. At the behavioral level, this is reflected by
the emergence of a great variety of spatiotemporal patterns—the
global order obtained from the simple local rules given by Eqs. 3
and 4. The exploration timescale may also be changed online (e.g.,
interactively or by a higher level of learning) to freeze or tune into a
behavior (low values) or to leave the current behavior (high values),
but it was kept constant during the experiments reported here.

Behavior as Broken Symmetries. To understand how very specific
behaviors can emerge from the generic synaptic mechanism, we
have to consider the role of symmetries. For a discussion, let us
consider the system in what we call its least biased initialization,
i.e., putting Cij = 0 and hi = 0 so that all actuators are at their
central position. In this situation, the agent obeys a maximum
number of symmetries. These are the obvious geometric sym-
metries but also several dynamical ones originating from the
invariance of the physical system against certain transformations,
like inverting the sign of a joint angle. Technically, the symme-
tries are seen directly by a linear expansion of the system around
the resting situation. As the learning rule does not introduce any
symmetry breaking preferences, motion can set in only by a
spontaneous breaking of the symmetries. In this picture, behav-
ior corresponds to broken symmetry (in space and time) and
development to a sequence of spontaneous symmetry breaking
events. This is the very reason for the rich phenomenology ob-
served in the experiments, explaining the emerging dimension-
ality reduction which makes the approach scalable.
Self-organizing behavior as a result of symmetry breaking was

observed before (34, 35) with precursors of the newly proposed
learning rule. More specifically, related unsupervised learning
rules based on the principle of homeokinesis (26) and the max-
imization of predictive information (36–39) were studied, which,
however, differ in being biologically implausible due to matrix
inversions.

Neurobiological Implementation. To understand how the DEP rule
can be implemented neurobiologically, we note first that x′ is just

the reafference caused by y. Commonly, the contribution in x′
that cannot be accounted for by the (forward) model is called the
exafference. Our extrinsic learning signal δy is the preimage of
this exafference using the forward model. With the inverse
models used here, this preimage can be obtained explicitly by a
simple neural circuitry calculating the difference between the
output of the inverse model Fðx′Þ and the efference copy of y
(Eq. 2). By feeding this signal back to the neuron by an addi-
tional synapse, the output of the neuron is shifted from y to ~y.
With the modified output, the new synaptic rule corresponds
to classical (differential) Hebbian learning. This procedure, al-
though pointing a way to a concrete neurobiological imple-
mentation, is awkward because the additional signal has to be
subtracted again from the neuron output before sending the
latter to the motors.
Another possibility is the inclusion of the extrinsic term by a

heterosynaptic or extrinsic plasticity (40) mechanism as illus-
trated in Fig. 1. The additional input from δy has to simulate the
effect of depolarization (firing) for the otherwise unchanged
synaptic plasticity. This may by accomplished by G protein (41)
signaling or the enhanced/inhibited expression of synapse-asso-
ciated proteins (42), or via other intracellular mechanism.
The neuron model and synaptic dynamics are formulated in

the rate-coding paradigm, abstracting from the details of a spiking
neuron implementation. To represent each rate-neuron in our
framework, a pool of spiking neurons is potentially required.

Results
Through the following series of experiments, we demonstrate the
potential of the new synaptic plasticity for the self-organization
of behavior. Even though no specific goal was given, the emerging
behaviors seem to be purposeful, as if the learning system develops
solutions for different tasks like locomotion, turning a wheel, and
so forth. To avoid setting such a task orientation, we always use
the same neural network (with the appropriate number of motor
neurons and sensor inputs) with the DEP rule of Eq. 3 and start all
experiments in its least biased initialization and without added
noise. However, the dynamics is robust to large noise.

Early Individual Development. In a first set of experiments, we
study the very early stage of individual development when sen-
sorimotor contingencies are being acquired. The common as-
sumption is that sensorimotor coordination is developed by
learning to understand sensor responses caused by spontaneous
muscle contractions (called motor babbling in robotics). How-
ever, this fails by the abundance of sensorimotor contingencies as
may be demonstrated by a coarse assessment for our humanoid
robot. If we postulate that each of the m motor neurons has only
5 different output values (rates) we have 5m possible choices.
Therefore, with m= 18 for the humanoid robot and 50 steps per
second, a motion primitive of 1 s duration has 518

50
realizations.

