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Abstract
When faced with a choice, humans and animals commonly distribute their
behavior in proportion to the frequency of payoff of each option. Such behavior
is referred to as matching and has been captured by the matching
law. However, matching is not a general law of economic choice. Matching in
its strict sense seems to be specifically observed in tasks whose properties
make matching an optimal or a near-optimal strategy. We engaged monkeys in
a foraging task in which matching was not the optimal strategy. Over-matching
the proportions of the mean offered reward magnitudes that would yield more
reward than matching, yet, surprisingly, the animals almost exactly matched
them. To gain insight into this phenomenon, we modeled the animals'
decision-making using a mechanistic model. The model accounted for the
animals' macroscopic and microscopic choice behavior. When the models'
three parameters were not constrained to mimic the monkeys' behavior, the
model over-matched the reward proportions and in doing so, harvested
substantially more reward than the monkeys. This optimized model revealed a
marked bottleneck in the monkeys' choice function that compares the value of
the two options. The model featured a very steep value comparison function
relative to that of the monkeys. The steepness of the value comparison function
had a profound effect on the earned reward and on the level of matching. We
implemented this value comparison function through responses of simulated
biological neurons. We found that due to the presence of neural noise,
steepening the value comparison requires an exponential increase in the
number of value-coding neurons. Matching may be a compromise between
harvesting satisfactory reward and the high demands placed by neural noise on
optimal neural computation.
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Introduction
People and animals must make choices. It has been often reported 
that organisms distribute the frequency of their choices according 
to the relative rate of reinforcement they obtain from each choice1–4. 
The match between the behavioral and reinforcement distributions 
in a two-option task has been described by the matching law:

       

=
+ +

,x x

x y x y

B R
B B R R

       

(1)

where B
x
 and B

y
 are the rates of behavior allocated at options x and y, 

and R
x
 and R

y
 are the corresponding rates of reinforcement obtained 

from these options1,4.

This elegant relationship has provoked much discussion and 
research across multiple fields3,5–9. Although matching has been 
observed in many environments, including real-life settings10–12, 
there are important constraints on the conditions in which matching 
is observed.

First, matching behavior in the above form is consistently observed 
specifically in tasks that use or can be characterized by concurrent 
variable interval (VI-VI) schedules of reinforcement13,14. In such 
tasks, after a reward is harvested by choosing an option, a reward 
is scheduled to become available again after a certain time interval. 
Once scheduled, the reward remains available at that option until it 
is harvested again. This critical task feature is referred to as “bait-
ing”. Baiting may model the situations in which even low-yield 
sources eventually produce a reward. However, the fact that a reward 
remains available until the animal harvests it is unrealistic, at the 
very least because it entirely disregards competition. Nonetheless, 
in these lab-based baiting paradigms, it is a sensible strategy for the 
decision-maker to occasionally select even the much poorer of the 
two options, since due to the baiting, after a long enough interval, the 
animal can be sure that a reward will appear at that option6. Although 
such behavior is not surprising, it may seem intriguing that the pro-
portion of choices devoted to each option in these tasks follows the 
matching equation. However, it has been shown that matching is an 
optimal or near-optimal strategy in the VI-VI baiting paradigms. 
In particular, in these tasks, matching follows from the maximiza-
tion of reward at either the molecular (maximizing reward at each 
element of time)15–17 or molar (maximizing reward over the course 
of the experiment)13,18,19 levels. Matching does not seem to apply to 
reinforcement-based choice tasks in general. For instance, choice 
behavior under concurrent ratio-interval schedules (FR-VI) substan-
tially deviates from matching13. Furthermore, response ratio concur-
rent schedules (VR-VR) usually lead to stereotypic behavior19.

Second, matching is adversely affected by the animals’ tendency to 
often switch from one option to the other (e.g.,1, Figure 4). This fre-
quent switching brings the proportion of choices of the two options 
closer to 50:50, which results in “under-matching” of the reward 
proportions. Such under-matching, as well as other deviations 
from the matching law, can be captured using generalized forms 
of the matching law20–22. Nonetheless, these generalizations come 
at the expense of freely adjustable parameters, thus diminishing 
the beauty of the matching equation. To discourage this behavioral 
tendency, researchers often punish the animals’ frequent switching 
by incorporating change-over delays (COD)1,23–25. In a change-over 

delay paradigm, when an animal changes a choice, no reward is 
scheduled until a certain amount of time following the change. This 
effectively discourages frequent switching. When this control is in 
force, the animals typically exhibit the matching behavior captured 
by Equation 1, at least in the tasks or life situations in which reward 
remains baited until harvested.

We engaged monkeys in a reward-magnitude-based foraging task 
that featured neither a baiting schedule nor a change-over delay. In 
our task, animals chose an option based on the magnitude (amount) 
of fluid reward expected for each option. The mean magnitude 
ratios for the two options, 3:1, and 1.5:1, changed often and unpre-
dictably. Intriguingly, we observed a nearly exact matching of the 
magnitude ratios. This is surprising because in this task, the match-
ing behavior is not optimal—animals could harvest more reward by 
over-matching the magnitude ratios.

To investigate the mechanisms of this phenomenon, we described 
the animals’ behavior with a simple three-parameter mechanistic 
model rooted in reinforcement learning6,26–28. When the model was 
allowed to forage freely and its three parameters were optimized 
to maximize the reward income, the model did substantially bet-
ter than the monkeys at accurately comparing the value of the two 
options. Our neuronal simulations suggested that the animals’ abil-
ity to compare the two values could be limited by the noise in the 
representation of value by populations of spiking neurons.

Methods
Subjects
Two adult male rhesus monkeys supplied by the Washington  
University Department of Veterinary Medicine. (macaca mulatta, 
monkey S: 7 kg, monkey B: 8 kg) participated in this study. Ani-
mals were housed in pairs with 12/12 hour light/dark cycles29. Mon-
keys were fed on Purina Monkey Chow, fruit and treats, and were 
provided with environmental enrichment30. We trained two male 
rhesus monkeys (macaca mulatta, 7 kg and 8 kg) to choose one 
of two targets using a saccadic eye movement or a reaching arm 
movement31. Tests were performed during normal working hours 
(9am to 5pm). The animals sat head-fixed in a custom designed 
monkey chair (Crist Instrument) in a completely dark room. Visual 
stimuli (squares of 2.3° by 2.3°) were back-projected by a CRT 
projector onto a custom touch panel positioned 25 cm in front of the 
animals’ eyes. Eye position was monitored by a scleral search coil 
system (CNC Engineering). All procedures conformed to the Guide 
for the Care and Use of Laboratory Animals and were approved 
by the Washington University Institutional Animal Care and Use 
Committee.

Task
Animals performed a two-alternative forced choice task. They first 
fixated and put their hand on a central target. After 120 ms, two 
white targets appeared simultaneously to the left and right of fixa-
tion. Each target was associated with a reward, described below. At 
the same time, the central fixation point changed color to either red 
or blue, instructing the monkeys that either a saccade or a reach, 
respectively, would be required on this trial. After a variable delay 
interval (0.8 s to 1.6 s), the fixation point disappeared, cueing the 
monkey to execute a movement to one or the other target. The 
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animals’ behavior was very similar for choices made using saccades 
and reaches, and we therefore did not distinguish between the two. 
If they failed to make the instructed movement to within 7° of vis-
ual angle from one of the two targets within 1.5 s of fixation offset, 
then the animal received no reward and the start of the next trial was 
delayed by 2 s. Otherwise, the next trial started immediately after 
the reward was delivered.

