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Pleistocene residential sites with multiple contemporaneous human
burials are extremely rare in the Americas. We report mitochondrial
genomic variation in the first multiple mitochondrial genomes from a
single prehistoric population: two infant burials (USR1 and USR2)
from a common interment at the Upward Sun River Site in central
Alaska dating to ∼11,500 cal B.P. Using a targeted capture method
and next-generation sequencing, we determined that the USR1 infant
possessed variants that define mitochondrial lineage C1b, whereas
the USR2 genome falls at the root of lineage B2, allowing us to refine
younger coalescence age estimates for these two clades. C1b and B2
are rare to absent in modern populations of northern North America.
Documentation of these lineages at this location in the Late Pleisto-
cene provides evidence for the extent of mitochondrial diversity in
early Beringian populations, which supports the expectations of the
Beringian Standstill Model.
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The colonization of the Western Hemisphere has been of in-
terest to scholars since 1590, when Jose de Acosta postulated

a northeast Asian origin of the indigenous populations of the
Americas (1). Both the archaeological (2, 3) and genetic (4–10)
records consistently indicate a primary entry point from Asia to
the Americas via the Bering Land Bridge, sometime during the
Late Pleistocene. However, there are unfortunate lacunae in
both records. The archaeological record indicates a relatively
late (<14–16 kya), rapid colonization event following the Last
Glacial Maximum. This temporal scale supports the clear
northeastward geographical expansion of late Upper Paleolithic
(Diuktai) populations from southern and central Siberia to
Beringia after 16 kya (5). However, archaeological evidence is
accumulating that shows people had penetrated parts of North
and South America before 13,250 cal B.P., the earliest date as-
sociated with Clovis, the first widespread cultural tradition in
North America (2–5, 11).
The genetic record is equally problematic. Continental scale

analyses of genetic variation rely heavily on Central and South
American population data, as well as data from Arctic populations
(6–9, 12, 13). Few data exist for North American populations
south of the Arctic. Recent surveys of contemporary genetic var-
iation in the Americas are consistent with a period of population
isolation during which the distinctive composition of Native
American genomes differentiated from ancestral Asian genomes,
followed by a rapid colonization; this scenario has been deemed
the “Beringian Standstill Model” (6, 7, 10). How early the Native
American gene pool diverged remains uncertain, but estimates of
up to 30 kya have been postulated (5, 6, 10, 12, 14, 15). Most
geneticists argue for at least a several thousand-year period of
isolation and genetic differentiation in Beringia before a south-
ward dispersal, despite the absence of supporting archaeological
evidence (2, 4, 5, 10). Recently, Raghavan et al. (15), using ge-
nome-wide low-coverage data, suggested the dates of this isolation
began no earlier than 23 kya and lasted no longer than 8,000 y (15).

Ancient DNA (aDNA) samples from early inhabitants of the
Americas would be important for linking the modern genetic and
archaeological records (16), but few exist. The Mal’ta child from
South Central Siberia indicates an early origin (>24 kya) of some
signal of Native American ancestry (9), but although a few
Pleistocene-aged remains have been recovered in central North
America (below the Laurentide Ice Sheet) or along the Northwest
Coast, no similarly aged Beringian human remains have previously
been available for genetic comparison. Very few Late Pleistocene
(>10,000 cal B.P.) individuals have yielded mitochondrial genetic
(mtDNA) data, although we highlight the seven sites with ancient
human remains dating to >8,000-y-old that have been characterized
for mtDNA lineages: Hoyo Negro, Mexico (17); Anzick, MT (18);
Kennewick, WA (19); On-Your-Knees Cave, AK; Wizard’s Beach,
NV; Hourglass Cave, CO; and, indirectly through coprolite analysis,
Paisley Cave, OR (the last four are reviewed in ref. 20) (Fig. 1).
In 2011 Potter et al. (21) reported on the discovery of a cremated