The number of possible sensor responses is of the same di-
mension. Therefore, there is no way of probing and storing all
sensorimotor contingencies. Alternatively, realizing a search by
randomly choosing the synaptic connections (Cij with normali-
zation, gain, and threshold dynamics) yields another tremendous
number of possible behaviors, even if we restrict ourselves to the
simplified nervous system formulated in Eq. 1.
By contrast, there is no randomness involved in the DEP ap-

proach. Both the physical dynamics and the plasticity rule are
purely deterministic. Nevertheless, at the behavioral level, the
above mentioned “search and converge” strategy creates a large
variety of highly active but time-coherent motion patterns,
depending on the initial kick, the combination of the parameters
τ and κ, and the body–environment coupling.
In the following example we consider the humanoid robot on

level ground with a certain friction and elasticity. In addition to
DEP, in this case, the threshold dynamics [4] was used which
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supports oscillatory behaviors. The robot starts upright with all
joints in their center position (yi = 0) slightly above the ground
and falls down to its feet and then to its arms, such that the robot
is laying face down. The first contact with the ground and the
gravitation exert forces on the joints that lead to nonzero sensor
readings. This creates a first learning signal and leads to small
movements which get more and more amplified and shaped by
the body–environment interaction. As a result we observe more
and more coordinated movements such as the swaying of the hip
to either side. A long transient of different behavioral patterns
follows ending up in a self-organized crawling mode (Fig. 2 and
Movie S2). This mode is metastable and can be left by pertur-
bations or changes in the parameters. Mainly forward locomo-
tion is emerging, which is due to the specific geometry of the
body. For an external observer this looks as if the robot is fol-
lowing a specific purpose, exploring its environment, which is not
built in but emerges. When the parameters of the body are
changed, e.g., the strength of certain actuators, different be-
haviors will come out. For instance, a low crawling mode is
generated if the arms are weaker.

Hexapod: Emerging Gaits. In the humanoid robot case, the pref-
erence of forward locomotion can be related back to the specific
geometry of the body. When the robot is on its hands and knees,
the lower legs break the forward–backward symmetry so that
backward locomotion is more difficult to achieve. Let us consider
now the hexapod robot (Fig. 3), which has an almost perfect
forward–backward symmetry, which must be broken for a loco-
motion pattern. This may happen spontaneously, but in most
experiments, motions like swaying or jumping on the spot are
observed; see Learning the Model below.
Let us now demonstrate how the system can be guided to

break its symmetries in a desired way. This method has essen-
tially two elements. On one hand, we have to provide additional
sensor information to facilitate circular leg movements. This is
done by providing the delayed sensor values of the 12 coxa joint
sensors (all sensors could have been used). On the other hand,
guidance is implemented by structuring the inverse model M
appropriately by hand, which is a new technique for guided self-
organization of behavior (43). The rationale is that those connec-
tions in the model are added where correlations/anticorrelations
in the velocities are desired. For the oscillations of the legs, the

A B

Fig. 2. Behavior exploration of the humanoid robot. (A) Crawling-like motion patterns when on the floor. (B) The corresponding controller matrix C reveals a
definite structure. Note that the threshold dynamics was included here, which is an important factor for this highly organized behavior.

A B

D

E

C

Fig. 3. Hexapod: emerging gait patterns. The robot is inspired by a stick insect and has 18 actuated DoF. There are 18+ 12 sensors (joint angle + delayed ones
by 0.2 s). The robot performs different gaits when controlled with DEP: synchronous wave (A, row 1), synchronous trot (A, row 2), tripod (A, row 3), walk 1 (A,
row 4), and walk 2 with their corresponding step patterns in D (black means foot is down). The fixed inverse modelsM in two configurations are displayed in B
and C. Recorded foot patterns for model M 1 (E, Top) and model M 2 (E, Bottom) show the transitions between different gaits. Shown is the leg’s vertical
position where black means leg is down and white means above center position. These transitions are either spontaneous or induced by interactions with the
environment or by changes in the sensor delay. Markers (red dashed lines and points) indicate the gait patterns for synchronous wave, synchronous trot, and
tripod (Top) and tripod, walk 1, and walk 2 (Bottom). See also Movie S3A.
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delayed forward–backward (anterior/posterior) sensor is linked
to the up–down (dorsal/ventral) direction. To excite locomotion
behavior, the properties of desired gaits can be specified such as
in-phase or antiphase relations of joints. We present here two
possibilities where only few such relations are specified to give
room for multiple behavioral patterns.
In the first configuration the anterior/posterior direction of

