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Abstract

Background: Recently, increased development of clinical prediction models has been reported in the medical
literature. However, evidence synthesis methodologies for these prediction models have not been sufficiently studied,
especially for practical situations such as a meta-analyses where only aggregated summaries of important predictors
are available. Also, in general, the covariate sets involved in the prediction models are not common across studies. As
in ordinary model misspecification problems, dropping relevant covariates would raise potentially serious biases to
the prediction models, and consequently to the synthesized results.

Methods: We developed synthesizing methods for logistic clinical prediction models with possibly different sets of
covariates. In order to aggregate the regression coefficient estimates from different prediction models, we adopted a
generalized least squares approach with non-linear terms (a sort of generalization of multivariate meta-analysis).
Firstly, we evaluated omitted variable biases in this approach. Then, under an assumption of homogeneity of studies,
we developed bias-corrected estimating procedures for regression coefficients of the synthesized prediction models.

Results: Numerical evaluations with simulations showed that our approach resulted in smaller biases and more
precise estimates compared with conventional methods, which use only studies with common covariates or which
utilize a mean imputation method for omitted coefficients. These methods were also applied to a series of Japanese
epidemiologic studies on the incidence of a stroke.

Conclusions: Our proposed methods adequately correct the biases due to different sets of covariates between
studies, and would provide precise estimates compared with the conventional approach. If the assumption of
homogeneity within studies is plausible, this methodology would be useful for incorporating prior published
information into the construction of new prediction models.
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Background
Development of accurate clinical prediction models is a
relevant issue inmedical research, and the number of pub-
lished prediction models has increased substantially over
the last few decades. For example, the literature already
contains 102 proposed risk prediction models for cardio-
vascular disease [1] and 25 for the risk of developing type
2 diabetes (including 11 logistic regression models) [2].
However, many authors point out that these developed
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prediction models are not necessarily accurate and can-
not be generalized well to larger, broad populations [3–5].
One of the most relevant reasons is imprecise estimates
due to substantially insufficient samples compared with
the number of involved predictors in the development
of prediction models [3]. Therefore, the research syn-
thesis methodologies of clinical prediction models have
received interest in terms of achieving more accurate
estimations by using larger datasets. Debray et al. [6]
addressed the issue of synthesizing results by proposing a
multivariate meta-analysis approach to combining regres-
sion coefficients of published logistic prediction models.
The concept of using this approach for the synthesis of
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regression coefficients, which can be regarded as a vari-
ant of the generalized least squares method by Becker
and Wu [7], explicitly takes into account the distinction
of within- and between-study covariance of coefficients,
and it should provide a valid solution when complete
and unbiased estimates of the regression coefficients are
available. However, in general, each published predic-
tion model is developed using different sets of covari-
ates [7–10], and dropping relevant covariates would raise
potentially serious biases to the prediction models, as in
ordinary model misspecification problems. To tackle this
problem, the Fibrinogen Studies Collaboration [11] pro-
posed a multivariate meta-analysis approach to borrow
strength from partially adjusted results by using individ-
ual patient data (IPD), and Riley et al. [12] demonstrated
the approach in practice. In addition, Resche-Rigon et al.
[13] adopted a multiple imputation method with IPD. On
the other hand, instead of using every IPD record, Debray
et al. [6] considered a method that uses the reported sum-
mary statistics with one set of IPD. They adopted an ad-
hoc approach utilizing mean or zero imputations for the
missing coefficient estimates to straightforwardly apply
the multivariate meta-analysis method [6]. Although
Debray’s approach is a simple implementation strategy, it
should raise substantial biases to the synthesized results
because the interpretation of the coefficients depends
on which covariates are included in each regression
model.
In this article, we develop valid inference methods for

synthesizing regression coefficients of published predic-
tion models under different sets of covariates. We provide
bias assessment methods for regression coefficients when
important predictors are dropped in some studies, and
thereby supply bias-corrected estimators for the synthe-
sized prediction models under the assumption of the
homogeneity of studies in meta-analysis. We show that
our method is asymptotically more efficient than the con-
ventional approach applying multivariate meta-analysis,
by using studies with common covariate sets and the pre-
viously proposed approach of Debray et al. [6]. Further,
we demonstrate the robustness property against the mis-
specification of within-study covariance matrices. While
we discuss here the synthesis of logistic prediction mod-
els, our approach could be extended to more general cases
such as survival prediction models [14].
The rest of the paper is organized as follows. In

Section ‘Methods’, we consider as the first step the prob-
lem of omitted variable bias in the logistic regression
model. Then we propose a non-linear model with the
terms of omitted variable bias to synthesize the published
coefficients, where the generalized nonlinear least squares
(GNLS) method is applied for estimation. We also show
that our method has desirable properties (i.e., efficiency
and robustness). In Section ‘Results’, the performance of

our method is numerically checked by simulation studies.
Our method is illustrated through the use of a practi-
cal dataset in Section ‘Results: application in risk predic-
tion models for occurrences of stroke’. This dataset was
obtained from epidemiological studies on the incidence
of stroke; these studies were conducted in Japan and con-
tain several covariates. Each study separately analyzed
with logistic regression models on each cohort, but the
covariates in the models are unbalanced across cohorts.
Finally, Section ‘Discussion’ provides some discussion and
an examination of future problems.

