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Abstract
This study investigated global gene expression in the small yellow follicles (6–8 mm diame-

ter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat

stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained

at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with

2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for

RNA isolation and microarray analysis at the end of each time point. Results showed that

69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after

heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or

higher. Gene ontology analysis revealed that these differentially expressed genes are asso-

ciated with the biological processes of cell communication, developmental process, protein

metabolic process, immune system process, and response to stimuli. Upregulation of heat

shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downre-

gulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Krup-

pel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the

structural matrix and inflamed damage and adaptive responses of gene expression in the

follicle cells. These suggestions were validated through gene expression, using quantitative

real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-

related pathways play a critical role in regulating acute heat stress responses in the small

yellow follicles of TCC hens.
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Introduction
Global warming increases environmental temperatures and affects not only humans but also
livestock [1,2,3]. Animal exposure to hot environments deleteriously affects their reproductive
functions. In females, heat stress adversely affects oogenesis, oocyte maturation, fertilization,
and embryo development and implantation rate [4,5]. In chickens, high ambient temperatures
affect their endocrine systems and reproductive and egg-laying performance [6]. Thus, in trop-
ical areas, such as Taiwan, high temperatures and humidity during summer induce stress in
poultry. The average temperature in Taiwan has increased by 0.8°C in past decades, with sum-
mer temperature and humidity reaching 38°C and 80%, respectively (http://www.cwb.gov.tw/
V7/index.htm).

Approximately 12,000 oocytes are present in the ovary of a mature hen. However, only a
few hundred oocytes are selected for ovulation and subsequent egg formation. A functional
hen ovary contains hundreds of white cortical follicles with a diameter of 1–5 mm, small yellow
follicles (SYFs) with a diameter of 6–8 mm, and large yellow preovulatory hierarchy follicles
with a diameter of 9–40 mm [7,8]. The SYFs are in a crucial prehierarchical stage related to the
development of follicles and the laying performance [9]. A single follicle is selected from the
SYF pool every day to join the group of preovulatory follicles destined for ovulation [10,11].

The normal body temperature of chicken is 40–41°C [12]. Panting is the primary mode of
heat dissipation in birds. Heat insults exceeding the capacity of bodily thermoregulation det-
rimentally affect production performance. Taiwan country chickens (TCCs) are native, slow-
growing breeds and exhibit higher thermotolerance than do nonnative breeds [13,14]. Broiler-
type B strain TCCs have been bred for body weight and comb size for over 20 generations [15].
A few reports have investigated differential gene expression in chickens in response to heat
stress [13,16,17,18]; however, the effect of acute heat stress on global gene expression in the
ovary, particularly in native chickens of tropical regions, has not been explored. This study
thus aimed to analyze the global mRNA expression of SYF in TCCs as a basis for delineating
the mechanism of acute heat stress response in chicken hens.

Materials and Methods

Experimental animals and management
Twelve 30-wk-old broiler-type B strain TCC hens originally bred for meat production by
National Chung Hsing University [19,20] were used in this study. The care and use of all ani-
mals in the study were complied with the guidelines and was approved by the Institutional Ani-
mal Care and Use Committee of National Chung Hsing University (Taichung, Taiwan;
IACUC No. 102–06). The hens, housed in individual cages at 18 wk of age, peaked in egg pro-
duction at 30 weeks [15]. The hens were placed in a climate chamber for over 2 weeks for adap-
tation under conditions of a light:dark photoperiod of 14:10 h at 25°C and 55% relative
humidity (RH) before acute heat stress treatment. Feed and water were provided ad libitum,
including the acute heat stress and recovery periods.

Conditions of acute heat stress and sample collection
After adaptation, hens were randomly allocated to four groups (three hens in each group). The
control group was maintained at 25°C and 55% RH throughout the experiment. The hens in
the other three groups were treated with an acute heat stress at 38°C for 2 h without recovery
(H2R0), at 25°C with 2-h recovery (H2R2), and at 25°C with 6-h recovery (H2R6). The light:
dark photoperiod and RH during the heat stress treatment and recovery remained the same as
the adaptation period. Physiological parameters (respiratory rate and body temperature) were
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recorded during treatment and recovery. The respiratory rate was measured by counting the
panting breaths of the chickens for 15 sec and the value was multiplied by 4 to give the number
of breaths per min. The body temperature was obtained by introducing an alcohol thermome-
ter into the cloaca of the chickens and recorded until the reading was stable. The hens were sac-
rificed by electric stunning and followed by bleeding from carotid artery at the end of each
time point; their SYF were collected, placed overnight in cryogenic vials with 0.5 mL of
RNAfter (GMbiolab Co, Ltd, Taichung, Taiwan) at 4°C, and stored at −80°C until RNA isola-
tion. The time from sacrificing to the sample collection was limited to within 10 min.