subsequent legs should be antiphase, resulting in only four neg-
ative entries in M (Fig. 3B). Note that there are no connections
between the left and right legs. In the experiment the robot
performs the first locomotion pattern already after a few seconds. A
sync wave gait emerges where legs on both sides are synchronous
and hind, middle, and front leg pairs touch the ground one after
another. This transitions into a sync trot gait where hind and
front legs are additionally synchronized. After a perturbation
(from getting stuck with the front legs) the common tripod (44)
(type c) gait emerges (Fig. 3).
The second configuration resembles what is observed in bi-

ological hexapods, namely, that subsequent legs on each side
have a fixed phase shift (which we achieve by linking in M the
delayed sensor and motor of subsequent legs) and that legs on
opposite sides are antiphasic. This results in model M 2 (Fig.
3C). In the experimental run the initial resting state develops
smoothly to the tripod gait. Decreasing the time delay of the
additional sensors leads first to a gait with seemingly inverse
stepping order which we call walk 1 and which is also observed in
insects (44) (type f). For a smaller delay an inverted ripple gait
(45) appears that we call walk 2 (Fig. 3 and Movie S3A).
An important feature of these closed-loop control networks is

that they can be used to control nontrivial behavior with fixed
synaptic weights, obtained by taking snapshots or from clustering
(Fig. S1). Behavior sequences can easily be generated by just
switching between these fixed sets of synaptic weights. We dem-
onstrate this using the humanoid robot with different crawling
modes in Movie S4A and using the hexapod robot by sequencing
all of the emergent gaits in Movie S4B. Notably, the transition
between motion patterns is smooth and autonomously per-
formed. In a biological setting different circuits for each behavior
have to be used whose outputs can be gated/combined to per-
form a sequence of behaviors. The learning of these circuits can
be performed simultaneously using the same learning rule and
stopped as soon as a useful behavior is detected.

Finding a Task in the World.Up to now, we have seen how the DEP
rule bootstraps specific motion patterns contingent on the
physical properties of the body in its interaction with a static
environment. A new quality of motion patterns is achieved when
the robot interacts with a dynamical, reactive environment. For a
demonstration we consider a robot sitting on a stool with its hands
attached to the cranks of a massive wheel (Fig. 4). Again, we start
with the least biased initialization and with the unit model.
Rotating the wheel. Different from a static environment, the mas-
sive wheel exerts reactive forces on the robot depending on its
angular velocity, which is a result of the robot’s actions in the recent
past. This response and its immediate influence on the learning

process initially lead to a fluctuating relation between wheel and
robot. This eventually becomes amplified to end up in a meta-
stable periodic motion (Movie S5A). This effect depends on the
mass of the wheel. If the inertial mass is too low, it does not
provide enough feedback to the robotic system, and the wheel is
typically turned back and forth. Once the mass is large enough,
continuous turning occurs robustly for a large range of wheel masses
(one order of magnitude).
From the point of view of an external observer, one may say

that the learning system is keen on finding a task in the world
(rotating the wheel) which channels its search into a definite
direction. It cannot be stressed enough that the robot has no
knowledge whatsoever about the physical properties and/or the
position and dynamics of the wheel. All the robot has is the physical
answer of the environment (the wheel) by the reactive forces. In this
way the robot detects affordances (46) of the environment. An
affordance is the opportunity to perform a certain action with an
object, like a chair affords sitting and a wheels affords turning.
The constitutive role of the body–environment coupling is also

seen if a torque is applied to the axis of the wheel. Through this
external force we may give the robot a hint of what to do. When
in the fluctuating phase, the torque immediately starts the ro-
tation which is then taken over by the controller. Otherwise, we
can also advise the robot to rotate the wheel in the opposite
direction (Movie S5A). This can be considered as a kinesthetic
training procedure, helping the robot in finding and realizing its
task through direct mechanical influences.
Multitasking. In a variant of this experiment, the feet also get at-
tached to a separate wheel. Because of the simpler physics [fewer
degrees of freedom (DoF)], the leg part of the robot requires
much less time to find its task than the upper body (Movie S5B).
The lack of synchronization between the two subsystems is also
noteworthy. At first sight, this is no surprise because the upper
and the lower body are completely physically separated (the
robot is rigidly fixed on the stool). However, there is an indirect
connection given by the fact that each subsystem sees the full set
of sensor values. Actually, this might support synchronization
given the correlation affinity of the DEP rule. However, due to
the largely different physics, synchronization occurs only tem-
porarily, if at all, so that two different subsystems appear, each
with their own behavior.
Emerging cooperation. We have seen above how an exchange of
forces with the environment may guide the robot into specific
modes. In this paragraph we show how this can be extended to
interacting robots by coupling them physically or letting them
exchange information. For a demonstration, we extend the wheel
experiment by having two robots, each driving one of the cranks
(Fig. 4 C and D). In this setting, the robots can communicate
with each other through the interaction forces transmitted by the
wheel. So, through the induced perturbations of its proprioceptive
sensor values, each robot can perceive to some degree what the
other one is doing. These extrinsic effects can be amplified through
the DEP rule, eventually leading to synchronized motion (Movie
S6A). Seen from outside, the robots must cooperate to rotate the

