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Fractional exhaled nitric oxide (FeNO) is a convenient, non-invasive method for the assessment of active, mainly

Th2-driven, airway inflammation, which is sensitive to treatment with standard anti-inflammatory therapy.

Consequently, FeNO serves as a valued tool to aid diagnosis and monitoring in several asthma phenotypes.

More recently, FeNO has been evaluated in several other respiratory, infectious, and/or immunological

conditions. In this short review, we provide an overview of several clinical studies and discuss the status of

potential applications of NO measurements in clinical conditions beyond asthma.
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I
n asthma, fractional exhaled nitric oxide (FeNO) is

a well-established, non-invasive online method for

the assessment of active, mainly T-helper 2 (Th2) -driven

airway inflammation, often associated with airway eosi-

nophilia, which is sensitive to treatment with inhaled

corticosteroids (ICSs) (1). In the past two decades, this

method has been further refined and portable equipment

has been developed and validated against chemilumines-

cence devices (2). Consequently, for more than a decade,

FeNO has been implicated as avalued tool in the diagnosis

and monitoring of corticosteroid-sensitive asthma.

More recently, FeNO has been evaluated in several

other respiratory, allergic, infectious, and/or immunologi-

cal conditions. In this short review, we provide an overview

of studies applying FeNO measurements in several clinical

conditions (Table 1) and underlying pathophysiological

and biological mechanisms. In addition, potential clinical

applications of NO measurements and future needs be-

yond asthma will be discussed.

NO in chronic obstructive pulmonary disease
Persistent airway inflammation in both large and small

airways is a hallmark of chronic obstructive pulmonary

disease (COPD), causing progressive airflow limitation,

airway remodeling, and dyspnea. Several studies have

underscored the importance of the underlying systemic

inflammation in the pathophysiology of COPD (3�5). The

presence of concomitant systemic inflammation seems to

be related to disease severity and frequency of exacerba-

tions and can be measured as an increment of circulating

cytokines (IL-6, TNF-a), chemokines (IL-8), and acute

phase proteins, such as C-reactive protein (CRP) (6�8). In

line with the chronic inflammation, increased expression

of inducible nitric oxide synthase (iNOS) has been

demonstrated in both central and peripheral airways of

COPD patients (9). FeNO levels in unselected COPD

patients are not different from healthy controls, whereas

subgroups with increased FeNO levels have been reported

(10). Patients with severe COPD have overall lower FeNO
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levels than patients with milder disease (11). In addition,

smoking history must be taken into account as smoking

affects FeNO levels. Current smokers with COPD had sig-

nificantly lower FeNO levels compared to ex-smoking

COPD patients (12). Peripheral airway inflammation in

COPD can be reflected by increased alveolar NO levels

(CalvNO) (13, 14). Surprisingly, CalvNO was not sup-

pressed by systemic or ICSs in ultrafine particles (15).

In asthma, FeNO has been regarded as a marker of ICS

responsive, Th2�driven airway inflammation, often asso-

ciated with airway eosinophilia, with increased FeNO

levels during asthma exacerbations. In COPD, exacerba-

tions often follow respiratory infections that can be

reflected by increases in FeNO levels (16) and systemic

inflammation markers (17). In a recent study about ex-

smoking COPD patients, FeNO was shown to correlate

with sputum eosinophilia during exacerbations, and hence

acted as predictor of ICS-responsiveness in these patients

(18). In several COPD studies, FeNO had only a weak

predictive role to detect improvement in symptoms or

lung function after starting treatment with corticosteroids

(12, 19, 20). An analysis of published controlled rando-

mized studies using blood eosinophils as an algorithm

to treat COPD exacerbations with prednisolone showed

that a blood eosinophil count ]2% was associated with

a significantly better response to systemic prednisolone

compared to a blood eosinophil count B2% (21).

More recently, a subgroup of patients with asthma

COPD overlap syndrome (ACOS) has gained attention

as it is now recognized that these patients have more

frequent and more severe exacerbations (22). This COPD

phenotype also has less emphysema, increased airway

wall thickening, with often strongly variable FEV1 and

non-specific airway hyperresponsiveness (23). ACOS has

been associated with polymorphism in the gene GPR65

(23), which is associated with eosinophil activation. So

far, FeNO has not been specifically studied in ACOS

and such studies are needed to understand the value of

FeNO measurements in this phenotype.