The reward associated with the two targets consisted of a primary 
reinforcer—a drop of water, delivered by the opening of a valve for a 
particular length of time—combined with a secondary reinforcer—
an auditory tone of the same duration. The volume of fluid delivered 
was proportional to the valve opening times. Our aim in designing 
the task was that at any one time, one target would deliver larger 
rewards than the other. The assignment of the richer and poorer 
targets to the left and right choices would change periodically, but 
in a way that would not be obvious to the animal or easy to deter-
mine. To accomplish this, we made many aspects of the reward 
delivery stochastic. At any one time, the mean reward durations for 
the two targets had a ratio of either 3 : 1 or 1.5 : 1. This ratio was 
held constant for a block of 7–17 trials (exponentially distributed 
with a mean of 11 trials and truncated at 17) and then changed to 
either 1 : 3 or 1 : 1.5. Within each block, the time that the water 
valve was held open in each trial was itself not held constant, but 
instead was drawn from a truncated exponential distribution that 
ranged from 20 to 400 ms. Thus, the valve open time differed from 
trial to trial, with an overall mean that differed for each target and 
changed every 7–17 trials. The effect of the exponential distribution 
was to make small rewards more common than large rewards, rela-
tive to the mean. This mean differed for each target and depended 
on the reward ratio for that block. For a reward ratio of 1.5 : 1, the 
mean valve open times for the richer and poorer target were cen-
tered around 140 and 70 ms, respectively. For a ratio of 3 : 1, the 
mean times were centered around 250 and 35 ms, respectively. To 
randomize reward delivery even further, the actual valve open times 
were multiplied by a factor ranging from 0.8 to 1.2, and this factor 
was changed on average every 70 trials (exponential distribution 
truncated to between 50 and 100 trials).

The reward magnitude of the option that the monkeys did not 
choose was assigned exactly in the same way as that assigned to 
the chosen option, that is, they were drawn stochastically from 
changing distributions with a particular mean. Once generated, the 
reward magnitudes for the unchosen option were fixed throughout 
the investigation.

Data
The data are available in a .mat format at http://www.neuralgate.
org/download/matchingdata or at the link below.

Dataset 1. Raw task data

http://dx.doi.org/10.5256/f1000research.6574.d48853

In this file, ‘choice’ is a binary vector of the animals’ choices (0 for 
a leftward and 1 for a rightward choice), ‘rewards’ is a two-column 
vector of the reward magnitudes (the left (right) column represents 
the reward magnitudes for the leftward (rightward) choices), and 
‘meanreward’ is a vector indicating the current reward ratio39.

Models
We modeled the monkeys’ trial-to-trial behavior using a mecha-
nistic model. The model is grounded in reinforcement learning, a 
framework whose various instantiations have been applied previ-
ously to successfully explain foraging behavior6,25–28.

The model (Figure 3) first computes the value V of each option by 
weighing the past 3 rewards r

i
 obtained from choosing each option:

   

3

1

i i
i

V w r
=

=∑ .

               

The first two weights (w
1
, w

2
) are free parameters; the third weight 

is w
3
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1
 – w

2
 such that ∑

i
 w

i
 = 1.

The option that was chosen is assigned a value r
1
 = R, where R is 

the reward obtained for choosing that option. The unchosen option 
is assigned a value r

1
 = ρ, where ρ is a free parameter.

The value of the two options (V
right

 and V
left

) are compared and a 
choice of the rightward option is made with probability

             
( )right right left

right left

1
,

1 exp( ( ))
P V V

V Vβ
= Ψ − =
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(2)

where the parameter β controls the steepness of the sigmoid func-
tion (see Figure 10).

The four parameters w
1
, w

2
, ρ, and β were fitted to the monkeys’ 

behavior such as to maximize the log likelihood log L that the  
monkeys’ choices could be made by the model:

            

right rightlog log( ( ) ( ) (1 ( ))(1 ( )))
t

L P t c t P t c t= + − −∑
where P

right
(t) is the model’s prediction of the probability of 

choosing the rightward option on trial t; c(t) = 1 for the monkeys’  
rightward choice on trial t and 0 for his leftward choice. The 
maximization was performed by the Nelder-Mead simplex direct 
search algorithm implemented by the function fminsearch in  
Matlab (The Mathworks, Inc., Natick, MA, RRID:nlx_153890). 
The algorithm converged in all tested conditions, and onto the 
same solution when run repeatedly.

We further simplified this model by approximating the three weights 
w

i
 with a geometric sequence with the common ratio α (Figure 8). 

Given that ∑
i
 w

i
 = 1, we can write 1 2

1
,

1
w

α α
=

+ +
w

2
 = αw

1
 and w

3
 = 

αw
2
. We then fit α to minimize the mean squared error between the 

approximated and the actual weights.

We tested a variety of other models, none of which offered a signifi-
cantly better fit. The present model is well established in the reinforce-
ment learning literature26, has been successfully used previously6,27,28, 
and is a generalization of many special cases we also tested (see 
Results for an example).

We also tested an extended model that featured a separate set of 
weights for the unchosen option. This extension did not significantly 
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improve the fit to the animals’ behavior or the ability of the freely 
foraging model to harvest more reward.

We further tested an extended model which in the (V
right

–V
left

) term 
of Equation 2 featured two additional bias terms that could model 
the monkeys’ possible biases in choices made using saccades and 
reaches. These extensions had only minimal impact on the results 
(see Results). We therefore used the original, simpler model.

Results
Monkeys engaged in a foraging task (Figure 1) in which they selected 
one of two targets based on the associated reward magnitude. Specifi-
cally, one target was associated with a larger liquid reward than the 
other target, with mean payoff ratios of 1.5 : 1, 3 : 1, 1 : 1.5, or 1 : 3. 
The payoff ratio was held constant for 7–17 trials before changing 
to one of the opposite ratios. To further challenge the animals, the 
volume of juice delivered on each trial was variable, drawn from a 
truncated exponential distribution (see Methods for details).

The monkeys chose the richer option more frequently, but not stere-
otypically (Figure 2A). On average, after each change of payoff 
ratio, the monkeys’ behavior converged in about 3 to 6 trials to a 
new steady state choice ratio. The fact that animals did not imme-
diately switch over to a new steady state but required several trials 
to do so indicates that the animals were not aware of the transition 
times and integrated the reward history to converge onto the richer 
target. In the steady state (trial 7 following transition) the animals’ 
choices followed the strict matching law (Equation 1). Specifically, 
for a ratio of 1.5 : 1, the strict matching law dictates choosing the 
richer option in 60% of trials. Our two animals chose the richer 
option in 60.0% and 61.6% of trials, respectively. For a ratio of 
3 : 1, the matching law dictates choosing the richer option on 75% 
of trials. The animals chose this option in 73.5% and 71.9% of tri-
als, respectively. Only the case of 71.9% slightly deviated from its 
corresponding matching level of 75% (p = 0.022, t

1117
 = -2.29); the 

other three cases were indistinguishable from the corresponding 
matching levels (p > 0.25).