Methods
We consider a similar situation as Debray et al. [6] in that
we can use reported summary statistics from previous
logistic regression models with different sets of covari-
ates and at least one IPD from the publications or the
authors themselves. Suppose that each published predic-
tion model has a subset of covariates in the IPD, and is
constructed for same prediction task. The number of pub-
lished prediction models is N (i = 1, . . . ,N) and the
ith article reports the estimated coefficients, θ̂ i, and the
covariance matrix �i = Cov(θ̂ i) (at least its diagonal ele-
ments). Each θ̂ i is a column vector of possibly different
length, θ̂ i = (θ̂i1, . . . , θ̂ipi)T , and pi represents the dif-
ferences of covariate sets among studies. To synthesize
these regression coefficients, Debray et al. [6] utilize the
mean or zero imputationmethods for omitted coefficients
and apply the technique of multivariate meta-analysis.
Another simple approach is to apply multivariate meta-
analysis using studies with common covariate sets [6].
However, the former approach leads to biased results and
the latter is not biased but leads to loss of efficiency by
ignoring indirect information from omitted studies. In
order to improve this situation, we propose a new method
for synthesis of logistic regression coefficients under dif-
ferent sets of covariates.
For simplicity, we assume the case where the true model

has the full set of covariates in the IPD, which means the
priormodels have subsets of covariates and are considered
as under-specified models. Note that since the omitted
variables from the true models (full models) may be cor-
related with the included variables, the subset models are
confounded and biased compared with true models. Our
method can be generalized to more complex cases where
the previous models for meta-analysis are a mixture of
under- and over-specified models. Our method can be
also applied to more general models such as generalized
linear models, including linear regression and other non-
linear regression models with some modification. This
study was approved by the Institutional Review Board at
the National Cancer Center in Tokyo and The University
of Tokyo, Japan.
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The omitted variable bias in the logistic regression model
Firstly, we introduce the omitted variable bias under one
original logistic regression setting, which can afterward be
extended to the meta-analysis setting with the assumption
that the covariate sets differ among studies.
Let X = (

1,X2, . . . ,Xj
)T and Z = (Z1, . . . ,Zk)

T be vec-
tors of covariates and Y ∈ {0, 1} be a binary response
variable. Suppose the data-generating process (DGP) can
be formulated by the true model:

logitP(Y = 1|X,Z) = XTα + ZTβ , (1)

where α,β are the true parameters of interest and “logit′′
means the logistic function, logit(p) = log (p/(1 − p)).
The misspecified model is assumed to be fitted, which
omits relevant covariates Z from the true model (1).
Specifically,

logit P(Y = 1|X) = XTγ . (2)

We investigate the degree to which the regression coef-
ficient γ , estimated under the misspecified model, differs
from the true parameters α,β , and define the differences
as the omitted variable bias.
To derive the omitted variable bias, the unbiasedness

condition of the estimating function can be employed
[15]; this approach is a generalized result of the landmark
paper of White [16]. In the meta-analysis framework, the
idea of the omitted variable bias can function as an anal-
ogy of different covariate sets and as a representation
of the incorporation of indirect information from prior
models.
In general, score functions from misspecified models

cannot satisfy the unbiasedness condition of estimating
functions. Therefore, the first step is to find the solution of
the unbiasedness condition of estimating function (3), i.e.,
find γ ∗ = f (α,β , pXZ), which is the function of the true
parameters α,β and the joint distribution of covariates,
pXZ ;

E
[{

Y − 1
1 + exp

(−XTγ ∗)
}
X
]

= 0. (3)

Here, the expectation is taken by the true joint distribu-
tion of Y, X and Z defined from (1) and pXZ . Under some
regularity conditions, themaximum likelihood estimate of
γ from the misspecified model (2) is a consistent estimate
of γ ∗.
Secondly, for assessing biases caused by dropping the

important predictors, we assume to have (at least) one
IPD with the outcome and the full covariates X, Z. This
assumption is considered reasonable for researchers who
want to develop a new prediction model on their own
IPD, incorporating prior summary statistics from regres-
sion results. Using the IPD, we can empirically solve (3)
and derive the omitted variable bias.

Note that in the general case, the function f cannot
be written in closed form due to its nonlinearity, but
in the following case where every omitted covariate is a
continuous variable it can be explicitly written.