Based on recent data, FeNO may have a role in the

phenotyping and monitoring of distinct COPD subsets,

including in predicting corticosteroid responsiveness in

ACOS patients and those with eosinophilic airway in-

flammation (24). Implementation of FeNO measurements

in the management of COPD needs further investigation.

NO in cystic fibrosis
Cystic fibrosis (CF) is characterized by a defect in a

chloride ion channel across the respiratory epithelium,

among other organs, that leads to increased mucus viscosity,

accumulation of mucus, chronic infection, and inflamma-

tion. FeNO levels are reported to be decreased in CF, with

further decreases following a mouthwash (25). The degree

of chloride ion transport impairment appears to relate

to the decrease in FeNO levels (26).

The lower NO production is probably related to the

reduction of NO production as both constitutional (27, 28)

and inducible NOS (29, 30) activity is reduced. Further-

more, asymmetric dimethylarginine (ADMA), an endo-

genous NO synthase inhibitor, is increased in the sputum

of CF patients (31), whereas arginine, a substrate for NO

production, is reduced (32). Another FeNO-decreasing

mechanism in CF might be an increased catabolism of NO

(33). Lower levels of FeNO can also be due to mechanical

factors as increased secretions might reflect a diffusion

barrier for NO. Reduced airway caliber might relate to

a lower bronchial epithelial area in contact with airway

lumen and therefore lower FeNO (34). Furthermore,

increased secretions might cause a diffusion barrier and

further reduce exhaled NO. Previous animal studies

argued for a role of NO deficiency in impaired airway

relaxation in CF which might contribute to the airway

obstruction (35). Interestingly, the low FeNO levels seen in

CF can be further reduced by systemic corticosteroids (36).

Table 1. Summary of nitric oxide measurements in different clinical conditions

FeNO CalvNO nNO

Asthma Normal/increased Normal/increased Normal/increased

COPD Normal/increased Increased NS

CF Normal/decreased Contradictory results Decreased

PCD Normal/decreased Contradictory results Decreased

Allergic rhinitis Normal/increased Normal NS

BPD Normal/decreased Decreased NS

HPS Decreased Increased NS

PAH Decreased Increased NS

SSc Normal/decreased Increased NS

Rhinovirus infection Increased NS NS

Allograft rejection Increased NS NS

NS: not studied, COPD: chronic obstructive pulmonary disease, CF: cystic fibrosis, PCD: primary ciliary dyskinesia, BPD:

bronchopulmonary dysplasia, HPS: hepatopulmonary syndrome, PAH: pulmonary arterial hypertension, SSc: systemic sclerosis.
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In CF, supplementation with L-arginine by infusion

(37), oral administration (38), or inhalation (39, 40) re-

sulted in increased FeNO levels. Antibiotic treatment

resulted in increased FeNO levels in one study (41), but

this was not reproduced in another study, although a

subgroup of patients appeared to exhibit an increase in

FeNO levels (42). Dornase alpha treatment did not sig-

nificantly affect FeNO in a small-scale study (43), but

changes in FeNO levels related to changes in lung function

in dornase alpha-treated-CF patients.

Several contradictory reports on levels of CalvNO

in CF patients have been published (44, 45). CalvNO

appeared to relate to ventilatory efficiency during exer-

cise and airway obstruction in one study (46), but more

studies are needed to confirm these findings.

Even if there is evidence for decreased levels of FeNO

in CF patients with a link toward at least lower lung

function, there is still lack of data regarding the role of

repeated FeNO measurements, for example, in the annual

follow-up or follow treatment with antibiotics in CF.

Presently, there is no evidence for a role for CalvNO

measurements in the management of CF.

NO in bronchopulmonary dysplasia
Prematurity and its main respiratory complication, bron-

chopulmonary dysplasia (BPD), are potentially associated

with lifelong lung function abnormalities, but the inflam-

matory component is most prominent during the neonatal

period. Preterm infants with BPD show a weak postnatal

increase in FeNO on day 28 as well as at a postmenstrual

age of 49 weeks, particularly in those developing moder-

ate or severe BPD (47, 48). Children with BPD are at

increased risk for respiratory symptoms, including wheeze,

cough, and dyspnea, even though the inflammatory

component often diminishes during the first years. In a

follow-up study of a subgroup of 53 previously preterm

children (aged 1091.5 years, 28 with BPD) 60% wheezed

at age B2 years, but only 13% wheezed in the past year.