The finding that animals matched the reward proportions in this task 
is notable given that we did not impose specific constraints typi-
cally used to elicit matching, such as reward baiting or change-over  
delay punishment of frequent switching1,13,23–25.

Animals switched from one target to another often (Figure 2B), on 
average about once every third trial (probability to switch choice,  
P = 0.31). The distribution of stay durations was well approximated 
with an exponential (Figure 2B), which suggests (though it does not 
prove) that the choice the animals made on a given trial was inde-
pendent of the choice the animals made on the previous trial.

To gain insight into the processes leading to the matching behav-
ior, we modeled the animals’ trial-to-trial behavior using a mecha-
nistic model. The model (see Methods for details) is grounded in 
reinforcement learning and its various instantiations have been 
applied previously to successfully explain foraging behavior in 
reward-based tasks6,25–28. The model (Figure 3) first computes 
the value V of each option. It does so by weighing the past three 

Figure 2. Matching behavior. (A) Proportion of choices of an option as a function of each payoff ratio, aligned on a transition. The dotted 
black lines indicate the 3:1 and 1.5:1 proportions dictated by the matching law (Equation 1). (B) Frequency histogram of successive choices 
of one option. Dashed line: exponential fit.

Figure  1.  Foraging  task  with  variable  outcome  magnitudes. 
Animals first fixated and put their hand on a central target. Following 
a short delay, two targets appeared in the periphery. The animals 
selected one of the targets using either an eye or hand movement, if 
the central cue was red or green, respectively. A choice was followed 
by the delivery of a liquid reward of a particular size. At any one time, 
one target was more valuable than the other, but individual rewards 
were stochastic and drawn from overlapping distributions, and 
which target was more valuable switched often and unpredictably. 
See text for details.
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rewards r
i
 obtained from choosing each option: 

3

1
i ii

V w r
=

=∑ . 

Two of the weights (w
1
, w

2
) are free parameters; the third weight 

is w
3
 = 1 – w

1
 – w

2
 such that ∑

i
 w

i
 = 1. An important question is 

what reward magnitude the animals assign to the option that was 
not chosen. This reward magnitude constitutes an additional free 
parameter, ρ. Finally, the values of the two options, V

right
 and V

left
, 

are compared and a choice of the rightward option is made with 
probability P

right
 = Ψ(V

right
 – V

left
), where Ψ is a simple sigmoid func-

tion (see Methods, Equation 2) whose steepness is controlled by 
the parameter β. This sigmoid function can implement both a sharp 
V

right
 > V

left
) comparator function when β is large, as well as a more 

stochastic choice when β is small.

This framework is quite general and can represent many special 
cases. For instance, in a win-stay lose-shift (WSLS) model, an ani-
mal compares a just-obtained reward R against a threshold T; if 
R > T, the animal stays with its choice, else it shifts choice. This 
model is a special case of the above general framework in which 
free parameters w

1
 = 1, w

2
 = 0 (and so also w

3
 = 0), ρ = T, and β is 

large to achieve the sharp R > T comparator, e.g., β = 1.0.

We estimated the model’s four parameters such that the model’s pre-
dictions are close to the monkeys’ choices. The estimation was based 
on maximizing the likelihood of observing the monkeys’ choices 
given the model’s parameters (MLE; see Methods for details). The 
fit resulted in w

1
 = 0.816, w

2
 = 0.197 (and so w

3
 = -0.013), ρ = 55.1, 

and β = 0.023. We also tested an extended model by adding two 
additional parameters (one for choices made using saccades, one 
for choices made using reaches) at the comparator stage (see Meth-
ods for details) to account for possible biases in preferring a right-
ward or a leftward choice. This extended model resulted in very 
similar parameter fits (w

1
 = 0.815, w

2
 = 0.198 (and so w

3
 = -0.013), 

ρ = 55.3, β = 0.023). Furthermore, the biasing values (V = -4.6 and 
V = 8.5) were negligible compared to the large range of (V

right
 – V

left
) 

(5th percentile equal to -172.8, 95th percentile equal to 176.3). We 
therefore used the simpler model.

This simple model faithfully captured the animals’ behavior. When 
the animals’ choices were binned according to the model’s probabi-
listic predictions, there was a nearly linear (R2 = 0.997) relationship 
between the model’s predictions and the animals’ mean proportion 
of choices (Figure 4A). For instance, across all trials in which the 
model claimed that P

right
 = 0.4, the monkey actually chose the right-

ward option in close to 40% of cases. The model also explained 
very faithfully the animals’ matching behavior and their behavior 
just after the payoff ratio transition (Figure 4B). In particular, the 
model (dashed lines) explained R2 = 0.986±0.005 (mean±SD) of the 
variance in the 4 curves.

When fitting the model, the model’s input (the rewards) and the 
outputs (choices) were held fixed; i.e., the model made the same 
choices as the monkeys and experienced the same rewards as the 
monkeys. Fixing the input and output permits us to investigate 
the structure of the model, i.e., to determine the mechanics of the 
transformation between the input and the output. However, it is 
also valuable to determine the model’s behavior, using the inferred 
parameters, when it is allowed to make choices for itself. This is 
important because it is conceivable that without the choice prescrip-
tion, the model may show unstable behavior, such as alternating 
between choices or stereotypically making one choice.

This was not the case. When the model made choices by itself (i.e., on 
every trial the model computed a P

right
 and made a rightward choice 

with probability P
right

), it still exhibited behavior similar to that of 
the monkeys (Figure 5). Although the model chose the richer option 
slightly less frequently than the monkeys (Figure 5A; 72.7% for 3:1 
and 59.2% for 1.5:1), there was no significant difference between the 
monkeys’ and the model’s mean choice levels at the steady state for 
either the 3:1 or the 1.5:1 payoff ratios (trial 7 following transition, p 
> 0.11, t-tests). The model also exhibited trial-wise switch dynamics 
that were very similar to that of the monkeys (Figure 5B). In particu-
lar, the mean stay duration of the monkeys (model) was 3.2 (3.3) tri-
als; this small difference was not significant (p = 0.19, t

28984
 = -1.31).

Figure 3. The model. In the model, a option is assigned the reward obtained from the according choice, of magnitude R. The unchosen 
option is assigned a value of ρ, a free parameter. The past three rewards obtained for each option ri are linearly weighted to obtain the value 
of an option, 

=
= ∑3

1
i ii

V w r . The weights w1 and w2 are free parameters; w3 = 1–w1–w2. The values Vright and Vleft are then compared using a 
sigmoid choice function Ψ(Vright – Vleft) whose steepness is parametrized by β. This results in the model’s output: the probability of choosing 
the rightward option Pright in each trial. The model’s free parameters are highlighted in blue.
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Figure 5. The model’s behavior when it made choices on its own. The model used the same parameter values as in Figure 4. Same format 
as in Figure 2, with the model’s behavior superimposed as dashed lines.