Special case : omitted covariates, Z, are continuous
variables
In general, the maximum likelihood estimate of γ in (2)
(consistently) estimates γ ∗ as the solution of (3). In par-
ticular, for the cases of normal continuous variables, the
following analytical evaluation can be adapted. Now we
suppose Z|X follows the multivariate normal distribu-
tion, N(μZ|X ,�Z|X). Based on the normality assumption
of Z|X, we have

Z = �X + τ

where � = (δ1, . . . , δk)T is k × j matrix and τ ∼
Nτ (0,�Z|X).
Applying the technique of Chao et al. [17] to our covari-

ate structure and using the probit approximation of logis-
tic distribution, the expectation of Y conditional on X can
be expressed as follow:

E[Y |X]= P(Y = 1|X) =
∫ 1

1 + exp
(−XTα − (�X + τ

)T
β)

Nτ (0,�Z|X )dτ

≈ �

⎡
⎢⎣c
⎧⎪⎨
⎪⎩

XT (α + �Tβ)√
1 + c2βT�Z|Xβ

⎫⎪⎬
⎪⎭
⎤
⎥⎦ ,

where � is the cumulative distribution function of stan-
dard normal distribution and c = 16(3)1/2/15π is the
adjustment factor for probit approximation of the logistic
distribution proposed by Johnson et al. [18].
In order to satisfy the unbiasedness condition of the

estimating function, (3), we have

E

⎡
⎢⎣�

⎡
⎢⎣c
⎧⎪⎨
⎪⎩

XT (α + �Tβ
)

√
1 + c2βT�Z|Xβ

⎫⎪⎬
⎪⎭
⎤
⎥⎦X − �

{
c
(
XTγ ∗)}X

⎤
⎥⎦ = 0

Therefore, the function f should be denoted as

γ ∗ = f (α,β , pXZ) ≈ α + �Tβ√
1 + c2βT�Z|Xβ

(4)

which is the generalization of the results of Chao et al. [17]
and Cramer et al. [19].

Nonlinear model for meta-analysis
Suppose there exist N reported models (i = 1, . . . ,N)
with their estimated coefficients of α,β and γ and their
covariance matrices, and when i = 1, . . . , n, studies fit
the true model (1) with a full set of covariates, X and
Z, and when i = n + 1, . . . ,N , studies mistakenly omit
covariates Z. We assume the homogeneity of studies (i.e.,
the distribution of covariates and outcomes are common
across the studies in the meta-analysis). Here we show
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only the case where Z is omitted, but the case where X is
omitted can be considered in the same manner, and fur-
ther, it is easy to generalize to various other omittance
patterns. To synthesize the estimated coefficients vectors
from the logistic regression models, we apply a GNLS
method to incorporate the unequal variances of studies
into meta-analysis.
Based on this setting, the nonlinear model for meta-

analysis can be formulated as follows;

θ̂ i = gi(α,β , pXZ) + εi (i = 1, . . . , n), (5)

where

gi(α,β , pXZ) =
{

(αT ,βT )T (i = 1, . . . , n)

f (α,β , pXZ) (i = n + 1, . . . ,N), ,⎛
⎜⎝

ε1
...

εN

⎞
⎟⎠ ∼ N(0,�), � =

⎡
⎢⎣
Cov(θ̂1) . . . 0

...
. . .

...
0 . . . Cov(θ̂N )

⎤
⎥⎦ ,

and θ̂ i is the column vector of reported coefficients in
the ith study. The function f () comes from the omitted
variable bias formula introduced in the previous section,
whose formulation is reasonable if an assumption of
homogeneity of studies in meta-analysis is acceptable.
In a large sample, the estimated coefficients θ̂ i are

(approximately) normally distributed with mean θ i =
gi(α,β , pXZ) and covariance Cov(θ̂ i). This asymptotic
normality of estimated coefficients leads to the justifica-
tion of the GNLS approach.
Under the model (5), overall estimates of the regres-

sion coefficients α̂
∗ and β̂

∗
can be obtained by GNLS as

follows:(
α̂

∗T , β̂∗T)T = argmin
α,β

N∑
i=1

{
θ̂ i − gi(α,β , p̂XZ)

}T

×�−1
{
θ̂ i − gi(α,β , p̂XZ)

}
,

where p̂XZ is an estimate of pXZ from the IPD.
The diagonal of the covariance matrix � is typi-

cally reported in the literature but the off-diagonals are
unknown, thus off-diagonal elements can be imputed by
using the IPD.We employ the same imputation method as
Debray et al. [6] based on the IPD as follows;

Cov(θ̂ i,W ) = V̂
1
2
i RIPDV̂

1
2
i ,

where Cov(θ̂ i,W ) is a working covariance matrix of the ith
study which is applied to one of the block diagonal ele-
ments of�, V̂i = diag(Cov(θ̂ i)) is a diagonalmatrix whose
diagonal elements are the estimated standard errors (SE)
reported from each study and RIPD is a working cor-
relation matrix of coefficients calculated from the IPD.
The covariance matrix can be calculated with a sandwich
estimator under the model misspecification assumption

instead of the imputation based on the IPD [15], but there
computational complexity remains a problem and little
improvement is gained in simulations studies. Further-
more, even if the covariance matrix is misspecified, the
proposed estimator is still consistent and asymptotically
normally distributed with a sandwich covariance matrix.
This robustness follows the asymptotic theory of the gen-
eralized estimating equations. In this situation, let α̂W and
β̂W denote our estimators with the working covariance
matrix. The covariance matrix of these estimators can be
estimated by
(
D̂T