In addition, non-specific airway hyperresponsiveness was

present in 49% despite normal FeNO levels (49). At school

age, children with very low birth weight (with or without

BPD) showed lung function abnormalities characterized

by airway obstruction, hyperinflation, and diffusion im-

pairment, with reduced or normal FeNO levels (50�53).

CalvNO levels in schoolchildren with BPD were similar to

preterm children without BPD and term children (52).

Nevertheless, in atopic children with very low birth weight,

non-specific airway hyperresponsiveness was related to

NO levels, derived from central airways (bronchial flux)

rather than from peripheral airways (CalvNO). It is likely

that the airway hyperresponsiveness is related to the ato-

pic phenotype rather than to the inflammatory process

due to prematurity (54). Exhaled breath temperature,

another measure of airway inflammation, was signifi-

cantly lower in BPD survivors than in asthmatic patients

(55). Many patients born prematurely, who developed

BPD as neonates, are now approaching adulthood.

Patients with chronic respiratory symptoms who were

born prematurely should undergo comprehensive lung

function testing including FeNO measurements. The

pathophysiology of BPD is not identical to that of asthma

and standard treatment for asthma is therefore ineffective

in BPD. FeNO measurements may be useful to differenti-

ate BPD from asthma.

NO in respiratory infections
The influence of respiratory infections on FeNO has not

been studied in detail, although infections of presumed

viral origin were early recognized to be associated with

an increase in FeNO levels (56, 57). Later studies have

indicated that this increase in FeNO is primarily related

to rhinovirus infections (58�60), whereas both infections

with respiratory syncytial virus (61, 62) and influenza

virus (63) seem to be associated with reductions rather

than increases in FeNO levels. The reason for increased

FeNO levels in rhinovirus infections is poorly studied,

but may involve upregulation of interferons causing in-

creased iNOS expression in the bronchial epithelium via

activation of signal transducer and activator of transcrip-

tion (STAT)-1 (56). In contrast to rhinovirus infections,

bacterial pneumonias are not generally related to in-

creased FeNO levels (64), and neither is the exposure

to endotoxin and other bacterial components (65�67).

Interestingly, in lung transplant recipients (LTRs), bac-

terial pneumonias have been shown to be associated with

increased FeNO levels, but whether this is a response seen

uniquely in these patients is presently unknown.

In summary, FeNO measurements do not seem to

be useful in the management of respiratory infections. It

is suggested that if a patient with (suspected) asthma

reports recent or ongoing symptoms of common cold, the

patient should be reexamined with regard to FeNO after

a symptom-free interval of at least 3�4 weeks.

NO in allograft rejections
More than 15 years ago, Silkoff et al. (68) showed

increases in FeNO levels within 20 days before or after

a suspected acute cellular rejection in LTRs, but not in

patients with stable Bronchiolitis Obliterans Syndrome

(BOS). In another study, Fisher et al. (69) showed in-

creased FeNO levels in patients with BOS grade 1 (early

stage), but not at later stages (BOS grades 2 and 3).

Several later studies showed elevated FeNO levels in

unstable BOS and in unstable non-BOS patients who later

developed BOS (70�72). The increased FeNO levels in

these situations were relatively stable and not related

to concomitant pulmonary infections which cause only

transient (2�3 weeks) increases in FeNO levels in LTRs

(73). Neurohr et al. (72) showed a negative predictive
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value of 97% for FeNO in predicting the development of

BOS. Changes in FeNO, more specifically an increase

of �10 ppb, had a very good specificity for detecting an

acute complication after lung transplantation (74).

The mechanism underlying increased NO formation

seen in unstable patients after lung transplantation is not

entirely clear. Early on, Gabbay et al. (75) reported that

increased iNOS expression in the bronchial epithelium of

patients with BOS which positively correlated with FeNO.