Figure 4. The model’s predictions. (A) Proportion of choices of the rightward target (±SEM) as a function of the model’s probabilistic output, 
Pright. (B) Same format as in Figure 2A, with the model’s probabilistic output superimposed as dashed lines.

A question of particular interest is why the animals exhibited match-
ing behavior in this task. We start this inquiry by asking whether the 
matching behavior was optimal in this task. An ideal agent who has 
information about the times of the payoff transitions will converge 
onto the richer option in one trial and continue to choose the richer 
option until the time of the next transition. Choosing the richer 
option at steady state in 100% of trials would constitute very strong 
over-matching. However, our subjects were not ideal: they were 
not signaled when the payoff transitions occurred, and we designed 
the task to make it difficult for them to detect the transition times. 
Specifically, the transitions occurred at random, exponentially dis-
tributed intervals, such that the hazard function for transition was 
flat. In addition, the reward magnitude received on each trial was 
variable, drawn from an exponential distribution (see Methods for 
details).

These task attributes may make it difficult for any subject or scheme 
to perform the task perfectly. To obtain an estimate of how well an 
agent might perform the task, we released the constraints on the 
model’s behavior and searched for the combination of parameter 

values that maximized the harvested reward. This reward-maximizing 
(“optimized”) model converges onto w

1
 = 0.621, w

2
 = 0.310 (and so 

w
3
 = 0.069), ρ = 72.4, and β = 0.207.

This optimized model harvested substantially more reward than 
the monkeys (Figure 6). Choosing right and left options at ran-
dom, which is equivalent to models that always choose the left or 
always choose the right option, will result in harvesting 105.9 ms 
of valve opening time per trial, which we label as random perform-
ance of 50%. The theoretical limit, achieved by an ideal agent that 
knows the transition times and so always selects the richer option, 
harvests 141.2 ms of valve open time per trial, which we label as 
100%. Our moneys earned 59.4% of the reward on this scale. This 
was substantially more (p < 0.0001, t

94306
 = 13.78) than the random 

choice model. However, the optimized model harvests 68.6% of 
the reward, substantially more (p < 0.0001, t

94306
 = 10.99) than the 

monkeys. This result proves that the behavior of our monkeys was 
suboptimal in this task. Given the same reward environment, there 
is at least one physically realizable model that forages substantially 
better than the monkeys.
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Figure 6. Comparison of mean harvested reward in the task. The 
mean reward harvested by a model that makes choices at random 
(defined as 50%), by the monkeys, and by the optimized model (see 
text for details). A theoretical maximum (100%) would be obtained 
by an ideal agent that has information about the payoff transitions 
times and always chooses the richer option. * p < 0.0001.

The behavior of this optimized model is shown in Figure 7. As 
expected, the model clearly over-matches the reward proportions 
(Figure 7A). The steady state proportions of choices of the richer 
option for the payoff ratios 3:1 and 1.5:1 were 85.7% and 67.2% 
respectively, both significantly different from the proportions 
dictated by the matching law (p < 0.0001). The optimized model 
also switches less often than the monkeys (Figure 7B), on average 
every 4.1 trials, compared to the 3.2 of the monkeys. The difference 
is significant (p < 0.0001, t

26114
 = -20.83).

To simplify the presentation and interpretation of all that follows, 
we reduced the number of free parameters in the model from four 
to three (Figure 8). A single parameter representing an exponential 
kernel replaces the two weight parameters (w

1
 and w

2
). This is more 

biologically plausible than using multiple discrete weights. Note 
also that the weights of the monkeys’ data fit and the optimized 
model fit are well approximated by a geometric series, which is 
the effective result of an exponential kernel (monkeys: w

1
 = 0.815,  

w
2
 = 0.198, w

3
 = -0.013; model: w

1
 = 0.621, w

2
 = 0.310, w

3
 = 0.069). 

Taking into account the constraint ∑
i
 w

i
 = 1, the first weight w

1
 is 

approximated as 
2

1
,

1 α α+ +
 where α is the common ratio of the 

sequence. Then, w
2
 = αw

1
 and w

3
 = αw

2
. We set α such as to mini-

mize the squared error between the actual weights and the approxi-
mated weights. That common ratio was found to be α = 0.201 for 
the model representing the monkeys, and α = 0.424 for the opti-
mized model. The mean square error of these fits was small, equal 
to 0.058 for the model of the monkeys and 0.063 for the optimized 
foraging model. Consequently, the geometric approximation of 
the weights had negligible impact on the models’ behaviors (data 
not shown). The common ratio α helped not only to eliminate one 
free parameter; it also lends itself a straightforward interpretation: 
The larger the α, the more weight the monkeys put on the rewards 
received in the more distant past. For instance, for α = 1, w

1 
= w

2 

= w
3 
= 1

3
. Such model would simply average the past 3 rewards. 

The other extreme, α = 0 (w
1
 = 1, w

2
 = w

3
 = 0) would only consider 

the last obtained reward. Henceforth, we refer to α as the model’s 
“memory”: The larger the α, the longer reward history is used to 
compute the value V.

We next investigated the role of the individual model parameters 
in the reward that can be harvested in this task. We visualized the 
effects of each parameter while fixing the values of the other two 
parameters. The fixed parameter values were the values of the opti-
mized model (α = 0.424, ρ = 72.4, β = 0.207), as this model is much 
closer to the optimum compared to the monkeys. The parameter α 
was varied between 0 and 1 in steps of 0.05; ρ between -100 and 
+300 in steps of 20; β from 10-4 to 102 in geometric steps of 1.78. 
The parameter space additionally included also the values of the 
monkeys and of the optimal model.

Figure 7. Behavior of the optimized model. Same format as in Figure 2, for the model with parameters maximizing its reward income.
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Figure 9. Reward as a function of the parameter values. Each plot shows the mean±SEM reward harvested as a function of a particular 
parameter value. We varied the value of a parameter while fixing the other two parameters at values of the optimized model (α = 0.424,  
ρ = 72.4, β = 0.207). Red: parameters of the model of the monkeys’ behavior. Blue: parameters of the optimized model.

It is important to note that each two-dimensional plot of reward as a 
function of a parameter value only shows a slice through the reward 
landscape; it does not show the entire reward landscape, which for 
this three-parameter model is four-dimensional. Figure 9 shows the 
leverage of each parameters on the mean harvested reward given the 
fixed values of the other two parameters.

The model’s memory, α, had only small effect on the obtained 
reward. In regard to this aspect of the model, there was no signifi-
cant difference (p = 0.63, t

94306
 = -0.48) in the reward gained by the 

optimized model (blue) and the monkey model (red). Assuming that 
our model has mechanistic validity, this plot indicates that limits on 
memory, as captured by this parameter, are unlikely to underlie the 
monkeys’ suboptimal performance.

The reward assigned to the unchosen option, ρ (middle plot), had 
a strong leverage on the reward gained. There was a clear opti-
mum centered around the value ρ ~ 70. The monkeys’ ρ = 55.1 fell  

somewhat short of the model’s ρ = 72.4. As a consequence, in regard 
to this parameter, the monkeys earned 2.9% less reward compared 
to the optimal model. Although this drop was significant (p < 0.001, 
t
94306

 = -3.68), it can explain only about one-third of the monkeys’ 
suboptimal performance.