Fig. 4. Interacting with the environment. The humanoid robot at the wheel with cranks (A); with two wheels (B); and with two robots, each at one of the
handles, sitting (C) and standing (D) (Movies S5A and S6A).
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wheel, and this high-level effect unexpectedly emerges in a nat-
ural way from the local plasticity rule.

Discussion
This paper reports a simple, local, and biologically plausible
synaptic mechanism that enables an embodied agent to self-
organize its individual sensorimotor development. The reported
in silico experiments have shown that at least on the level of sen-
sorimotor contingencies, self-determined development can be
grounded in this synaptic dynamics, without having to postulate
any higher-level constructs such as intrinsic motivation, curiosity,
goal orientation, or a specific reward system. The emerging be-
haviors—from various locomotion patterns to rotating a wheel
and to spontaneous cooperation induced by force exchange with
a partner—realize a degree of self-organization unprecedented
so far in artificial systems. These do not require modifications of
the DEP rule, and for many examples, no task-specific infor-
mation was provided. To guide symmetry breaking in the space
of all possible behaviors, few additional hints can be provided,
leading, for instance, to various locomotion gaits in a hexapod
robot. The emergent behaviors are all oscillatory. Discrete move-
ments cannot be generated as they end in fixed points of the sen-
sorimotor dynamics which are destabilized by the synaptic rule. Our
demonstrations use artificial systems, which is often a problem in
computational neuroscience and robotics due to a discrepancy be-
tween the behavior of artificial and real systems. In our approach
this discrepancy problem is circumvented because the behavior is
not the execution of a plan but emerges from scratch in the
dynamical symbiosis of brain, body, and environment. Com-
monly, learning to control an actuated system faces the curse of
dimensionality, both in a model and in reality. Without a proper
self-organization process or hand-crafted constraints, adding one
actuator leads to a multiplicative increase in the time required to
find suitable behaviors. We provide evidence for adequate scaling
properties of our approach with systems of up to 18 actuators de-
veloping, without any prestructuring, useful behaviors within mi-
nutes of interaction time. Additionally, we have given arguments on
a system theoretical level that by being at the edge of chaos and
allowing for spontaneous symmetry breaking, our approach may
scale up to systems of biological dimensions, like humans with
their hundreds of skeletal muscles.
The presence of the DEP rule in nature may change our un-

derstanding of the early stages of sensorimotor development
because it introduces an apparent goal orientation and a self-
determined restriction of the search space. It still remains an open
question whether nature found this creative synaptic dynamics. The
simplicity of the neural control structure and the DEP rule, com-
bined with its potential to generate survival-relevant behavior such
as locomotion and adaptivity to largely new situations, are good
arguments for evolution having discovered it. In addition, the syn-
aptic rule has a simple Hebbian-like structure and may be imple-
mented by combining homosynaptic and heterosynaptic (extrinsic)
plasticity mechanisms (40) in real neurons.
The DEP rule may also explain saltations in natural evolution.

It is commonly assumed that new traits are the result of a mu-
tation in morphology accompanied by an appropriate mutation
of the nervous system, making the likelihood of selection very
low because it is the product of two very small probabilities. With
DEP, new traits would emerge through mutations of morphology
alone. For instance, the fitness of an animal evolving from water to
land will be greatly enhanced if it can develop a locomotion pattern
on land in its individual lifetime, which could easily be achieved
by the DEP rule. Following the argument by Baldwin (47, 48),
the self-learning process could be replaced in later generations
by a genetically encoded neuronal structure making the new trait
more robust.
Adaptability to major changes in morphology may also be

necessary for established species during their lifetime. For instance,

changes in mass and dimension of body parts due to growth or
injuries such as leg impairments or losses have to be accommo-
dated. It has long been known that even small animals such as
insects have this capability and substantially reorganize their gait
patterns (44). This could be achieved with special mechanisms,
but with DEP it comes for free.
Another point concerns the role of spontaneity and volition in