In contrast to neutrophilic asthma, FeNO has been shown

to strongly correlate with neutrophil counts in bronchoal-

veolar lavage (BAL) fluid of LTRs (72, 75), although the

biological link between neutrophilia and increased iNOS

expression in bronchial epithelium is presently unknown.

Another study showed increased sputum eosinophils and

neutrophils in BOS compared to non-BOS patients, which

was negatively correlated with lung function parameters

(76). A similar relationship to BOS has also been found

for both these cell types when measured in BAL fluid

(77). These findings may indicate that both eosinophilic

and neutrophilic inflammation contribute to the develop-

ment of BOS. However, a recent study showed that BAL

eosinophilia, but not BAL neutrophilia, relates to both

mortality and the development of chronic lung allograft

dysfunction (BOS and restrictive allograft syndrome) in

LTRs (78). Interestingly, one study has suggested that

interleukin (IL)-13 is pivotal in the development of BOS

(79). Thus, the latter two studies indicate that Th2-driven

mechanisms are important for allograft dysfunction in

LTRs. These data suggest that FeNO measurement in the

management of LTRs warrants further investigation.

NO in scleroderma and interstitial lung disease
Systemic sclerosis (SSc) is a connective tissue disorder of

unknown etiology that is often complicated by pulmonary

involvement, with pulmonary arterial hypertension (PAH)

and interstitial lung disease (ILD) being the major causes

of death. In early studies, it has been presented that FeNO

is increased in SSc patients (80), and specifically in asso-

ciation with fibrosing lung disease (81, 82). In contrast,

other studies showed lower FeNO levels in SSc patients

with ILD compared to patients without ILD (83, 84).

Patients with SSc and PAH show relatively low FeNO

values suggesting the important role of NO in regulating

pulmonary vascular resistance in SSc (82, 85). In some of

the early studies reporting increased FeNO levels, higher

exhalation flow rates have been used (e.g. 250 mL/s) and,

therefore, peripheral airways have probably been sampled

to larger extent (82, 83). Later, several studies indeed

showed convincing increases in CalvNO levels, whereas no

increase in FeNO could be detected (86�89). CalvNO

levels are specifically increased in early SSc, suggested to

reflect early inflammatory lung involvement in SSc (89). In

other studies, increased CalvNO was found to be related to

the grade of ILD (87) and alveolitis (90), and has been

shown to be a valuable tool for predicting ILD (88) and

pulmonary deterioration (91).

So far, application of FeNO measurement in the man-

agement of SSc and ILD patients is not supported by

data, whereas increased CalvNO concentrations could

be used to non-invasively assess the extent of ILD in

conditions including SSc.

NO in pulmonary arterial hypertension
PAH is characterized by an increase in pulmonary arterial

pressure and in pulmonary vascular resistance. This is

probably because of an imbalance of local vasodilators

and vasoconstrictors. For example, elevated levels of

endothelin-1, with vasoconstrictor properties, and de-

creased levels of NO, with vasodilator properties, or NO

metabolites have been described (92). Idiopathic PAH

(IPAH), that is, PAH without an identifiable cause, is the

most commonly studied condition. Decreased FeNO levels

have been generally found in patients with PAH and this

appears to be especially the case in IPAH (93). The

underlying mechanisms might include the lack of sub-

strate, as supplementation with L-arginine increased NO

levels (94), and inhibited NOS-related NO production, as

higher levels of asymmetric dimethylarginine have been

described in IPAH (95).

FeNO levels have been shown to negatively correlate

with pulmonary arterial pressure, assessed by echocardio-

graphy (96). Recent data in a PAH animal model showed

a correlation between treatment-related changes in FeNO

and pulmonary arterial pressure (97). Studies in humans

are in line with these animal data. An increase in FeNO

levels in patients with PAH under treatment was found to

be related with the decrease in pulmonary arterial pressure

and a prognostic factor for survival (98). Similarly, FeNO

levels increased after treatment with endothelin-receptor

antagonist (99), prostacyclin (100), or phosphodiesterase

5-inhibition (101). Furthermore, PAH patients who respon-

ded to therapy with prostacyclin showed higher baseline

FeNO levels (100).

Presently, insufficient evidence exists for recommending

routine use of FeNO measurements to predict or follow

response to specific PAH-therapy and hence, additional

studies need to be conducted.

