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Abstract

Adamantyl ureas are good soluble epoxide hydrolase (sEH) inhibitors; however they have limited 

solubility and rapid metabolism, thus limiting their usefulness in some therapeutic indications. 

Herein, we test the hypothesis that nodal substitution on the adamantane will help solubilize and 

stabilize the compounds. A series of compounds containing adamantane derivatives and isoxazole 

functional groups were developed. Overall, the presence of methyl on the nodal positions of 

adamantane yields higher water solubility than previously reported urea-based sEH inhibitors 

while maintaining high inhibition potency. However, it did not improve microsomal stability.
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The mammalian soluble epoxide hydrolase (sEH, E.C. 3.3.2.10) is involved in the 

metabolism of epoxy-fatty acids to vicinal diols through a catalytic addition of a water 

molecule.1,2 Endogenous substrates for the sEH include epoxides of arachidonic acid, 

epoxyeicosatrienoic acids (EETs), and of docosahexaenoic acid, known as EpDPEs, and 

other fatty acid epoxides.3,4 EETs are important lipid mediators that have key roles in blood 

pressure regulation by exerting vasodilatory effects through the activation of the Ca2+-

activated K+ channels in endothelial cells, which are beneficial in many renal and 

cardiovascular diseases.5,6 Furthermore, the EETs and EpDPEs have some anti-

inflammatory and analgesic properties.7 Recently, EETs have been reported to increase 

efficiency of organ transplant.8 Their conversion to dihydroxyeicosatrienoic acids (DHETs) 

by sEH produces a molecule that is readily conjugated and removed from the site of action. 

The inhibition of sEH in vivo by highly selective inhibitors results in an increase in the 

concentration of EETs and EpDPEs, and is accompanied by a reduction in angiotensin 

driven blood pressure, but also reduction of inflammation and pain, thereby suggesting that 

sEH is a promising target for the treatment of hypertension, inflammatory diseases and 

pain.9-11

Early on, small N,N’-disubstituted symmetric ureas, such as 1,3-dicyclohexyl urea, were 

found to be very potent inhibitors of sEH.12-16 However, these kinds of compounds have 

poor solubility in many solvents. To improve solubility, asymmetric ureas with a flexible 

side chain, such as AUDA (12-(3-adamantylureido)-dodecanoic acid) or AEPU (1-

adamantanyl-3-{5-[2-(2-ethylethoxy)ethoxy]pentyl]}urea), were developed.17 While this 

class of sEH inhibitor shows biological effects when tested in vivo, they are rapidly 

metabolized, limiting their utility.18 Interestingly, a major site of metabolism for these 

compounds is on the adamantine, although beta oxidation of the side chains by CYPs is also 

important.19 Therefore, to improve the metabolic stability, a third class of conformationally 
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restricted inhibitors, in which the adamantine was replaced by phenyl derivatives such as 

TPAU (1-trifluoromethoxyphenyl-3-(1-acetylpiperidin-4-yl) urea) or trans-4-{4-[3-(4-

trifluoromethoxyphenyl)-ureido] cyclohexyloxy} benzoic acid (t-TUCB), were 

designed.20,21 This latest series includes very potent and more metabolically stable sEH 

inhibitors that permit in vivo studies.22 However, these compounds have in general poorer 

solubility than the corresponding adamantane containing compounds, and are expensive to 

synthesize since several steps (up to 5) are required.

A promising way to enhance the water solubility of the urea inhibitors of sEH is the 

introduction of heterocyclic moieties.23 For example, ureas synthesized with amino-

pyridazines, pyridines, pyrimidines, triazines, oxazoles and thiazoles containing amino 

groups showed high potency against epoxide hydrolases from Mycobacterium 

tuberculosis.24 Thus, here as a continuation of previous work25,26 we report the testing of 

adamantyl-ureas containing isoxazoles, however we also tested the hypothesis that nodal 

substitution on the adamantane will help solubilize and stabilize the resulting compounds 

because for adamantane containing urea inhibitors hydroxylation of nodal carbon is 

important metabolic pathway leading to a decrease of inhibitory potency.

Ureas were synthesized from 1-(isocyanatomethyl)adamantane (1a) or 1-isocyanato-3,5-

dimethyladamantane (1b) and 3,5-disubstituted isoxazoles with aminomethyl or 

pyrrolidine-2-yl as one of the substituents. Compound 1a was selected due to the flexibility-

giving methyl spacer. The starting isoxazoles also contain a methylene bridge between the 

amino group and the isoxazole ring, in some cases this bridge included the pyrrolidine ring. 