nature. Obviously, acting spontaneously is an evolutionary ad-
vantage because it makes prey less predictable to predators.
Attempts to explain spontaneity and volition range from ignoring
it as an illusion to rooting it deep in thermodynamic and even
quantum mechanical randomness (49, 50). We cannot give a fi-
nal explanation, but the DEP rule provides a clear example of
how a great variety of behaviors can emerge spontaneously in
deterministic systems by a deterministic controller. The new
feature is the role of spontaneous symmetry breaking in systems
at the edge of chaos. Similarly, there are recent trends in explaining
the apparent stochasticity of the nervous system through the com-
plexity of deterministic neural networks (51–53).
This paper studies a neural control unit in close interaction

with the physical environment. However, DEP may also be ef-
fective in self-organizing the internal brain dynamics by consid-
ering feedback loops with other brain regions. This is possible
because the DEP approach does not need an accurate model of
the rest of the brain—which could never be realized—but re-
quires only a coarse idea of the causal features of the system’s
response. In this context our study may provide ingredients re-
quired for the big neuroscience initiatives (9) to understand and
subsequently realize the functioning brain.

Methods
Normalization. For controlling the robot we use normalized weight matrices C
in Eq. 1. We have the option to perform a global normalization or an in-
dividual normalization for each neuron: In global normalization, the entire
weight matrix is normalized, C← κC=ðkCk+ ρÞ. In individual normalization,
each motor neuron is normalized individually, Cij ← κCij=ðkCik+ ρÞ.

For the global normalization, the Frobenius norm kCk is used, and for the
individual normalization, kCik denotes the norm of the ith row (length of
synaptic vector of neuron i). The regularization term ρ= 10−12 becomes ef-
fective near the singularity at C = 0 or Ci = 0 and keeps the normalization
factor in bounds. Neurobiologically, the normalization can be achieved by a
balancing inhibition on a fast timescale accompanied by homeostatic plas-
ticity on a slower timescale.

With κ small (compared with 1), activity breaks down so that the system
converges toward the resting state where _x = 0. With κ sufficiently large, this
global attractor is destabilized so that modes start to self-amplify, ending up
in full chaos for large κ. Within an appropriate range of values for κ, the
system is led toward an exploratory but still controllable behavior. The pa-
rameter could also be adapted autonomously, e.g., to reach a certain mean
target amplitude of the motor values.

The type of normalization has a strong effect on the resulting behavior.
Individual normalization leads to behaviors that involve all motors because
each motor neuron is normalized independently. By contrast, global nor-
malization can restrict the overall activity to a subset of motors. An example
for global normalization is the humanoid robot at the wheel (Movie S5A),
where the legs are inactive because initially, the arms are moving more strongly,
such that only correlations in the velocities of the upper body build up.

How It Works. Let us start with a fixed point analysis of the Hebbian learning
case with M being the unit matrix (as in the humanoid case). Ignoring
nonlinearities for this argument (small vectors x and y), the dynamics in the
model world is x′= y = αCx, where α is the normalizing factor. The system is
in a stationary state if x′= x, which is the case if x is an eigenvector of C with
eigenvalue 1=α. In such a state the learning dynamics (τ _Cij = yixj −Cij) con-
verges toward C = xx⊤, due to the decay term. Using this in the stationary
state equation (x = αCx) yields the condition x = αxkxk2 such that any vector x
with kxk2 = 1=α can be a stationary state, a Hebb state, of the learning sys-
tem. This means that the Hebb rule generates a continuum of stationary
states instead of an exploratory behavior.

In the plain DHL case a global stationary state exists if the system is at rest
so that C = 0 (recall plasticity rule: τ _Cij = _yi _xj −Cij). However, if C ≠ 0, the
normalization may counteract the effect of the decay term in the plasticity
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rule. Thus, Hebb-like states can be stabilized for a while until the regularization
term ρ stops this process and C decays to zero. The thereby induced decay
y→ 0 generates motion in the system, leading to a learning signal. With
κ large, this may avoid the convergence altogether so that the system can
find another Hebb state and so forth. However, the activities elicited by the
interplay between the normalization and the learning dynamics are rather
artificial and less rich because they do not incorporate the extrinsic signals
given by δy. In particular, the plain DHL rule has no means of incorporating
the extrinsic effects provided by additional sensor information as described
in the next section.