�−1
W D̂

)−1
D̂T

�−1
W Cov

(
θ̂ I
)

�−1
W D̂

(
D̂T

�−1
W D̂

)−1
,

where D̂ =
(
D̂T
1 , . . . , D̂

T
N

)T
, D̂i = ∂gi

(
α,β , p̂XZ

)
/

∂
(
αT ,βT

)
|(

αT ,βT
)
=
(
α̂T
W ,β̂T

W

), �W is a working covari-

ance matrix, and Cov(θ̂ I) =
({

θ̂ i − gi
(
α̂W , β̂W , p̂XZ

)}
{
θ̂ i − gi

(
α̂W , β̂W , p̂XZ

)T})
[20, 21]. This idea essen-

tially comes from Liu et al. [21] and can be regarded as
analogy of the result proposed by Chen et al. [22].
In addition to the above, if the working covariance

matrix is a good approximation of the true covariance
structure, the following relationship holds:

Avar
(
θ̂

∗) ≤ Avar
(
θ̂M
)

≤ Avar
(
θ̂S
)
,

where Avar denotes an asymptotic covariance matrix, and

θ̂
∗
, θ̂M and θ̂S are the estimates of θ =

(
αT ,βT

)T
obtained from our proposed method, from multivariate
meta-analysis using only the studies with full covariates
and from a single study with full covariates, respectively,
when the number of studies N goes to infinity.
Here, we assume a fixed effect model which presumes

that there is no heterogeneity in the distribution of covari-
ates and in the values of the parameters of interest. This
assumption may sometimes be unrealistic. Therefore, we
recommend considering whether this assumption is rea-
sonable based on background knowledge or reported
information. In addition, we can propose how to modify
this to a random effects model to incorporate the hetero-
geneity by assuming that the parameters underlying stud-
ies and the parameters of distribution of covariates follow
some distribution. For example, considering the case that
all omitted variables are continuous (i.e., Section ‘The
omitted variable bias in the logistic regression model)’, we
can incorporate random effects by assuming that α,β , �
and �Z|X in (4) follow distributions. Random effects in
α,β accommodate the heterogeneity of parameters and
random effects in � and �Z|X accommodates that of
distribution of covariates.
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Results: simulation studies
Simulation setup
In this section we describe a Monte Carlo simulation
which was performed to evaluate the performance of our
proposed method. In the simulation, we empirically cal-
culate the omitted variable bias by using Eq. (3) instead
of Eq. (4). The parameters which varied in the simula-
tion scenario were the true value of a parameter in a DGP
model, the number of predictors and the distribution of
covariates (continuous/discrete covariates). For simplic-
ity, we examined the case where the number of predictors
in the models in this simulation was 1 or 2 (i.e. X1, X2
or both). The DGP model was logitP(Y = 1|X1,X2) =
α0 +α1X1 +α2X2. For checking the sensitivity for the true
value of the parameter in the DGP model, α1 varied from
-2 to 1, and true values of other parameters was set at 1
(i.e. α0 = α2 = 1).
We simulatedN = 9, (i = 1, . . . , 9) independent studies

with 100 samples in each, and of these studies, 3 studies
(i = 1, 2, 3) included a full set of covariates (X1 and X2), 3
(i = 4, 5, 6) were supposed to omit X1 and 3 (i = 7, 8, 9)
were supposed to omit X2. One of the studies with the
full set of covariates was used as the IPD. As mentioned
above, the off-diagonals of the covariance matrix were
often unknown, thus we adopted the imputation by IPD
proposed in the Methods section. In this simulation, we
compared the performance of this imputation with the
setting using a true covariance structure, which could be
estimated from simulation settings.
We classified the scenario into 2 cases according to the

distribution of covariates (continuous/discrete distribu-
tion). In Case 1, X1 and X2 were both continuous and
followed the multivariate normal distribution, X1,X2 ∼
N
((

2
2

)
,
(
1 r
r 1

))
. The correlation, r, between X1 and

X2 was set at 0 or 0.5. In this case, we checked the perfor-
mance of the approximation formula (4). Case 2 was the
more practical case in which continuous and discrete dis-
tributions were mixed (i.e., X1 was continuous and X2 was
binary). X2 was binarized from the distribution in Case 1
by a threshold value set at 2. Under these settings, 1000
Monte Carlo simulations were implemented. If the mod-
els could not be fitted and converged, their results were
excluded from the calculation of bias and mean squared
error (MSE).
Performance of the proposed method was evaluated by

bias and MSE, comparing it with two ordinary meth-
ods. M1 was the multivariate meta-analysis using only 3
studies with a full set of covariates. From a theoretical
perspective, the M1 strategy does not include any bias
but is inferior in efficiency compared with our proposed
method, which can be checked using the results of MSE.
M2was themultivariatemeta-analysis aftermean imputa-
tion of missing coefficients, whose method was proposed

in Debray et al. [6]. For example, coefficients and their
estimated standard errors of X2 from 3 studies (i = 4, 5, 6)
were imputed by the means of the other 6 studies. We
tried the zero imputation method, which Debray et al.
adopted [6] and called uninformative regression coeffi-
cients, but it did not show notable results compared with
the results from M2 (mean imputation). Therefore, we
decided not to include the results of this method.