The parameter defining the steepness of the sigmoid that governs 
the value comparison (Figure 8), β, strongly affects the reward that 
can be harvested (right plot). The monkey model and the optimized 
model differ substantially in the value of this parameter (monkeys:  
β = 0.023; model: β = 0.207). Compared to the optimized model 
which properly reached the optimum (within the convergence rules of 
the optimization procedure), the monkeys harvested 6.4% less reward 
than the model. This was a significant (p < 0.0001, t

94306
 = -7.59)  

and substantial drop in the performance.

Thus, the parameters ρ and β were instrumental in governing the 
gain in this task. Of these, the fit to the monkeys’ data suggests 

Figure 8. Simplified model. The model is identical to the model shown in Figure 3 with the exception that the weights are approximated with 
a geometric sequence with the common ratio α, subject to the constraint ∑i wi = 1. This way, w1 = 2

1
,

1 α α+ +
 w2 = αw1 and w3 = αw2.
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that their low value of β substantially impaired their performance. 
The effect of the relatively small value of β is plotted in Figure 10. 
The figure plots P

right
 = Ψ(V

right
 – V

left
), for the Ψ parameter β of 

the monkeys and the optimized model. The figure reveals that as a 
result of the relatively high β, the value comparison function of the 
optimized model is much steeper compared to that of the monkeys. 
As a result, the optimized model is better equipped to compare the 
two values when making a choice. In fact, the comparison function 
of the optimized model is so steep that it essentially acts as a perfect 
comparator, choosing the rightward option when V

right
 > V

left
 and 

the leftward option otherwise. The monkeys were not capable of 
performing such a sharp value comparison. As a result, their choice 
appeared more stochastic in regard to the value difference.

We next investigated why the monkeys did not achieve a steeper 
value comparison function given that its steepness β governs the 
amount of earned reward (Figure 9-right). We hypothesized that 
this bottleneck may be due to the noisy representation of value (and 
value difference) by the monkey’s decision apparatus, which is pre-
sumably implemented by value-coding neurons32,33. The neuronal 
representation of value (and for that matter, of any variable) is inher-
ently noisy34. We simulated how well an ideal observer, given the 
spike counts of value-coding neurons, could distinguish V

right
 from 

V
left

. We will lay out an ideal case; as such, our estimate of the brain’s 
ability to distinguish the two values will likely be optimistic.

Neurons in many regions of the brain33,35,36 increase their discharge 
rate (r) with increasing value (V) of the option they encode:

   θ= +0 ,r r V         (3)

where r
0
 is the baseline firing rate and θ is the slope of the linear 

relationship between firing rate and value. Thus, neurons that encode 
the value of the rightward option fire with rate r

right
 = r

0
+θV

right
 and 

neurons that encode the value of the leftward option fire with rate 
r

left
 = r

0
+θV

left
. We set r

0
 = 10 sp/s. We set θ to a 50% modulation of 

the baseline due to value, i.e., to θ = 5 sp/s over the value range (we 
used V = 300 as the maximum value).

Now, assume that an ideal observer, positioned as an idealized 
downstream decoder37, knows which neurons encode V

right
 and 

which neurons encode V
left

. The task of this ideal observer is to tell, 
based on the discharge rates of these neurons r

right
 and r

left
, whether 

V
right

 > V
left

. For simplicity, we first consider the case in which the 
ideal observer assesses the activity of only one right-value-coding 
and one left-value-coding neuron. To be able to obtain any infor-
mation from the spiking neurons, the ideal observer must measure 
the number of spikes n occurring within a certain time interval T. 
Because our monkeys had to make relatively fast decisions, we set 
T = 500 ms. Within this interval, the right-value-coding neuron will 
produce an average of μ

right
 = r

right
T spikes; the left-value-coding neu-

ron an average μ
left

 = r
left

T spikes. These are average spike counts, 
however. Spikes occur stochastically; a different train of spike times 
will occur during each decision. We will model spike occurrence 
times using a homogenous Poisson process37. As a result, during 
each decision, the measured spike counts n

right
 and n

left
 will be drawn 

from a Poisson (~ Gaussian for n > 10) distribution. The variance of 
these distributions is σ2 = μ, i.e., σ =2

right rightr T  and σ =2
left left .r T

Due to the inherent noise in the spike generation process, the spike 
count distributions that encode the left and right value necessarily 
overlap (Figure 11). As a consequence, even the ideal observer of 
neuronal spike counts will make erroneous judgments on whether 
V

right
 > V

left
. The probability of making a correct V

right
 > V

left
 deci-

sion Φ can be computed by drawing a boundary between the two 
distributions, and evaluating the rates of misclassification as a func-
tion of all boundary values (an ROC analysis37). The area under 
the ROC curve then equals Φ. An alternative approach to evaluat-
ing Φ is to notice that comparison V

right
 > V

left
 is equivalent to V

right
 

– V
left

 > 0. Thus, the ideal observer may simply evaluate whether 
n

diff
 = (n

right
 – n

left
) > 0. Assuming that the two neurons fire spikes 

independently of each other, it is easy to show that the mean of n
diff

  
equals n

right
–n

left
 and its variance equals σ σ+2 2

right left. If nright
 and n

left
 are  

close to normal, then their difference n
diff

 is, according to the cen-
tral theorem, yet closer to normal. The resulting probability density  

function is N σ σ− + =2 2
right left right left( , )n n  N  

σ σ

 −
 
 + 

right left
,1 .

2 2
right left

n n
 The  

probability Φ that n
diff

 > 0 then simply amounts to the integral below 

Figure 11. Representation of option values by spiking neurons. 
The plots show the distributions of spike counts n for a neuron 
encoding Vright and a neuron encoding Vleft. The spike counts follow 
a Poisson distribution. In the Poisson distribution, σ2 = μ, so the right 
distribution with the higher μ also has a higher σ. For large enough n, 
the distribution approaches a Gaussian. For simplicity, the illustrated 
distributions are Gaussian.

Figure 10. The value comparison function. The figure plots Pright 
= Ψ(Vright–Vleft), over the range of (Vright–Vleft) (5th percentile equal 
to -172.8, 95th percentile equal to 176.3) for the Ψ parameter β of 
the monkeys and the optimized model. The optimized model had  
β about an order of magnitude higher than the monkeys, which 
defines its relatively sharp decision criterion.
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Figure 12. Increasing the steepness of the value comparison function costs an explosion in the number of required value-coding 
neurons. (A) Same format as in Figure 10. The figure additionally includes responses of an ideal observer whose job is to tell Vright and Vleft 
apart by reading out the responses of simulated spiking neurons (see text for details). The more independent neurons available to the ideal 
observer, the higher the ability to discriminate the two values. The gray (black) curve represent 2 (20) available neurons. (B) The number of 
neurons necessary to obtain a value comparison function of a particular steepness (β). The data are plotted in log-log space. In this space, 
the apparently linear relationship represents an exponential relationship between the two quantities. To increase β, one needs to access an 
exponentially higher number of independent value-coding neurons.

the normal probability density, which evaluates to right left
2 2
right left

erf .
n n

σ σ

 −
 
 + 

 

We are interested in the right tail (n
diff

 > 0), so

             
σ σ σ σ

   − −
Φ = − =   

   + +   

right left left right
2 2 2 2
right left right left

1 erf erf .
n n n n

           

(4)

(Note that 
σ σ

 −
× = 

 + 

left right
2 2
right left

2
n n

d', which is an often used meas-

ure of discriminability of two distributions in psychology and 
neuroscience.)