3-y-old child from a residential feature at Upward Sun River (USR)
in eastern Beringia dating to 11,500 cal B.P. Additional excavation at
this deeply stratified and well-dated site (22) recently yielded two
additional infant burials (Fig. 1) (USR1 and USR2) (23). A series of
radiocarbon ages securely date the three individuals between 11,600
and 11,270 cal B.P. (23). Based on dental and osteological aging
methods, USR1 represents a late preterm fetus, and USR2 likely
died within the first 6 wk of life (23). The proximity of these three
burials, their context within the same feature, and radiocarbon
analyses presented in Potter et al. (23) strongly suggest that all three
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burials represent nearly contemporaneous events, and that the three
individuals were members of a single population.
We attempted to extract and sequence the mitochondrial genomes

from these three Late Pleistocene burials. From burnt bone
fragments of the cremated infant and well-preserved samples of
the petrous portion of the parietal bone, DNA was extracted
using a silica-based method and attempts were made to Sanger
sequence three overlapping fragments of the mitochondrial
hypervariable region 1 (HVR1). From USR1 and USR2, all three
HVR1 fragments were successfully amplified, and from the cre-
mated infant only one fragment amplified, albeit inconsistently.
DNA samples and applicable blank controls from USR1 and
USR2 were converted to Ion Torrent Ion Plus Fragment libraries
with laboratory-unique barcodes. We targeted the mitochondrial
genomes by hybridization capture (24) and sequenced the libraries
on two P1 chips with an Ion Proton System (Life Technologies).
This is one of the first examples of the Ion Torrent technology
applied to aDNA.

Results
From 58.7 and 55.8 million sequencing reads, 20,004 and 32,979
unique mtDNA reads (MAPQ ≥ 30) from USR1 and USR2,
respectively, were mapped to the human mtDNA reference
(Table S1). We used the Torrent Suite analytical pipeline to take

advantage of flow space information, base recalibration, read
realignment, and an Ion-optimized mapping (tmap) and duplicate
filtering approach. This pipeline also allowed variant calling with
the Torrent Variant Caller (TVC), providing a range of variant
quality metrics identical to current best-practices approaches for
next-generation sequencing of modern samples. This pipeline is
optimized for Ion Torrent reads, unlike most methodologies cur-
rently used in the aDNA literature.
Sequencing of the enriched mtDNA from samples USR1 and

USR2 resulted in 100% coverage of the mtDNA genomes with
average read depths of 117× (geometric mean of 97×) for USR1 and
195× (geometric mean of 180×) for USR2 (Fig. S1). Mean read
lengths for the two samples were 98 and 99 bp. Contamination es-
timates were made by dividing the reference allele counts at called
variants by the total coverage from the TVC output; contamination
rates were estimated at 3.5% and 4.9% for the two samples, re-
spectively. Maximum parsimony (MP) analysis of SNPs and in-
sertion/deletions (indels) in the full genomes indicated membership
in mtDNA lineages C1b (USR1) (Fig. 2A) and B2 (USR2) (Fig. 2B).
The mtDNA genome of USR1 had a private variant in the form of
SNP C16292T. The B2 lineage carried by USR2 revealed a single
back mutation at nucleotide position 3547 to an ancestral adenine. A
subset of called variants, in addition to the previously typed HVR1,
were validated by Sanger sequencing.

Fig. 1. Geographic map of reported Native American
populations with >40% C1 or B2 haplogroup fre-
quencies, as well as locations of archaeological sites
discussed. The locations of the Upward Sun River site,
as well as the seven previously reported archaeological
sites dated at >8,000 y B.P. with successfully genotyped
human mitochondrial DNA lineages, are listed on the
map (with reported haplotypes). Reported populations
of ≥20 individuals with ≥40% C1 (yellow) or B2 (blue)
are shown. Populations and frequencies specific to this
figure (referenced by numbers 1–50) are available in
the SI Materials and Methods.
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From the initial Torrent Suite bioinformatics pipeline we observed
an irregular pattern of DNA damage expected from aDNA samples
(Fig. S2). The 5′ ends of these reads had unexpected low quality base
calls, likely from our custom adapters lacking a spacer sequence after
the barcodes, and we were not able to investigate 3′ damage patterns.
We initiated an alternative pipeline for reads from both Ion P1 chips:
we performed additional read trimming for adapter sequence, length