Simulation results
The results of the simulation revealed that compared with
the ordinary meta-analysis, our proposed estimator gen-
erally producedmore precise and less-biased estimates for
all simulation settings (Table 1). The rationale of small
proportion of convergence at α1 = 1 was that under the
simulation setting, P(Y = 1) could be over 0.9, which led
to small number of event at a single study. The bias of our
estimator ranged from -0.052 to 0.097 (mean: 0.021) for
Case 1 and from -0.064 to 0.488 (mean: 0.040) for Case
2. The MSE of our estimator ranged from 0.021 to 0.803
(mean: 0.124) for Case 1 and from 0.012 to 0.486 (mean:
0.091) for Case 2. Although the M2 strategy in Case 1
and r = 0 yielded somewhat biased results, the great-
est amount of variation seemed to arise from the biased
estimates of α0 in the models from which X2 was omitted.
The relative efficiency (RE) of the estimates of M1 ver-

sus those of our proposed method ranged from 1.023 to
9.913 (mean: 2.323) for Case 1 and from 1.098 to 10.047
(mean: 2.495) for Case 2. The RE of the estimates of M2
ranged from 1.025 to 82.069 (mean: 20.043) for Case 1 and
from 0.600 to 93.405 (mean: 123.760) for Case 2.
In terms of the RE of the estimates from the true

covariance structure versus the imputation method for
unknown elements in the covariance structure, the RE
of the covariance structure imputed from the IPD versus
the true covariance structure ranged from 0.900 to 1.448
(mean: 1.126) for Case 1 and from 0.895 to 1.193 (mean:
1.065) for Case 2.
Comparing the MSE by correlation value (r = 0 versus

0.5), in Case 1 themeanMSE of our proposedmethod was
r = 0: 0.074 versus r = 0.5: 0.005. In Case 2, the mean
MSE of our proposed method was r = 0: 0.113 versus r =
0.5: 0.174.

Results: application in risk predictionmodels for
occurrences of stroke
We applied the proposed methods to a series of epidemi-
ologic studies that developed risk prediction models for
occurrences of stroke. Stroke is one of the leading causes
of death or physical/cognitive impairment in both devel-
oped and developing countries, and therefore numerous
prediction models have been developed and many clinical
characteristics have been identified as potential predictors
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Table 1 Performance of our proposed method on simulation data (Bias and MSE)

Case 1; Both X1 and X2 are continuous Case 2; X1 is continuous and X2 is binary

Correlation r=0 Correlation r=0.5 Correlation r=0 Correlation r=0.5

Covariance matrix imputed with IPD

-2 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1

Bias Proposed method

α0 -0.002 0.024 0.030 0.000 0.028 0.029 0.043 0.052 0.025 0.022 0.013 -0.040 0.057 0.037 0.006 -0.006

α1 -0.052 -0.022 -0.001 0.086 -0.049 -0.024 -0.011 0.083 -0.050 -0.015 -0.003 0.071 -0.064 -0.017 0.002 0.025

α2 0.038 0.022 0.012 0.097 0.030 0.018 0.010 0.058 0.044 0.007 0.018 0.266 0.049 0.001 0.012 0.488

M1: Full set only

α0 0.011 0.010 -0.018 -0.365 0.009 -0.009 -0.029 -0.058 0.011 0.016 -0.004 -0.016 0.027 0.011 -0.007 -0.002

α1 -0.009 0.003 0.011 0.061 0.001 0.002 0.000 0.082 -0.001 0.002 0.000 0.029 -0.006 0.001 -0.004 0.012

α2 0.001 -0.009 -0.019 0.061 0.001 0.000 -0.015 0.023 0.008 -0.027 -0.006 0.124 0.027 -0.008 0.001 0.272

M2: Mean imputation

α0 2.166 1.551 -0.193 -1.275 1.197 0.724 -0.145 -0.590 2.930 2.116 0.048 -1.131 2.612 1.789 0.050 -0.841

α1 -1.807 -0.818 -0.171 0.218 -1.921 -1.101 -0.415 -0.135 -1.334 -0.756 -0.082 0.203 -1.385 -0.800 -0.142 0.075

α2 0.811 0.218 -0.034 0.226 1.543 0.940 0.109 -0.145 0.034 -0.138 -0.069 -0.460 1.292 0.778 0.010 -1.356

MSE Proposed method

α0 0.123 0.098 0.205 0.803 0.085 0.056 0.101 0.251 0.096 0.055 0.065 0.136 0.074 0.044 0.047 0.086

α1 0.045 0.021 0.037 0.215 0.060 0.025 0.057 0.181 0.051 0.015 0.012 0.058 0.057 0.017 0.016 0.059

α2 0.033 0.022 0.034 0.204 0.044 0.027 0.060 0.188 0.144 0.055 0.051 0.247 0.173 0.070 0.076 0.486