We presented the right-value-coding and the left-value-coding neu-
ron with the range of values V

right
 and V

left
, respectively, experienced 

by the monkeys. Based on the spiking activity of these neurons, 
we plotted the probability Φ that the ideal observer could correctly 
choose the rightward option, i.e., P

right
 = Φ, as a function of V

right
 – V

left
  

(Figure 12A). The simple case of 2 independent neurons coding  
V

right
 and V

left
 is shown in gray. The plot reveals that the ideal observer 

can only poorly determine whether V
right

 or V
left

 is larger. There is too 
much noise in the spike counts.

The neuronal noise can be effectively reduced if the ideal observer 
can read out the activity of multiple uncorrelated neurons. In partic-
ular, if the observer averages the responses of m independently firing 
neurons in each (left or right) value-coding pool, then the noise vari-
ance σ2 drops by a factor of m. As a result, the distributions of the 
average population spike counts become thinner than those of the 
individual neurons shown in Figure 11. Consequently, it is easier to 
tell the values drawn from these thinner distributions apart. Indeed, 
when the observer averages spike counts over 10 independent  
neurons in each pool (20 all together), the observer’s value assess-
ment improves substantially (black curve in Figure 12A).

We plotted the minimum number of the independent value-coding 
neurons necessary to achieve the value comparison function of a 
particular value of β. The result is shown in Figure 12B. On the 
log-log scale plotted in the figure, there is an approximately linear 
relationship between the required number of neurons and the com-
parison function steepness β. This means that to achieve a higher β, 
one must employ an exponentially growing number of independent 
value-coding neurons. The minimum number of independent value-
coding neurons to attain the β of the monkeys, in the ideal case, is 
77. In contrast, the optimized model would require at least 6651 
independent value-coding neurons.

It is important to stress that these numbers represent a theoretical 
minimum. We assumed neurons with a large (50%) modulation of 
their firing rates by value, assumed completely independent neu-
rons (zero noise correlation), assumed that the ideal observer can 
flawlessly average the responses in the respective right and left 
neuronal populations, that the ideal observer has 500 ms of time 
to read out the spike counts during each decision, and disregarded 
any additional sources of noise. Therefore, the true numbers are 
likely to be substantially higher. Thus, this analysis suggests that 
increasing β to harvest more reward is very costly in terms of the 
number of neurons required. It is therefore likely that the neuronal 
noise presents a bottleneck in the animals’ attaining a steeper value 
comparison function.

Figure 7 revealed that the optimized model strongly overmatched 
the proportions dictated by the matching law. We next determined 
how the three model parameters of the simplified model influence 
two characteristics of the behavioral response: the matching level 
and the transition rate (Figure 13). We define the matching level 
(ML) as the choice proportion at trial 7 following a transition. 
We average across all four possible transitions (i.e., 1:3 reward 
ratio changing to 3:1 ratio, 1:3 ratio changing to 1.5:1 ratio, etc). 
We then scale the data such that selecting the two targets equally 
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(unbiased or 50% choice proportion) corresponds to ML = 0, and 
perfect matching (average of 60% and 75%, or 67.5%) corresponds 
to ML = 1, with a linear continuum between and beyond these val-
ues. We define the transition rate (TR) as the change in the propor-
tion of choices of the richer option from trial 0 to trial 1 following 
transition, averaged across all four possible transitions.

We first evaluated the effects of each individual parameter on TR 
(Figure 14A). The analysis is similar to that of Figure 9, except 
that the dependent variable is TR instead of reward. We evaluate the 
effect of each parameter on both the optimized model (blue: α = 
0.424, ρ = 72.4, β = 0.207) and on the best-fit match to the monkey 
performance (red: α = 0.201, ρ = 55.1, and β = 0.023). The left 
panel reveals that TR is a monotonic function of the model’s mem-
ory α. As expected, the shorter the model’s reward memory (i.e., 
the smaller the reliance on the past rewards), the faster the model 
transitions to a new payoff ratio. TR is also strongly dependent on 
ρ, showing an optimum (middle panel). This is also as expected. 
During steady state, the poorer option is less often chosen. There-
fore the larger the reward assigned to the unchosen option, the more 
likely that its value will exceed that of the chosen option, causing 
the model to switch. This benefit applies only up to a certain point: 
high values of ρ lead to metronome-like switching (not shown), 
thus hampering TR. TR is also sensitive to the steepness of the 

Figure  13. Transition  Rate  and  Matching  Level. The Transition 
Rate (TR) is defined as the change in the proportion of choices 
of the richer option from trial 0 to trial 1 following transition. The 
matching level (ML) is defined as the choice proportion at trial 7 
following transition, such that ML = 0 for the 50% choice proportion 
and ML = 1 for the 67.5% proportion (average of 60% and 75%), 
with a linear continuum between and beyond these values.

Figure 14. Transition Rate and Matching Level as a function of the parameter values. Same format as in Figure 9 but plotting Transition 
Rate (A) and Matching Level (B) instead of reward as the dependent variable. We varied the value of a parameter while fixing the other two 
parameters at values of the monkeys (red) and of the optimized model (blue).
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Discussion
Matching has been a widely studied and a much debated behavioral 
phenomenon1,3–12. In baiting tasks, in which a reward, once sched-
uled, is available at an option until the subject harvests it, matching 
is the optimal or near-optimal strategy. In particular, it has been 
shown that matching follows from maximization of reward at either 
the molecular15–17 or molar13,18,19 scales. Furthermore, at the level of 
mechanistic implementation, a biophysically based neural model 
grounded in reinforcement learning7 was also shown to reproduce 
matching behavior in a baiting task25.

An important question is to what extent matching applies to tasks 
that do not feature baiting or other control elements that render 
matching an optimal strategy. We engaged animals in a reward-
based foraging task that featured neither baiting nor other controls 
to elicit matching. Surprisingly, we found that animals in our task 
very faithfully matched the reward proportions. This is a surprising 
finding because matching was not the optimal strategy in this task; 
we found that a model could harvest substantially more reward than 
the monkeys by over-matching the reward proportions. We investi-
gated the source of the animals’ bottleneck at the mechanistic level. 
We found that the animals showed a relatively shallow comparison 
criterion that contrasts the values of the rightward and the leftward 
options (Figure 10). This is an important bottleneck because at least 
in this task, the steepness of the value comparison function has a 
strong effect on the earned reward (Figure 9, right). Furthermore, 
the steepness also has strong leverage on the level of matching 
(Figure 14B, right).