(30–120 bp), and quality, and we remapped (tmap) without 3′ clip-
ping. Following this alternative pipeline, 21,140 and 22,951 mtDNA
reads at MAPQ ≥ 70 mapped to the mtDNA genome from USR1
and USR2, respectively (Table S2). One-hundred percent of the
genome was covered, at average read depth of 113× (geometric
mean of 103×) for USR1 and 125× (geometric mean of 119×)
for USR2 (Fig. S3). Nucleotide mismatches now displayed the
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Fig. 2. MP hand-curated phylogenetic trees of (A) C1b and (B) B4 mtDNA haplotypes. Only a subset of the sequences analyzed in this study are shown, along
with the placement of USR1 and USR2. Sequences used in this analysis are listed in green and node assignments are listed in red.

Tackney et al. PNAS | November 10, 2015 | vol. 112 | no. 45 | 13835

A
N
TH

RO
PO

LO
G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1511903112/-/DCSupplemental/pnas.201511903SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1511903112/-/DCSupplemental/pnas.201511903SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1511903112/-/DCSupplemental/pnas.201511903SI.pdf?targetid=nameddest=SF3


expected damage patterns for degraded samples, although the 5′ read
ends still showed some residual unexpected alternative signal (Fig.
S4). Although this pipeline lost the necessary flow-space information
to make variant calls from Ion Torrent data, visual inspection of the
aligned reads confirmed all variants called earlier by TVC. This
suggests that the previous quality issue, although masking expected
DNA damage patterns at the ends of reads, did not bias the accurate
calling of these two samples.
Maximum-likelihood (ML) trees were created from curated

alignments of 189 haplogroup C (Fig. 3A) and 147 haplogroup B
sequences (Fig. 3B). USR1 was placed within a large clade
shared with C1b, whereas USR2 was placed at the root of known
Native American B2 diversity. Both samples exhibit branch
length shortening relative to modern Native American sequences,
because of their lower number of derived mutations, as expected
for aDNA. The best tree by final likelihood score was compared
with the results of 1,000 bootstrap runs. Nonparametric bootstrap
support on the trees was poor within the Native American specific

haplotypes, given the relatively small number of characters providing
signal in otherwise highly similar, and polytomous, mtDNA clades
(25). Because USR1 and USR2 are contemporaneous, and modern
Native American B2 and C1 sequences are observed to have similar
coalescence times (6, 12, 26), we investigated the effect of these new
sequences on the molecular dates of these clades.
We calculated the coalescence times using an ML-based ap-

proach and either a molecular clock corrected for purifying selec-
tion (27) or a faster, Bayesian-determined molecular clock based on
ancient mitochondrial genomes (28). The C1b clade divergence
time was estimated at 16,600 or 13,900 y ago, respectively with the
two rates. USR1 was most closely related to an individual of the
Arara people of Brazil (EU095227), with an estimated divergence
date of 8,200 or 7,000 y ago (a clearly too-recent date given the age
of USR1). The Native American-specific B2 clade coalescence time
was estimated at 19,100 or 15,900 y ago, respectively (27, 28). All of
these dates fall within previously published estimates.
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in average nucleotide substitutions per site.
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Because the ML-based estimates do not take into account the
radiocarbon ages of USR1 and USR2, we used the Bayesian
Markov chain-Monte Carlo framework of BEAST 2.2 (29). This
Bayesian phylogenetic method uses temporal information from
dated sequences to calibrate a molecular clock without relying on
geological or paleontological information. Using this approach, we
calculated the C1b clade coalescence time at 12,854 y ago (11,853–
14,079) [mean; 95% highest posterior density (HPD) interval], with
tip dates of 11,500 y ago for USR1 and 8,300 y ago for UZOO-74
(see below). The C1b clade coalescence date is near the younger
bounds of the timescales calculated in the literature, although the
95% HPD overlaps with the date previously determined using the
faster aDNA-calibrated substitution rate. The B2 clade coalescence
time was estimated at 12,024 y ago (11,500–13,085), using a tip date
of 11,500 y ago for USR2. This B2 date is also on the later end of
previously reported timescales (28). As these estimates are derived
from only one (B2) or two (C1) point estimated sequence ages, the
analysis can be improved with increased whole-genome sequencing
of ancient samples specifically within these clades. The general
agreement, however, with the faster Bayesian molecular clock
supports relatively young clade coalescence dates.