The novel feature of the proposed DEP rule (Eq. 3) is the leading role of
the extrinsic signal (δy). For a demonstration, consider the trivial case _y = 0,
where the body is at rest and will stay there as long as there are no extrinsic
perturbations. However, if the body is kicked by some external force, x, x′
and hence e_y may vary so that C changes and the system is driven out of the
global attractor if κ is sufficiently large. In fact, in the experiments we ob-
serve how an initial kick acts like a dynamical germ for starting individual
behavior development. Moreover, in the behaving system, external influ-
ences may change the behavior of the system; see, for instance, the gait
switching of the hexapod after being perturbed by obstacles (Movie S3A) or
the phenomenon of emerging cooperation of the humanoids (Movie S5A).
A quantitative comparison of the learning rules is given in Comparison of
Synaptic Rules below.

The next remark concerns the dichotomy between learning as formulated
in the velocities and the control of the system based on the (angular) posi-
tions, which is vital for the creativity of the DEP rule [3]. This feature can
be elucidated by a self-consistency argument, assuming the idealized case
where the system is in a harmonic oscillation (e.g., an idealized walking
pattern) with period T. By way of example, let us consider the 2D case with a
rotation matrix UðsÞ, generating a periodic motion by rotating a vector
xðαÞ= ðcos α, sin αÞ⊤ by an angle s, i.e., UðsÞxðαÞ= xðα+ sÞ. We use that x′ is
obtained by the time evolution of x over a finite time step so that x′ðαÞ=
xðα+ θÞ=UðθÞxðαÞ and Æ _x′ _x⊤æ=UðθÞÆ _x _x⊤æ. Taking the average over one period
we have Æ _x _x⊤æ∝ Æxx⊤æ as _x is a phase shifted copy of x times a factor. For
averaging, we consider infinitesimally short time steps so that sums may be
replaced with integrals. We obtain Æ _x _x⊤æ∝

R
xðαÞxðαÞ⊤dα∝ I, where I is the

unit matrix, because
R
cos2ðαÞdα= R sin2ðαÞdα∝ 1 and

R
sinðαÞcosðαÞdα= 0.

Neglecting the extrinsic effects, i.e., δy = 0, under these idealized conditions,
we may write in the linear regime Mx′= y =Cx and with C =MÆ _x′ _x⊤æ∝MUðθÞ
we obtain x′=UðθÞx corroborating that the periodic regime is stationary if
the gain factor is chosen appropriately.

In higher dimensions the argument is more involved, but it carries over
immediately to the case of rotations about an axis, corresponding to the case
that the Jacobian matrix J=MC has just one pair of complex eigenvalues
different from zero. This situation is often observed in the experiments, e.g.,
with the hexapod, even though these experiments are very far from the
idealized conditions postulated for the self-consistency argument above.

These patterns are self-consistent solutions of the mentioned dichotomy
between control itself and the synaptic dynamics that generates it. As the
experiments show, these patterns are metastable attractors of the whole-
system dynamics, so that globally, the system realizes a search and converge
strategy by switching between metastable attractors via possibly long tran-
sients. At the behavioral level, this is reflected by the emergence of a great

variety of spatiotemporal patterns—the global order obtained from the simple
local rules given by Eqs. 3 and 4. Metastable attractors and near-chaotic dy-
namics were used for exploration with great success (54, 55) although with
central pattern generators as source of oscillatory behavior, whereas here
these are generated from the developing sensorimotor coupling.

Parameter Selection: No Fine Tuning Required. Here we show that the choice
of parameters is not critical and works for a wide range of values. The
hexapod locomotion experiment allows us to simply quantify success: the
distance traveled from the initial position within 1 min after the start. Re-
member that there is no specific goal for locomotion, just that the guidance
restricts the search space such that locomotion behaviors are favored. Fig. 5
shows the result of a parameter scan for all used parameters; additionally, it
shows that enabling the threshold dynamics does not degrate performance
and that the method is very robust to added noise. The time lag should be
chosen to be around the time required for an action to show effect in the
sensors. Depending on the update rate of the sensorimotor loop and pos-
sible signal delays, a different range may be appropriate.

Further, we note that the choice of parameters influences which behaviors
emerge exactly, in particular for the casewithout guidance, but the behaviors
are qualitatively similar.