One possible explanation for the animals’ poor comparison of 
the values of the options is that the they did not properly register 

value comparator β (right panel). For a shallow comparator (low 
value of β), the model fails to clearly distinguish the values of the 
two options and as a result transitions poorly. This is improved by 
using a β of higher value, with an effect that saturates at just over  
β = 0.01.

In a similar vein, we then investigated which parameters are impor-
tant in achieving a particular ML. To do so, we repeated the previ-
ous analysis, but for ML as the dependent variable (Figure 14B). 
The model’s memory α has a small but noticeable effect on the 
ML. The longer the memory span (higher α), the higher the ML. 
This is as expected—reliably identifying the richer value requires 
a rigorous assessment of the past rewards; the weights on the past 
reward are maximal (w1 = w2 = w3 → 1

3
) when α → 1. The value 

of the reward of the unchosen option, ρ, has strong leverage on the 
ML. There is an optimum at about 0 < ρ < 80, depending on the 
values of the other two parameters. Notably, the ρ plot reveals that 
the optimized model did not maximize ML. Maximizing ML may 
not result in maximizing reward. We revisit this question at the end 
of the Results section. The steepness of the value comparison func-
tion, β, also had a substantial impact on the ML. The steeper the 
value comparison function, the higher the ML. This is as expected: 
the model should include as little noise in the value comparison as 
possible in order to correctly identify the richer option.

Finally, we investigated the possibility that animals optimized molar 
aspects of task performance, such as the TR and ML, instead of 
the parameters of the reinforcement learning model. We therefore 
plotted the mean harvested reward as a function of TR and ML. To 
obtain enough variability in these two attributes, we exhaustively 
tested each considered value of α, ρ, and β against each other. This 
resulted in 14283 different models, each associated with a TR, an 
ML, and a reward gain.

Figure 15 shows the mean harvested reward averaged over all mod-
els that have a particular value of ML and TR. The figure reveals that 
the mean reward increases both with increasing ML and increas-
ing TR. This is as expected. An ideal agent should transition to the 
richer option as rapidly as possible, and in the steady state should 
maintain as high a value of ML as possible. Furthermore, the figure 
reveals that at certain level, there is tradeoff between ML and TR. In 
particular, starting at ML ≈ 1, a further increase in ML comes at the 
cost of a decrease in TR.

The model approximating the monkeys’ behavior (red cross) is 
positioned far from the maximum in this model-average reward 
landscape. There was no clear local optimum at that point, not in 
regard to TR, not in regard to ML, and not in regard to the particular 
combination of TR and ML. This suggests that the monkeys did not 
optimize their behavior based on TR or ML. The optimized model 
occupies a much more lucrative spot in this reward landscape, posi-
tioned at or near the maximum. Notably, the optimized model did 
not attain the highest value of ML it possibly could. Nonetheless, 
this allowed the model to achieve a higher TR. The plot shows that 
maximizing ML does not necessarily equal maximizing reward; 
it is important to strive for a high TR, too. However, at the high 
reward levels, there is a tradeoff between these two attributes of 
molar behavior.

Figure 15. Average reward as a function of Transition Rate and 
Matching  Level. We exhaustively varied, against each other, the 
values of α, ρ, and β, to arrive to a total of 14283 different models. 
Each was associated with a mean reward, with a Transition Rate, and 
with a Matching Level. The plot shows in color the mean harvested 
reward averaged over all models that have a particular value of 
Transition Rate and Matching Level. At the blank spaces, there 
was no model of the 14283 tested with the corresponding value of 
Transition Rate and Matching Level.
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the amount of the delivered juice. This is unlikely, for three rea-
sons. First, there was a nearly linear relationship between the 
valve open time and the amount of fluid reward delivered (data 
not shown). Second, the setup produced an auditory beep of the 
duration corresponding to the valve open time, which served as a 
secondary reinforcer. A trained ear can likely distinguish duration 
differences of less than 5%38. Third and most importantly, our pilot 
data showed that animals were capable of distinguishing even very 
small differences, namely a 105 ms from a 95 ms period of the 
valve opening.

If the suboptimal value comparison is not due to the registration 
of the reward magnitude, the bottleneck likely emerges from the 
internal representation of reward-related variables. There are many 
possible sources of noise affecting the representation of value in 
the brain. We considered the one that is inevitable and so at play: 
the noisy representation of value by spiking neurons. In a simu-
lated representation of value by spiking neurons, we showed that 
the ability to discriminate two values is poor when only two neu-
rons are considered in the discrimination (Figure 12A). That ability 
improves when the number of independent value-coding neurons 
increases (Figure 12A). Importantly, we found that the increase in 
the steepness of the value comparison β requires a recruitment of 
an exponential number of independent neurons (Figure 12B). Thus, 
increasing the steepness of the value comparison function is very 
costly in regard to neural resources.

Notably, the statistical framework we employed in Figure 12 is 
general, not limited to the poisson noise in the spike counts. The 
analysis of the number of required neurons n simply rests on the 
fact that to reduce noise, one may average signals over m neurons; 
if the neurons are independent, the averaging reduces the variance 
in the noise by a factor of m. The simulation in Figure 12B showed 
that this rate of variance reduction is low with respect to an increase 
in the steepness of β: the relationship between m and β is expo-
nential. Given this general statistical consideration, other forms of 
noise superimposed on the neuronal representations would lead 
to the same conclusion: To increase β, given a non-zero amount 
of noise in the brain, one must engage an exponentially growing 
number of neurons.

Conceivably, animals in this task could also under-match the reward 
proportions. However, under-matching would incur further loss 
(Figure 15). In this task, matching thus appears as a compromise 
between harvesting a sufficient amount of reward and the demands 
placed by noise on optimal neural computation.

Conclusions
We observed matching behavior in a task in which more reward 
could be harvested if animals over-matched the reward proportions. 
Mechanistic modeling revealed that the reward gained in this task 
and the level of matching strongly depend on the quality of the 
comparison of values of the decision options. The animals had a 
shallow comparison function, which dampened their reward income  
and their matching level. A neural simulation showed that an 
increase in the steepness of the comparison function is very costly 
(exponential explosion) in the number of the required value-coding 
neurons, given that there is a non-zero amount of noise in the neu-
ronal representations. This finding identifies an important neural 
constraint on optimal choice.
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 Jacqueline Gottlieb
Department of Neuroscience, Columbia University, New York, NY, USA

This is a very interesting article that thoroughly examines the “matching” behaviour in monkeys using
behavioural testing and reinforcement learning models. Monkeys perform a task where they can choose
between two targets associated with variable rewards. The monkeys show approximate matching of the
reward ratios in their choices, even though this is not optimal in the present task. The authors carry out an
exhaustive modelling effort to characterize the matching behaviour, its difference from an optimized
behaviour based on RL, and the parameters that give rise to non-optimality in the choices. Based on
these efforts, they conclude that a significant source of non-optimality may be in the noise of internal value
representations.
 