NO in hepatopulmonary syndrome
In patients with liver cirrhosis and/or portal hypertension,

hepatopulmonary syndrome (HPS) is characterized by an

abnormal oxygenation (increased age-corrected alveolar�
arterial oxygen difference) due to intrapulmonary vascular

dilatations (on contrast-enhanced echocardiography or frac-

tional brain uptake after lung perfusion of technetium-

99m macroaggregated albumin lung scanning) (102). The

first reports of increased FeNO levels in patients with

liver cirrhosis and HPS are those from Cremona et al.
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(103) and Rolla et al. (104). Both studies showed a sig-

nificant decrease in FeNO levels and improvement in

oxygenation following liver transplantation (103, 105),

still the only cure for HPS. It must be stressed that the

technique used to collect exhaled air in these studies

was markedly different from current recommendations.

More recently, by using the technique of multiple flows

analysis of NO output, Delclaux et al. (106) demonstrated

that the increased FeNO levels previously reported in

cirrhosis are of alveolar origin and correlate with the

alveolar�arterial oxygen difference. Through additional

measurement of NO lung transfer, Degano et al. (107)

were able to demonstrate that the increase in CalvNO in

cirrhotic patients is due to increased NO output from

the alveoli and not due to the decreased lung transfer

factor of NO. They showed that in these patients alveo-

lar NO production was associated with hyperdynamic

circulatory syndrome, but not with arterial oxygenation

impairment. Authors suggest that the lack of correlation

between CalvNO and oxygenation impairment observed

in their patients may depend on differences in study popu-

lations as in previous studies patients had more severe

HPS. Alternatively, the relationship between CalvNO

and hyperdynamic circulatory syndrome suggests that

NO production may be similarly increased in both the

pulmonary and the systemic vessels in cirrhotic patients.

In conclusion, the above reported observations support

the theory that NO plays an important role in the patho-

physiology of HPS. However, the enthusiasm for inhib-

iting NO as therapeutical strategy in HPS has been

mitigated by the study of Gomez et al. (108), who reported

that inhibition of pulmonary NO-synthase activity (caus-

ing acute inhibition of pulmonary NO production) by

nebulized NG-nitro-L-arginine methyl ester (L-NAME)

had no effect on hypoxemia in patients with HPS.

Whether FeNO or CalvNO measurements can serve to

assess the development and the severity of HPS or in the

management of this condition awaits further investigation.

Nasal NO
In parallel to exhaled NO measurements, the value of

nasal NO (nNO) samplings in clinical conditions includ-

ing allergy, primary ciliary dyskinesia (PCD), and CF

has been investigated. nNO is produced in the upper

airway compartment, especially within the epithelium of

the paranasal sinuses, and can be reproducibly sampled

(109, 110). Currently, the best-validated sampling method

comprises aspiration of nNO at a constant transnasal

airflow rate as detailed in the last international recom-

mendations (111). Depending on the sampling flow rates,

normal values of nNO are within the range of approxi-

mately 100�800 ppb in both children (6�17 years) (112)

and adults (113).

In patients with untreated allergic rhinitis (AR), nasal

eosinophilia has been shown to be accompanied by in-

creased nNO levels as a result of enhanced iNOS expres-

sion within the nasal epithelium (114). Pro-inflammatory

stimuli such as intranasal allergen challenge (further)

increase nNO in sensitized patients (110), whereas anti-

inflammatory therapy reduces nNO (115). However,

conflicting data exist on the reproducibility of nNO

measurements and its applicability as biomarker of aller-

gic disease. Moody et al. (116) performed weekly nNO

measurements in 38 patients with perennial rhinitis during

3 weeks and found weak intrasubject repeatability with no

difference in nNO levels between allergic patients and non-

allergic individuals. Furthermore, nNO did not reflect

disease activity in the allergic patients (116).

In CF, low nNO levels have been reported (117, 118).

In some studies, lower nNO levels were associated with

increased systemic inflammation, assessed by CRP (119).

Furthermore, lower nNO levels were related with coloni-

zation with Staphylococcus aureus (120). Keen et al. (121)

found lower nNO levels in pancreatically insufficient CF

patients, with further decreases if their airways were colo-

nized with Pseudomonas aeruginosa. In contrast, no relation

with Pseudomonas aeruginosa was found in another study in

CF (118).