Selected isoxazoles contain electron donor (Me, Et, i-Pr) as well as electron acceptor (4-

MeC6H4, 4-MeOC6H4, 3(4)-FC6H4) substituents and amino methyl groups in the 3 and 5 

positions.27-33 Such a series of disubstituted isoxazoles will allow us to investigate the 

influence of its structure on the urea formation reaction and on the inhibition potency of 

corresponding ureas.

As described in scheme 1, simple (one step) and complementary approaches were used to 

obtain the desired compounds in high yield (> 95%).

The inhibition potency of the synthesized compounds was measured using recombinant 

purified human sEH and CMNPC (cyano(6-methoxynaphthalen-2-yl)methyl ((3-

phenyloxiran-2-yl)methyl) carbonate) as a substrate as described.34 For the isoxazole 

containing 1,3-disubstituted ureas, the best inhibitory potency (4.9 nM) was recorded for the 

compound 3c with furyl group in 5th position of isoxasole ring (Table 1). Compound 3d 
with the methyl substituent in 5th position of isoxasole ring has good inhibition potency (6.7 

nM). Further increase of this substituent to the ethyl (3e) and i-propyl (3f) leads to the 30- 

and 45-fold decrease in potency (higher IC50) and accompanied decrease in water solubility. 

Potency of the ureas with phenyl substitutents in 5th position of isoxasole ring is only 

slightly affected by the structure of those groups and ranges from 10.5 to 16.6 nM.

Due to the low reactivity of secondary amines in the reaction of nucleophilic addition to 

isocyanates reactions of isoxazoles 2i-m were carried out at 80 °C in presence of Et3N 

(Scheme 2).
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Potency of 1,3,3-trisubstituted ureas clearly shows that availability of both NH in the urea 

group is vital for the satisfactory inhibition of sEH. Disruption of the ability to create one 

hydrogen bond leads to an up to significant decrease in activity in some cases. For example 

compound 3k is >5-fold less active than the corresponding 1,3-disubstituted urea 3f. Ureas 

synthesized from isoxazole with amino methyl group in 3rd position are more potent (up to 

5-fold) than those with the amino methyl group in the 5th position. Probably this is due to 

the formation of the additional hydrogen bonds. The hydrogen bond acceptor in ureas 

synthesized from 5-amino isoxazoles is probably not able to reach the necessary distance to 

create such a bond.

While 1,3-disustituted ureas containing the adamantane moiety were widely investigated as 

soluble epoxide hydrolase inhibitors only 1-isocyanato adamantane was used for their 

formation. Introduction of methyl groups into nodal positions of adamantane significantly 

lowers melting point of the its derivatives. Moreover, the metabolism of adamantyl-

containing 1,3-disubstituted ureas in vivo proceeds through the hydroxylation of nodal 

positions and the corresponding hydroxy derivatives have up to 50 fold less inhibitory 

activity.23 In this case we decided to synthesize sEH inhibitor from 1-isocyanato-3,5-

dimethyladamantane (1b).24 The boiling point of compound 1b (93 °C at 10 torr)36 is lower 

than that of compound 1a (98 °C at 10 torr)36 so we assumed a corresponding reduction of 

melting points would occur with the appropriate 1,3-disubstituted ureas.

For the compounds 4a-4c and 4g the replacement of the adamantane part of the molecule did 

not result in noticeable change of the inhbitory potency. Surprisingly, compound 4d is 10-

fold less potent than 3d, which is the second-best inhibitor of this series. However, we have 

mentioned the tendency of each new methyl group introduced into the aliphatic substituent 

in 5th position of isoxazole to reduce potency. In this case, we can conclude that the 

additional methyl groups for this series of ureas caused a decrease in the inhibitory activity 

as well as water solubility (comparing data in table 1 and 2). But presence of the phenyl or 

furyl rings negate this effect. Introduction of isocyanate 1b instead of 1a leads to the 

reduction of melting points of corresponding ureas at about 10 °C but additional methyl 

groups generally result in 2-fold decreased water solublity. Decreased water solubility is 

correlated with cLogP (Table 4).

To further assess the properties of the compounds, we measured their stability in human 

liver microsomes (Table 4).

However contrary to our assumption introduction of methyl groups to the nodal positions of 

adamantane did not improve microsomal stability of the corresponding ureas. This effect 

was observed probably due to the rapid metabolism of isoxazole ring, although isolated 

methyl groups often are rapidly oxidized by CYP enzymes.