Learning theModel.Herewe show how to learn the inversemodel and remark
on its role. Remember that the model’s task is to relate changes in sensor
values _x′ to their causes _y. Modeling this sensor–motor coordination can be
most easily done in a preparatory step using a simple motor babbling in an
idealized situation, i.e., by suspending the robot in the air to avoid ground
contact and controlling each motor with an independent varying harmonic
oscillatory signal. For the robots in this paper, a simple linear model FðuÞ=Mu
is appropriate with a simple learning procedure like ΔMij = eMeixj, where
e= ðy −Mx′Þ and eM is the learning rate which can be annealed as 1=

ffiffiffiffiffiffiðtÞp
(t time

steps). As y is the target and x′ is the measured joint angle, in the idealized
situation, one obtains essentially M= I (unit matrix) with minor deviations
which are not decisive for the development of the behaviors. In Movie S7
the learning of the inverse model and the behavior of the robot are shown;
see also Fig. 6. The behavior is the same as with the unit model: occasional
locomotion patterns are developed, but no stable behavior is found by the

A

E F G

B C D

Fig. 5. Parameter dependency of the performance of the hexapod robot. Shown are the mean and SD of the traveled distance in 1 min for different parameters.
(A–D) Exhaustive parameter scan. For each panel, all other parameters are varied in their gray shaded regions indicated in A–E. (E–G) Single scans for standard
parameters (see black lines in A–E and G) with 10 initialization conditions each (random seed for noise and robot’s initial height). (A) Activity parameter
(Methods). (B) Time scale for learning dynamics, Eq. 3 in s. Note logarithmic scale. (C) Time delay of delayed sensor values in 1=50 s. (D) Time lag between y and x′
in 1=50 s. (E) Strength v of additive colored sensor noise [Ornstein–Uhlenbeck with θ= 0.1v, σ =

ffiffiffiffiffiffiffi
0.1

p
v, μ= 0 (10 time steps correlation length), and σ = 1

2 v].
(F) Strength v of additive white noise uniformly distributed in ½−v, v�. (G) Inverse time scale (in 1/s) of threshold learning dynamics (0 means disabled).

Fig. 6. InversemodelM obtained from 15-minmotor babbling of the hexapod.
The rows correspond the weight vectors used to predict each motor value.
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dynamics. Adding the additional entries as in M 1 recovers the observed
locomotion behavior. Therefore, we use M= I in all of the other experiments
to introduce less bias.

Actually, the learning of sensor motor mappings can also be realized
concomitantly with the controller’s development. However, this poses a
serious difficulty because the model must reflect the causal relationship
between sensors and motors. When learning the model F from pairs ð _x′, _yÞ
the correlations between _x′j and _yi for all i, j are learned. In a periodic motion
(walking pattern), there are strong correlations for all combinations of
sensors and motors. In the case of a linear model, all Mij are roughly of the
same size, in striking contrast to M= I as obtained from the uncorrelated
learning above. Thus, naive simultaneous learning produces a wrong result.
This is a well-known fact from statistics that correlations do not imply cau-
sation; see, for instance, ref. 56. So, extending the model makes sense only
with explicitly causal models based on or combined with intervention
learning realized by adding uncorrelated perturbations to the controller
output y and measuring the correlations of the perturbations with x′. We
refer to the literature on causal Bayesian networks (56, 57).

Note that if the inverse model is perfect, the learning rule [3] becomes the
DHL rule. However, if behaviors have been explored to generate enough
data to train the model to be perfect, there is no further exploration
required.

Comparison of Synaptic Rules. In this section we want to compare the dif-
ferent synaptic rules. We will consider them in their pure form without the
threshold dynamics, i.e., h= 0. Also in experiments we can confirm that plain
Hebbian learning produces fixed point behaviors and thus no continuous
motion. Therefore, we will only compare DHL with DEP using the hexa-
pod robot as example. To provide a fair comparison the hexapod robot is
started in three identical experiments, except for the plasticity rules: DHL,
τ _Cij = _yi _xj −Cij; DEP, τ _Cij = e_yi _xj −Cij [3] (with unit model); and DEP-Guided
with model M 1 (Fig. 3B). Note that the same synaptic normalization and
decay are used everywhere. Because DHL is not able to depart from the C = 0
condition, we copy the synaptic weights (C) of the DEP run to the DHL ex-
periment after 10 s. We then consider the eigenvalue spectrum and the
corresponding eigenvectors of the Jakobian matrix J=MC of the sensori-
motor dynamics (for DHL and DEP M= I). The matrix J captures the linear-
ized mapping from x to x′—the dynamics of the sensors. For DHL the matrix
reduces to have only a single nonzero eigenvalue. This, in turn, means that
all future sensor values are projected onto the corresponding eigenvector,
and the learning dynamics cannot depart from that. This is demonstrated in
Fig. 7 and Movie S8. Under heavy perturbations the robots controlled by DEP
change their internal structure and subsequently show a different behavior.
For a different initialization, DHL (with normalization) may also produce
continuous motion patterns, but it is generally much less sensitive to the
embodiment and perturbations and often falls into the C = 0 state, which it
cannot exit anymore.