In patients with PCD, low nNO levels have been re-

producibly measured in several studies (122). Using the

handheld device at a nasal flow rate of 5 mL/s, showed

a reasonable intrasubject repeatability (coefficient of varia-

tion 15%), and an excellent sensitivity (�95%) and speci-

ficity (100%) for PCD screening in a validation study (123).

Two recent reports suggest a value for monitoring of

nNO in asthma to evaluate asthma control (124, 125). In

these studies, nNO levels were negatively related to asthma

control both in an adult population enriched with sub-

jects with concomitant rhinosinusitis (124) and in children

and young adults with asthma (125).

In summary, although promising in some conditions,

especially in PCD and allergy, nNO measurements in

routine diagnosis and clinical disease monitoring still

awaits validation.

Future perspectives
For additional future applications of FeNO in other

(respiratory) conditions, we need to more precisely define

the cut off values and potential confounders. A high or

low value in one condition does not necessarily apply

in another. Taking smokers with COPD as an example:

smoke exposure suppresses FeNO. However, within

the group, it is clear that patients responding to ICS

have relatively higher FeNO values compared to non-

responders (126). Thus a ‘high’ FeNO level in a smoker

may be different from a non-smoker, possibly due to

down-regulation of both inducible and constitutive NO

production. In addition, as some of the potential future

applications covered in the present review, such as PCD

and CF, prevail in children, it should be highlighted that
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FeNO cut off values should also be better defined in

this population (127).

According to current recommendations, FeNO is mea-

sured at a flow rate of 50 mL/s, reflecting NO production

from the central airways (1). Measuring NO at flow rates

ranging from 10 to 300 mL/s allows the assessing of NO

production in the more distal airways (128). Increase in

CalvNO indicates uncontrolled Th2-driven inflammation

within peripheral airways. Patients already on ICS treat-

ment can thus be switched to ultrafine particles ICS and

sometimes the addition of systemic corticosteroids may be

effective (129). However, presence of peripheral airways

constriction limiting axial diffusion might lead to contra-

dictory results with lower CalvNO levels not excluding

distal inflammation (130, 131). Whether CalvNO can be

used on an individual basis in the clinical setting needs to

be established. Furthermore, the method to be used to

estimate CalvNO, as new methods have been proposed

(132), as well as the need to assess peripheral obstruction in

interpreting CalvNO, highlight a need for consensus on

which regression model should be used and how to best

estimate NO-contribution from different lung compart-

ments (133). Further evaluation and validation of these

parameters is urgently needed to establish the use of

relevant inflammatory markers that can be used in clinical

practice and as outcome measures in clinical trials.

Partly for economic reasons and limited availability,

FeNO is presently measured only within a limited number

of clinical settings and only at a few time points. However,

as disease activity shows day to day variation, and

even variation within the same day, it is desirable to per-

form more frequent measurements. An increased diurnal

variability in FeNO levels was associated with loss of

asthma control whereas peak flow variability did not

differ between controlled and uncontrolled asthmatics

(134). We also need to know whether NO measurements

on a regular, preferably daily, basis can help to predict a

deteriorating disease beyond asthma. For this purpose,

cheaper and easily accessible/applicable home measure-

ment devices are indispensable.

Conclusions
Still today, the majority of clinical decision making is being

based on symptom control and lung function parameters.

For the future, we will need reliable and simply measur-

able biomarkers that can guide our clinical and treatment

decisions and help us to monitor treatment effects as well

as predicting future deteriorations. Together with blood

eosinophils, FeNO is the most commonly used biomarker

not only in research but also in clinical practice. In asthma,

the clinical importance of FeNO as a marker of Th2-driven

inflammation that is likely to respond to ICSs is well-

established. However, the role of FeNO in other obstruc-

tive airway diseases such as COPD and ACOS remains

to be further validated following initial studies showing

that increased FeNO levels can predict corticosteroid

responsiveness (24, 135). In other respiratory conditions,

such as CF, PCD, and PAH, low NO levels (nNO and/or

FeNO) may be valuable diagnostic or disease monitoring

tools. The feasibility and clinical applicability of partition-

ing FeNO contributions from peripheral and central

airways needs to be further established.
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