We describe the synthesis and structure-activity relationship of a series of adamantylureas 

with isoxazole ring containing various substituents. Some ureas have methyl groups in nodal 

positions of adamantane. The data show that such ureas show very good inhibition potency 

along with high water solubility (compared to previously reported urea-based sEH 

inhibitors). We showed that both NH in urea group are essential for the inhibitor binding on 
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the active site of sEH. Introduction of methyl groups to the nodal positions of the 

adamantane did not affect inhibition potency (which indicates that there is still sufficient 

space in the cavity of the enzyme) as long as not affect microsomal stability but lead to the 

reduction of water solubility.
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Scheme 1. 
Reagents and conditions: (a) DMF, rt, 12 h
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Scheme 2. 
Synthesis of 1,3,3-trisubstituted ureas with isoxazole part
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Scheme 3. 
Reagents and conditions: (a) DMF, rt, 12 h
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Table 1

IC50 values for the isoxazole 1,3-disubstituted urea-based sEH inhibitors 3a-h

# Structure
IC50

(nM)a
Solubilityb

(μM)
mp (°C)

3a 15.4 75 < S < 100 198–
199

3b 12.9 100< S < 125 180–
181

3c 4.9 75 < S < 100 174–
175

3d 6.7 450 < S < 475 135–
137

3e 29.4 300 < S < 325 120–
121

3f 44.6 125 < S < 150 108–
109

3g 16.6 75 < S < 100 160–
161

3h 10.5 50 < S < 75 186–
187

a
As determined via a kinetic fluorescent assay.34, 35

b
Solubilities were measured in sodium phosphate buffer (pH 7.4, 0.1 M) containing 1% of DMSO.
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Table 2

IC50 values for the isoxazole 1,3,3-trisubstituted urea-based sEH inhibitors 3i-m

#
IC50

(nM)a
Solubilityb

(μM)
mp (°C)

3i 575.8 200 < S < 225 119-120

3j 524.3 525 < S < 550 176–177

3k 247.2 250 < S < 275 128–129

3l 190.6 350 < S < 375 146–148

3m 91.0 575 < S < 600 157–158

a
As determined via a kinetic fluorescent assay.34, 35

b
Solubility was measured in sodium phosphate buffer (pH 7.4, 0.1 M) containing 1% of DMSO.
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Table 3

IC50 values for the isoxazole 1,3-disubstituted urea-based sEH inhibitors with 1,3-dimethyladamantane moiety 

4a-d and 4g.

#
IC50

(nM)a
Solubilityb

(μM)
mp (°C)

4a 25.8 125 < S < 150 185-186

4b 15.0 25 < S < 50 189-190

4c 4.1 75 < S < 100 149-150

4d 123.0 200 < S < 225 130-131

4g 17.0 75 < S < 100 146-147

a
As determined via a kinetic fluorescent assay.34, 35

b
Solubilities were measured in sodium phosphate buffer (pH 7.4, 0.1 M) containing 1% of DMSO.
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Table 4

IC50, water solubility and microsomal stability of selected compounds.

# IC50 nMa Solubilityb
(μM) cLogPc

Microsomal stability (%)d
NADPH

− +

3a 15.6 ± 0.7 75 < S < 100 4.24 97 ± 4 0.4 ± 0.2

4a 28.8 ± 4.5 125 < S <
150 4.50 115 ± 11 0.4 ± 0.2

3b 12.5 ± 1.8 100< S < 125 3.85 87 ± 6 0.8 ± 0.2

4b 18.0 ± 2.9 25 < S < 50 3.89 102 ± 11 0.4 ± 0.3

3c 4.9 ± 0.1 75 < S < 100 2.59 91 ± 8 0.4 ± 0.1

4c 4.8 ± 0.6 75 < S < 100 2.63 95 ± 1 0.3 ± 0.1

3d 9.9 ± 2.9 450 < S < 475 2.36 72 ± 4 2.9 ± 0.5

4d 111.1 ± 10.3 200 < S <
225 2.62 83 ± 3 0.1 ± 0.1

3g 13.7 ± 3.0 75 < S < 100 3.91 97 ± 10 0.3 ± 0.1

4g 14.2 ± 2.5 75 < S < 100 4.17 92 ± 6 0.4 ± 0.1

a
As determined via a kinetic fluorescent assay.34, 35 Results are average ± standard deviation of three separate measurement.

b
Solubility was measured in sodium phosphate buffer (pH 7.4, 0.1 M) containing 1% of DMSO.

c
Calculated using ChemBioDraw Ultra v12.0 (PerkinElmer, Waltham, MA).

d
Percent of compound (1 μM) remaining after 30 minutes incubation with human liver microsomes (1 mg/mL) at 37°C with or without NADPH 

generating system. Results are the average of triplicates ± standard deviation.
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