M1: Full set only

α0 0.248 0.208 0.453 7.960 0.160 0.131 0.274 0.707 0.195 0.116 0.142 0.300 0.169 0.099 0.108 0.197

α1 0.068 0.033 0.068 0.620 0.075 0.033 0.094 0.398 0.096 0.027 0.025 0.112 0.099 0.030 0.028 0.112

α2 0.038 0.032 0.093 0.591 0.045 0.034 0.118 0.570 0.162 0.077 0.103 2.165 0.190 0.095 0.120 4.883

M2: Mean imputation

α0 5.290 2.663 0.236 1.929 1.633 0.625 0.113 0.638 8.771 4.532 0.039 1.372 6.912 3.242 0.033 0.775

α1 3.694 0.806 0.071 0.242 3.771 1.254 0.214 0.213 2.083 0.601 0.012 0.126 2.075 0.661 0.026 0.087

α2 0.870 0.195 0.088 0.209 2.424 0.934 0.091 0.333 0.310 0.098 0.079 2.058 1.919 0.676 0.065 5.396
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Table 1 Performance of our proposed method on simulation data (Bias and MSE) (Continued)

Convergence proportion (%)

100 100 99.1 61.5 100 100 98.4 67.3 100 100 98.4 61.2 100 100 98.4 60.3

True Covariance matrix

-2 -1 0 1 -2 -1 0 1 -2 -1 0 1 -2 -1 0 1

Bias Proposed method

α0 0.032 0.034 0.049 0.215 0.058 0.038 0.050 0.185 0.059 0.045 0.028 0.032 0.075 0.054 0.014 0.041

α1 -0.118 -0.048 -0.005 0.099 -0.110 -0.046 -0.010 0.105 -0.116 -0.037 -0.004 0.072 -0.117 -0.036 0.003 0.036

α2 0.070 0.055 0.052 0.104 0.055 0.049 0.058 0.096 0.082 0.036 0.039 0.250 0.072 0.023 0.037 0.462

MSE Proposed method

α0 0.111 0.089 0.196 0.690 0.077 0.053 0.094 0.204 0.091 0.054 0.065 0.123 0.071 0.043 0.046 0.080

α1 0.050 0.021 0.034 0.161 0.061 0.024 0.050 0.125 0.057 0.015 0.012 0.050 0.062 0.017 0.015 0.051

α2 0.031 0.022 0.032 0.146 0.039 0.026 0.053 0.136 0.133 0.049 0.049 0.215 0.145 0.060 0.069 0.417

Convergence proportion (%)

100 100 99.1 61.5 100 100 98.4 67.3 100 100 98.4 61.2 100 100 98.4 60.3
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[23, 24]. However, the overall influence of various risk fac-
tors is still unclear, with conflicting results from several
reports [24].

Application setup
We obtained 10 sets of IPD from studies conducted by
the Japan Public Health Center-based Prospective Study
(JPHC study). The JPHC study covers 11 public health
center areas (Areas 1 – 11) across Japan. The total num-
ber of participants was 140,420, and the study population
consisted of residents who were 40 to 69 years old at the
time of the baseline survey. Details of the study design are
well-documented in a previous report [25]. The outcome
was confirmed according to the criteria provided by the
National Survey of Stroke, which required a constellation
of neurological deficits of sudden or rapid onset lasting at
least 24 hours or until death [26, 27].
We fitted a logistic regression model to each available

set of IPD and explored the important covariates related to
patient characteristics and metabolic syndrome [28–30]
such as age (years), time since last meal (minutes), body
mass index (BMI (kg/m2)), total cholesterol level (mg/dl),
blood pressure (mmHg), cigarettes (per day), diabetes
(yes/no), blood glucose (mg/dl), high-density lipopro-
tein (HDL (mg/dl)), and serum triglycerides (mg/dl)
(Table 2). The sets of available covariates differed by
region. For example, IPD from the Area 1 cohort did not
include data on blood glucose, HDL or serum triglyc-
erides since subjects in that cohort did not undergo any
blood tests. One of our motivations in this study was
to overcome this discrepancy among cohorts, which is
typical in large-scale cohort studies investigating several
outcomes.
Coefficients from each model were stored as aggregated

statistics, which could be regarded as prior studies for
meta-analysis. In terms of handling sporadically missing
data (average missing rate was 2.8% with a standard devi-
ation of 2.5%), complete case analysis was executed. One
cohort (Area 9) remained as IPD and one cohort (Area 11)
was used as test data for prediction. Next, we compared
our methodology with conventional multivariate meta-
analysis using only studies with a full set of covariates and
with results based solely on IPD data.
Lastly, new prediction models were constructed by

plugging the synthesized coefficients into the models and
checking the performance of each model using the test
data.
The discriminant performance of the prediction mod-

els was measured by the area under the receiver opera-
tor characteristic curve (AUC) and the Brier score (BS)
(multiplied by 100), both of which are indicators of the
accuracy of the prediction model. A higher AUC indi-
cates higher prediction accuracy, while the BS has an

inverse relationship [31]. In addition, the model’s calibra-
tion was examined by the Hosmer-Lemeshow chi-squared
statistic [32].