Overall the paper is very nicely done – it is well written and I greatly appreciate the thoroughness of the
modelling efforts. I have several suggestions that may improve it:
 

By design, the authors provided the monkeys with reward magnitudes that varied in a complicated
fashion in order to prevent stereotyped behaviors. However, above and beyond this variability, the
*reward ratios* fell into only 4 distinct categories. Given enough training the monkeys could, in
principle, have learnt these categories and used some stereotyped strategies to switch between
them. The success of the RL- model in capturing the data seems to make this possibility unlikely –
but this is not conclusive and there should be some explicit analysis of this possibility. At present
there is no mention of the length of training (or even, in the data provided on the website, of the
*session* from which a trial came from). These are important details to include.
Echoing the comment of reviewer 1, the conclusion that the source of suboptimality is in neural
noise seems overdone. This is *one* possible explanation that lends itself to an elegant model, but
the mapping function between behavior and neural activity is complex, and many other schemes
are possible. The authors should discuss these alternative schemes.

I found the Introduction a bit difficult to follow. Although individual paragraphs are well written, I was not
clear where the entire narrative was going. The analysis (in the Results) focuses on non-optimal choice
strategies and their possible neural bases – and the Introduction should be re-arranged to bring out this
theme. 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:
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Reader Comment 23 Sep 2015
, Stanford University School of Medicine, USAJan Kubanek

1. By design, the authors provided the monkeys with reward magnitudes that varied in a
complicated fashion in order to prevent stereotyped behaviors. However, above and beyond this
variability, the *reward ratios* fell into only 4 distinct categories. Given enough training the
monkeys could, in principle, have learnt these categories and used some stereotyped strategies to
switch between them. The success of the RL- model in capturing the data seems to make this
possibility unlikely – but this is not conclusive and there should be some explicit analysis of this
possibility. At present there is no mention of the length of training (or even, in the data provided on
the website, of the *session* from which a trial came from). These are important details to include.

#Authors' response:
We designed the task so that animals could not anticipate a reward ratio transition (the
distribution of transition times is exponential, which has a flat hazard rate).
Critically, the data show that the monkeys did not anticipate a specific reward ratio. In
addition to the success of the ratio-agnostic RL model, this is conclusively demonstrated
by the behavior aligned on transition (Figure 2A). If the animals anticipated a transition,
there would be an increase in the proportion of choices of the richer option prior to or on
transition (e.g. trial -1 or trial 0 in that figure). No such increase is observed. The figure
demonstrates that once the animals reach a behavioral equilibrium, they maintain it.
Moreover, if the animals anticipated a specific reward ratio, there would be no distinction
in behavior between the 3:1 and 1.5:1 reward ratios (Figure 2A), or at least, the matching
behavior would be profoundly degraded. Yet, the animals showed nearly exact matching
of the respective ratios (Figure 2A).

In response to this comment, the Methods now include the following text:
"We used an exponential distribution of reward ratio duration because an exponential
distribution has a flat hazard rate, making it difficult for the animals to anticipate a
transition. Indeed, animals showed no anticipation of a transition (Figure 2A)."

We now also provide the length of training and data collection in the Methods.
    
2. Echoing the comment of reviewer 1, the conclusion that the source of suboptimality is in neural
noise seems overdone. This is *one* possible explanation that lends itself to an elegant model, but
the mapping function between behavior and neural activity is complex, and many other schemes
are possible. The authors should discuss these alternative schemes.

#Authors' response:
This is now addressed in a new paragraph in the Discussion:
"The finding that the animals' value comparison function is relatively shallow indicates
that the animals' choice behavior is relatively stochastic. The simulation of the
representation of value by noisy neurons provides one possible explanation for this
stochastic choice behavior. However, the stochasticity might be also due to other factors.
For instance, the animals might, at least in part, use a strategy that deviates from the
optimal strategy of comparing the value of the two options. A deviation from that optimal
strategy might appear as an increased level of noise in the animals' choice. Another
possibility is that the nervous system specifically introduces noise into certain stages of
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possibility is that the nervous system specifically introduces noise into certain stages of
the decision machinery to promote foraging and exploration. This might be beneficial in
environments with stochastic reward schedules, i.e., in which the reward obtainable for a
choice is difficult to predict."

I found the Introduction a bit difficult to follow. Although individual paragraphs are well written, I was
not clear where the entire narrative was going. The analysis (in the Results) focuses on
non-optimal choice strategies and their possible neural bases – and the Introduction should be
re-arranged to bring out this theme. 

#Authors' response:
In response to this comment, we made the Introduction much more compact. We also
entirely rewrote its last paragraph. The last paragraph now reads:

"The finding that matching behavior is observed in a task that does not impose it provides
important insights into the nature of matching behavior. To shed light on the mechanism,
we described the animals' behavior using a mechanistic model. The model faithfully
captured the monkeys' molar and molecular behavior. We show which components of the
model are important in mediating matching. We then implement the critical component by
populations of spiking neurons. The mechanistic modeling revealed a bottleneck in the
animals' ability to compare the values of the two options. The additional neuronal
implementation suggested that this bottleneck could be due to noise in the representation

 of value by the neuronal populations."

 No competing interests were disclosed.Competing Interests:

 01 September 2015Referee Report

doi:10.5256/f1000research.7059.r10172

 Bruno Averbeck
Laboratory of Neuropsychology, National Institutes of Health (NIH), Bethesda, MD, USA

The paper by Kubanek and Snyder presents interesting data and modeling on matching behavior. They
find that animals match in a learning task where the animals should infer which of two targets will deliver
the larger reward on each trial. They find matching behavior in the animals. The behavioral choice
strategy of the animals is modeled using a simple value integration algorithm. The algorithm accounts well
for the choices of the animals. They also show that the algorithm can significantly outperform the animals
if it over-matches, i.e. if it picks the better option more often. The main difference between the improved
algorithm and the animal's behavior is the decision noise or beta parameter. They then develop a second
model which assumes that the noise in the animal's choice behavior is driven by limits in their population
code for value. 

The paper is well written and the study has been carefully carried out. Overall, this is nice work. I would
make one comment on the final conclusion, that the noisiness in the animal's choice behavior is driven by
noise in their population code. Specifically, how can this hypothesis be differentiated from the possibility
that the noise in the animal's choice behavior is a strategic choice? In other words, is the animal limited by
noise in their population coding, or are they exploring for other reasons, including perhaps satisficing?
Would their decision noise (the beta parameter) be the same in another task in which values have to be
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Would their decision noise (the beta parameter) be the same in another task in which values have to be
learned, but under different conditions?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Reader Comment 23 Sep 2015
, Stanford University School of Medicine, USAJan Kubanek

We thank this reviewer for this helpful comment. In response to this comment, we now include a
new paragraph in the Discussion:

"The finding that the animals' value comparison function is relatively shallow indicates that the
animals' choice behavior is relatively stochastic. The simulation of the representation of value by
noisy neurons provides one possible explanation for this stochastic choice behavior. However, the
stochasticity might be also due to other factors. For instance, the animals might, at least in part,
use a strategy that deviates from the optimal strategy of comparing the value of the two options. A
deviation from that optimal strategy might appear as an increased level of noise in the animals'
choice. Another possibility is that the nervous system specifically introduces noise into certain
stages of the decision machinery to promote foraging and exploration. This might be beneficial in
environments with stochastic reward schedules, i.e., in which the reward obtainable for a choice is
difficult to predict." 

 No competing interests were disclosed.Competing Interests:
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