Framework. The use of artificial creatures has proven a viable method for
testing neuroscience hypotheses, providing fresh insights into the function of
the nervous system; see, for instance, ref. 19. The benefit of such methods
may be debatable on the level of brain processes of higher complexity. So,
we focus on lower-level sensorimotor contingencies in settings where the
nervous systems cannot be understood in isolation due to a strong brain–
body–environment coupling (16, 58). The method works both with hardware

robots and with good physical simulations. The inexorable reality gap be-
tween simulations and real robotic experiments is a minor methodological
problem because the phenomenon of self-organization is largely independent
of the particular implementation, as evidenced by the fact that emerging
motion patterns are robust against modifications of the physical parameters of
both robot and environment.

The control structure in this paper is deliberately chosen to be simple to
demonstrate the method’s potential. Although the time lag of sensory
feedback is too long for this setting in larger animals, it may still be suc-
cessful by integrating sensor predictions, a trick the nervous system is using
whenever possible (59). In the following we discuss several of the method-
ological issues in detail.
Initialization. To have reproducible conditions for our experiments, we always
start our systemunder definite initial conditions. In all our applications we use
the same plasticity rule (with appropriately chosen time scale τ and gain
factor κ) and, moreover, always start in the same initial conditions for the
synaptic dynamics by choosing C = 0 and h= 0, meaning that all actuators of
the joints are in their central position. In a sense, this is also a state of
maximum symmetry because there is (approximately) no difference in moving
the joint either forward or backward, so that the observed behaviors are
emerging by spontaneous symmetry breaking (34, 35).
Source of variety. In many robotics approaches to self-exploration and learning
of sensorimotor contingencies, innovation is introduced bymodifying actions
randomly (60, 61), relegating the activities of the agent to the intrinsic laws
of a pseudorandom number generator that is entirely external to the system
to be controlled. This applies also when the actions are only performed in
mental simulation (62). This invokes the curse of dimension as the search is
not restricted by the specifics of the brain–body–environment coupling. A
more deterministic approach is to use chaos control (55), which, however,
requires a specific target signal (e.g., periodicity). In our system, there is only
one intrinsic mechanism—the DEP rule—which generates actions deter-
ministically in terms of the sensor values over the recent past (on a timescale
given by τ). Variety is produced by the complexity of the physical world in
the sense of deterministic chaos. Another approach to obtain informed ex-
ploration is to use notions of information gain (63–65) which became re-
cently scalable (66) to the high-dimensional continuous systems.
Simulation. The experiments are conducted in the physically realistic rigid body
simulation tool LPZROBOTS (22). The tool is open source so that the experi-
ments described in this paper can be reproduced (Simulation Source Code).
The humanoid robot (Fig. 2) has the proportions and weight distributions of
the human body. The joints are simplified, and only one-axis and two-axis
joints are used. The DoF are as follows: 4 per leg (2 hip, knee, and ankle), 3
per arm (2 shoulder and elbow), 1 for the pelvis (tilting the hip), and 3 in the
back (torsion and bending front/back and left/right), summing up to 18 DoF.

The hexapod robot (Fig. 3) is inspired by a stick insect and has 18 DoF, 3 in
each leg: 2 in the coxa joint and 1 in the femur–tibia joint (α, β, γ in ref. 67).
The antennae and tarsi are attached by spring joints and are not actuated.

To implement the actuators we use position-controlled angular motors
with strong power constraints around the set point to make small per-
turbations perceivable in the joint position sensors. Internally, these are
torque-limited velocity-controlled motors implemented as physical con-
straints (implicit look-ahead of acting forces) where the allowed torque
f is f = fmaxtanhð0.01+ jx − xtargetjÞ (26). In this way they perform more like
muscles and tendon systems and make the robot compliant to external forces.

A B

Fig. 7. Comparison of plasticity rules: DHL, DEP, and DEP-Guided (with structured model) (from top to bottom). Development of the eigenvalues
ðλ1, λ2, λ3, λ6Þ, real part in A and imaginary in B, of the Jakobian matrix J=MC of the sensorimotor dynamics over time. After 10 s (dashed vertical line) the
synaptic weights from DEP were copied to DHL to get some nonzero initialization. The dashed vertical line at 45 s marks a strong physical perturbation which
leads to changes in behavior for the DEP rule but not for DHL (Movie S8). Only for DEP do the eigenvectors (Movie S8) and the spectrum change significantly
after the perturbations. Parameters are as follows: global normalization, κ= 2.2,h= 0,  and  τ= 0.7 s.
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