Discussion
The presence of mtDNA haplotype B2 is somewhat unexpected
in this geographic location. This lineage is absent in northern and
eastern Siberia (although it is found in the southern periphery)
(30), and the pan-American B2 haplotype has not been reported in
high-latitude populations of modern indigenous North Americans
(Fig. 1). This unusual geographic distribution, coupled with lower
restriction fragment length polymorphism haplotype genetic di-
versity estimates, led to the hypothesis that the B2 lineage was
introduced by a later, separate colonization event that did not pass
through Beringia. However, following increased sampling and
whole mitochondrial genome sequencing, haplogroup B2 phylog-
enies were shown to have similar star-like phylogenies and co-
alescence times to the other pan-American founding lineages (12).
Moreover, Raff et al. (31) reported two individuals with hap-
logroup B2 in prehistoric (800 and 490 cal B.P.) populations on the
upper Alaska peninsula.
Haplogroup B2 in subarctic interior Alaska at the Upward Sun

River site at such an early date suggests it was likely present and
polymorphic in the Beringian population that gave rise to the
initial dispersal south into the interior of the American continents.
Importantly, the finding of haplogroup B2 in far northern interior
populations shortly after initial colonization negates the need to
postulate models of independent introduction of this mitochondrial
lineage through alternative colonization routes. Its absence from
modern high-latitude populations now appears consistent with the
action of migration and genetic drift in small, dispersed early
populations (4) rather than selection or independent introduction.
It is noteworthy that haplogroup B was identified at two of the
oldest sites in the Americas mentioned earlier: that is, at the
∼8,800 cal B.P. burial at Hourglass Cave in Colorado and in three
coprolites dated between 14,270 and 14,000 cal B.P. at Paisley
5 Mile Point Caves in south-central Oregon. Neither site has
yielded full mitochondrial genome data.
Haplogroup C is one of the two most common mitochondrial

DNA clades throughout northern, eastern, and central Asia (the
other being haplogroup D). The wide distribution of haplogroup
C suggests it was a component of most migrations in northern
Eurasia, with an origin between 30 and 50 kya (32). One daughter
clade of the haplogroup is C1, which is composed of an Asian-
specific C1a branch previously molecularly dated to 8,500 y ago
(32), three Native American-specific (C1b, C1c, C1d) branches
previously molecularly dated to 19,000 y ago (12, 26), an Icelandic-
specific C1e branch (33), and a novel C1f haplotype sequenced
from an individual dated to ∼8,300 cal B.P. (UZOO-74) at the
Mesolithic site of Yuzhnyy Oleni Ostrov, North West Russia (25)
(although, see Fig. 3A for a possibly related sequence, HM804483).
Unlike the case for UZOO-74, the USR1 C1b sequence has a
clear origin and evolutionary history in the Americas. This result

highlights the need for further genomic sequencing of comparably
aged C1 lineages: for example, the 10,400 cal B.P. individual from
Wizard’s Beach, NV and for further sequencing of any C1 lineages
in Eurasia.
It is of interest that all five founding macrohaplogroups in

Native American populations (A, B, C, D, and X) are represented in
the small sample of individuals that lived more than 8,000 y ago in a
geographic area stretching from subarctic Alaska to southernMexico.
Four of these macrohaplogroups are found at the three northern
North American sites—Paisley Caves, Upward Sun River, and
Anzick—dating to over 11,000 y ago. Mitochondrial lineage desig-
nation for the majority of the pre-8,000 y ago individuals were de-
termined by low resolution methods of restriction fragment length
polymorphism analysis and direct sequencing of PCR products. Only
three of the included studies (17–19) used genomic approaches, in
addition to the Upward Sun River individuals reported here. Col-
lectively, these results indicate a broad base of mitochondrial diversity
in the earliest populations in North America and suggest the im-
portance of postcolonization population dynamics in structuring
modern genetic patterns. Cui et al. (13) recently bolstered this in-
ference by reporting four mtDNA genomes from mid-Holocene in-
dividuals from coastal British Columbia. The persistence of two
unique A2a lineages but the extinction of the D4h3a lineage observed
in the transition from ancient to modern Native American pop-
ulations emphasizes that extant genetic patterns alone can be in-
adequate indicators of prehistoric population diversity.
Although the Upward Sun River population postdates the end