Application results
The results demonstrated that our approach provided
considerably narrower confidence intervals and slightly
better prediction performance compared with conven-
tional multivariate meta-analysis (Table 2). Our estimator
reduced the SE by 38–53 and 56–71% compared with the
SE from conventional meta-analysis and from the IPD,
respectively.
In terms of prediction performance, the predic-

tion model constructed from the synthesized coeffi-
cients showed slight improvements over the conventional
approach, particularly in BS. The AUC and BS were
respectively increased by 1.1 and −1.0% on average com-
pared with conventional meta-analysis, and decreased
by −0.4 and 1.0% on average compared with the IPD. The
improvements in prediction performance were relatively
small because the cohort of test data was remarkably simi-
lar to other cohorts across Japan that were aggregated into
summary statistics as previously published studies.

Discussion
Along with increasing attention to prediction models,
there has been higher demand for approaches to the
meta-analysis of regression coefficients. However these
methodologies are not well developed due to the many
difficulties caused by the different settings used by vari-
ous studies, and further research is still needed, particu-
larly compared with conventional meta-analysis methods
such as synthesizing mean differences, correlation and so
on [7]. This study demonstrated a method to conduct
the meta-analysis of regression coefficients with differ-
ent covariate sets under the assumption of homogeneity
of studies (i.e., it is applicable in cases where studies in
the meta-analysis have similar distributions of covariates
and outcomes). Although this study temporarily assumed
the models with a full set of covariates as a true model,
our approach can be generalized to any formulation of
previous models even if they are over-/under-specified
compared to a constructing model. We notice, however,
that we need careful arguments about what is an appro-
priate covariate set. Further, the assumption that (at least)
one IPD is available can be considered reasonable in the
frequent case in which a single researcher wants to con-
struct a new prediction model on his or her own IPD,
incorporating prior regression results (but with such prior
results reported just in the form of summary statistics).
The minimal use of IPD (use of one IPD and other sum-
mary statistics) distinguishes our approach from that of
the Fibrinogen Studies Collaboration [11]. They assume
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Table 2 Estimated regression coefficients (and standard error) from JPHC data

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6

Sample 2121 1678 3396 859 3135 538

Incedence of stroke 109 82 132 23 142 35

Intercept -12.280 (1.394) -9.828 (1.668) -9.917 (1.225) -8.703 (2.846) -11.940 (1.367) -9.475 (3.070)

Age 0.085 (0.022) 0.095 (0.024) 0.066 (0.018) 0.022 (0.042) 0.113 (0.016) 0.126 (0.042)

Postprandial time -0.016 (0.026) -0.023 (0.041) -0.019 (0.018)

BMI 0.001 (0.001) 0.000 (0.001) 0.000 (0.001) 0.000 (0.002) 0.000 (0.001) -0.002 (0.002)

Total cholesterol level 0.003 (0.003) -0.001 (0.003) -0.001 (0.003) -0.001 (0.006) -0.004 (0.003) -0.011 (0.006)

Blood pressure 0.027 (0.005) 0.016 (0.007) 0.028 (0.005) 0.022 (0.012) 0.020 (0.006) 0.013 (0.010)

Smoke (per day) 0.020 (0.009) 0.028 (0.010) 0.010 (0.007) 0.012 (0.019) 0.000 (0.007) -0.019 (0.021)

Diabetes 0.397 (0.504) 1.202 (0.525) 0.738 (0.362) 0.240 (1.314) 0.302 (0.314) -0.174 (1.065)

Glucose -0.004 (0.004) 0.012 (0.006) 0.004 (0.003)

HDL -0.005 (0.007) 0.012 (0.014)

Triglycerides 0.001 (0.001) 0.000 (0.001) 0.001 (0.003)

AUC 67.01 68.74 67.97 65.52 69.16 68.19

Brier score 7.71 7.72 7.65 8.07 7.78 7.68

Hosmer-Lemeshow 10.91 15.78* 14.01 101.45* 54.96* 17.70*

Area 7 Area 8 Area 9 Area 10 Proposed Conventional

Sample 1601 1731 1586 2725

Incedence of stroke 85 90 90 52

Intercept -9.223 (1.710) -8.413 (1.499) -10.300 (1.729) -10.500 (1.878) -10.170 (0.633) -9.408nn

Age 0.088 (0.020) 0.072 (0.018) 0.096 (0.021) 0.069 (0.020) 0.067nn 0.060n

Postprandial time -0.009 (0.024) -0.007 (0.025) -0.006 (0.019) 0.018 (0.034) 0.013 (0.011) 0.017 (0.013)

BMI -0.001 (0.001) -0.002 (0.001) -0.001 (0.001) 0.000nn 0.000nnn 0.000 (0.001)

Total cholesterol level 0.001 (0.004) 0.001 (0.003) 0.001 (0.004) -0.003 (0.005) -0.001 (0.001) 0.001 (0.002)

Blood pressure 0.011 (0.006) 0.015 (0.006) 0.015 (0.007) 0.017 (0.007) 0.017 (0.002) 0.011 (0.004)