of the original dispersal of populations into North and South
America by a few thousand years, it is temporally and geographically
the closest known to the larger interior Beringian population that was
the source of that earlier migration. Furthermore, if the Beringian
population was subdivided in refugia, as recently suggested (4), the
geographic structure seen in modern indigenous North Americans
may reflect early population differentiation and multiple dispersals of
small, isolated groups in interior Beringia to interior North America.
Available archaeological and genetic data from Late Pleistocene
contexts in North America are consistent with the origin of Native
American mitochondrial genomes in populations resident in interior
Beringia with subsequent dispersal southward sometime before 14–16
kya. The distribution of founding mitochondrial lineages in ancient
samples of the Americas suggests an early movement of interior
Beringian peoples southward at colonization, followed shortly by
similar dispersal along the Pacific coast. The ancient mitochondrial
genomes of the two contemporaneous Upward Sun River infant
burials provide an important anchor between modern patterns of
genetic variation and the inferences that may be drawn from retro-
spective population genetic analyses.

Conclusion
The genomic results on the Upward Sun River infants are significant
for several reasons. First, they not only double the number of late
Pleistocene burials that have been characterized genetically, but they
are also the only example to date of multiple burials from a single
North American Pleistocene-aged archaeological site. Second, the
genomic results from the USR infants support the Beringian route
into the Americas and imply substantial interior Beringian genetic
variation in the Late Pleistocene, consistent with expectations of the
Beringian Standstill Model. Phylogenetic coalescent dates informed
by the sample radiocarbon ages suggest more recent expansions for
the Native American C1 and B2 clades than has previously been
suggested. Third, these results clarify the infants’ biological relation-
ship to one another, something that morphological data could not do
(23). Fourth, the fact that the infants are contemporaneous in time
and buried together in a single act speaks to population diversity in
ways that single sample reports cannot. And fifth, the dual burial of
maternally unrelated infants (although perhaps paternally related),
suggests additional hypotheses regarding mortuary practices and so-
cial and ceremonial behaviors present at this early time; this line of
investigation may be addressed in the future by both nuclear genomic
analyses of the infants, as well as continued elaboration of the ar-
chaeological context of the site.
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Materials and Methods
USR1 and USR2 were complete and located 8–10 cm apart at the bottom of
the pit feature at the Upward Sun River site, located in the middle Tanana
River valley. Two petrous specimens were selected for DNA analyses given
their overall mass and high density. Details on site formation, chronology,
site disturbance, and excavation protocols are reported elsewhere (21–23, 34).
Destructive analysis and genetic sequencing of the material was formally
allowed by a Memorandum of Agreement with all interested parties. DNA was
extracted using a silica-based method and initially amplified using established
protocols. Extracts were prepared into Ion Plus Fragment libraries (Life Tech-
nologies) with no DNA fragmentation or size selection. Fragments were blunt-
end ligated with adapters containing laboratory-specific custom barcodes.
Mitochondrial DNA was captured by hybridization (24) and each sample library
was sequenced on its own Ion PIv2 chip (Life Technologies). Read processing
was completed either within Torrent Suite, with variants called using TVC, or
reads were processed using offline tools to determine DNA damage patterns.
Haplotypes of consensus mitochondrial genomes from these variants were
identified by MP and phylogenetic trees of all known related sequences
were created by ML. Coalescence dates for the clades within these trees were

calculated using ML-based or Bayesian-based phylogenetic methods. Work was
performed in a dedicated aDNA facility using established clean room protocols.
Blanks were included at all steps in the process before sequencing and no lab-
oratory personnel carry the haplotypes reported here. An expanded discussion
of detailed materials and methods can be found in SI Materials and Methods,
Figs. S1–S6, Tables S1–S3, and Datasets S1 and S2.
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