Smoke (per day) 0.025 (0.010) 0.007 (0.010) 0.020 (0.009) 0.011 (0.010) 0.013 (0.004) 0.020 (0.006)

Diabetes 0.168 (0.455) 0.052 (0.485) 0.268 (0.490) 0.694 (0.465) 0.158 (0.180) 0.084 (0.262)

Glucose 0.009 (0.003) 0.004 (0.004) -0.001 (0.008) 0.010 (0.001) 0.014 (0.002)

HDL -0.022 (0.010) -0.001 (0.009) -0.013 (0.010) 0.005 (0.012) -0.004 (0.005) -0.008 (0.006)

Triglycerides -0.003 (0.002) -0.002 (0.002) -0.001 (0.001) 0.002 (0.002) 0.000 (0.001) 0.000 (0.001)

AUC 68.32 69.47 68.29 67.28 68.01 67.24

Brier score 7.77 7.63 7.64 8.03 7.72 7.80

Hosmer-Lemeshow 58.60* 28.70* 25.38* 186.76* 21.13* 21.17*

Proposed: our proposed method; Conventional: conventional meta-analysis using only studies with a full set of covariates
Area 9 is IPD
*p-value of Hosmer-Lemeshow test is less than 0.05
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that both full and partial models are applied in each cohort
by using its cohort IPD, and thus the estimation of the
correlation of coefficients between full and partial mod-
els is applicable. As the future work, we need to study
the relationship between our method and their one, and
examine whether their method can be applicable to the
situation we are considering. Regarding these discussions,
our study can provide the following guidelines for practi-
tioners about how to analyze prior models with their own
IPD by recognizing the issue of omitted variable bias as
the differences of sets of predictors between their con-
structing models and prior models: 1) the first step is to
construct a new and temporal model on their own data
set, and 2) the second step is to apply our method to
synthesize the previous regression coefficients with their
temporal model and then update the model and obtain
more accurate estimators.
Our method proved robust against the misspecification

of the covariance structure. Because of this property we
can arbitrarily set the covariance matrix of coefficients
and thus it is possible to avoid the argument, often dis-
cussed withmethods such as that of Becker andWu [7], on
whether the full covariance matrix of coefficients should
be reported or not. This robustness property can be con-
sidered as an analogical result provided by Liu et al. [21].
They provide a framework of meta-analysis under het-
erogeneity by using a confidence density function and
reparametrization of the problem setting. Their approach
utilizes the reparameterization connecting each study-
specific parameter to the common parameter using the
transformation function Mi, which is used as the omitted
variable bias formula in our setting. However, they assume
that the omitted covariates are fixed values and thus they
can estimate Mi without a consideration of the distri-
bution of covariates. In contrast, our approach provides
more general guidelines for treating missing covariates in
the meta-analysis.
The simulation performed in this study illustrated that

our method is unbiased and has greater efficiency than a
conventional meta-analysis approach as well as the tech-
nique proposed by Debray et al. [6]. Although our estima-
tor was most efficient if the covariance structure was truly
specified, it maintained its efficiency even if we misspec-
ified the covariance structure, with a loss of efficiency by
misspecification of only around 10%.
Finally, we demonstrated the practical use of our

approach with medical data on stroke prediction.
Although the improvement of accuracy of the prediction
model was relatively small, the confidence intervals of syn-
thesized coefficients were dramatically decreased because
information from other studies helped improve efficiency.
In the context of multivariate meta-analysis, it is well
known that we can gain precision by borrowing strength
from other partially reported results [33–35]. This implies

that our methodology can be applied not only to predic-
tion models but also to observational studies such as a
case-control/cross-sectional study whose main purpose is
to identify causal effects.
As a limitation of this study, our method was examined

in only one practical dataset. Although this data includes
over 100,000 samples, the population was Japanese only,
and can thus be regarded as one group with small het-
erogeneity. This situation may not be representative of
an ordinary meta-analysis because the majority of recent
meta-analyses include several groups with large hetero-
geneity due to studies undertaken globally. We think,
however, that we took this heterogeneity into account by
incorporating random effects, as mentioned in the Meth-
ods section. We welcome the re-evaluation of our method
in other practical cases. Another potential limitation is
that we implicitly assumed that the distributions of covari-
ates are the same between studies. The assumption is
required to calculate the expectation in Eq. (3) for each
study to derive the omitted variable bias formula, γ ∗ =
f (α,β , pXZ). The assumption of homogeneity can also be
relaxed by incorporating random effects into parameters
related to the distribution, as discussed in the Methods
section. However, a random effect model obscures the
objective of a meta-analysis because under this model, a
global “average”İ effect and the effect prevailing in partic-
ular circumstances are not identical [36]. We need further
research about how to incorporate random effects and its
interpretation.

Conclusions
This study proposed a correction method for the omitted
variable bias due to different sets of covariates between
literature models in the meta-analysis of regression coef-
ficients. Our approach attained efficiency that was com-
parable to that of conventional approaches. This study
should be useful for practitioners who want to develop
their prediction model on their own dataset and incorpo-
rate prior regression results.
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