Gene expression analysis in response to acute heat stress through
microarray analysis
A chicken 44K oligo microarray (Agilent Technologies, Santa Clara, CA, USA) was used to
determine differential gene expression between the control and acute-heat -stressed groups
[13]. RNA isolated from the SYF of each hen was used for reverse transcription. The second
strand complementary DNA (cDNA) was synthesized from 1 μg of the total RNA and ampli-
fied using a Quick-Amp Labeling Kit (Agilent Technologies). The cDNA served as the template
for in vitro transcription for producing the target cRNA in the presence of Cy3-CTP (CyDye,
Agilent Technologies). In total, 1.65 μg of Cy3-labled cRNA was fragmented to an average size
of approximately 50–100 nucleotides through fragmentation buffer incubation at 60°C for 30
min. Subsequently, the corresponding fragment-labeled cRNA was hybridized to the microar-
ray at 65°C for 17 h. After washing and drying, using a nitrogen gun, the microarrays were
scanned using a microarray scanner (Agilent Technologies) at 535 nm for Cy3. The scanned
images were analyzed using Feature Extraction 10.5.1.1 software (Agilent Technologies) and
normalized for quantifying the signal and background intensities of each feature. Data was
acquired using the following criteria: (1) p< 0.01 for gene expression difference using Gene-
Spring software (Agilent Technologies). (2) A distinct signal from the microarray image
flagged by the software. (3) A false discovery rate of< 0.05. Results of the microarray analysis
were filtered from the features when flags were present or marginal in at least one of the four
groups (control, H2R0, H2R2, and H2R6). The dataset of microarray analysis were submitted
to Gene Expression Omnibus in the National Center for Biotechnology Information under an
accession number of GSE71091.

Gene annotation and gene network analysis of differentially expressed
genes
The differentially expressed genes with known identities or with homologous sequences and
functional definitions were categorized using the Gene Ontology (GO, http://www.
geneontology.org/) and PANTHER (http://www.pantherdb.org/) databases according to their
cellular components, biological processes, and molecular functions. Functional pathway analy-
sis was performed using the STRING database (http://string-db.org/). Differentially expressed
genes were input for generating biological networks by comparing the input list with a refer-
ence list from human databases.

Validation of gene expressions by using quantitative real-time
polymerase chain reaction
Eight differentially expressed genes that played a critical role in the annotation analysis in
response to acute heat stress—heat shock protein 25 (HSP25); interleukin 6 (IL6); vitellogenin
2 (VTG2); metalloproteinase 13 (MMP-13); polymerase I and transcript release factor (PTRF);
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collagen, type II, alpha 1 (COL2A1); discoidin domain receptor tyrosine kinase 2 (DDR2); and
Kruppel-like factor 2 (KLF2) were validated using a quantitative real-time polymerase chain
reaction (qRT-PCR) analysis [13]. The sample set used in the microarray analysis was used for
validation. The qRT-PCR primers and their predicted product sizes are listed in Table 1. The
qRT-PCR reactions were performed on the Roche Light-Cycler Instrument 1.5 using a Light-
Cycler FastStart DNAMasterPLUS SYBR Green I kit (Roche Cat. 03 515 885 001, Castle Hill,
Australia). For the PCR, 2 μL of master mix, 2 μL of 0.75 mM forward and reverse primer, and
6 μL of cDNA samples were used, with each sample tested three times. The RT-PCR program
was run at 95°C for 10 min, 40 cycles each at 95°C for 10 s, 60°C for 15 s, and 72°C for 10 s;
subsequently, a melt curve analysis was performed. At the end of each RT-PCR run, the data
were automatically analyzed by the system and an amplification plot was generated for each
cDNA sample. From each of these plots, the LightCycler3 data analysis software automatically
calculated the crossing point value (Cp; the crossing point corresponds to the first maximum
of the second derivative curve), which was interpreted as the beginning of exponential amplifi-
cation. The fold expression or repression of the target gene relative to the internal control gene,
GAPDH, in each sample was calculated [13]. For consistency with the microarray analysis, the
cutoff value for the differentially expressed genes was set to two-fold or higher.

Statistical analysis
The physiological parameters of the control and heat-stressed hens during acute heat stress
and recovery were analyzed using a Student t test in Statistical Analysis System software [21].

Table 1. Primers and product size of genes used for validation using quantitative real-time polymerase chain reaction.

Gene symbola GenBank accession number Forward (F) primers 5'-3' Product size (base pairs)

Reverse (R) primers 5'-3'

HSP25 NM_001010842 F: CCGTCTTCTGCTGAGAGGAGTG 117

R: ACCGTTGTTCCGTCCCATCAC

IL6 NM_204628 F: AGCAAAACACCTGTTACATTTCT 96

R: AGTCTGGCTGCTGGACATTT

VTG2 NM_001031276 F: CAGCCTAACTGACAAACAGATGAAG 100

R: GCATTCCTCATTCTCACATGAACAC

MMP13 AF070478 F: TTGGTGCTAAGTATAGATGAATGCC 131

R: TGTAGGTAGTCAGTGCTTGTTCG

PTRF NM_001001471 F: CCCTGCCTGCTAGGACAAG 149

R: AGGTCTGGGCTCTGGAAGG

COL2A1 NM_204426 F: CACTGAACGGATGGCACGAC 137

R: CCTCCACCCGCCCTACG

DDR2 CR387623 F: TGCGGACGGGAGGAACTG 103

R: AGCAATAGGGTACTGCGAATGG

KLF2 XM_418264 F:CGCCGAGGATTGGACACAG 139

R: CACGGAGTTCACCCTTCACAG

GAPDH NM_204305 F: CATCACAGCCACACAGAAGA 122

R: TGACTTTCCCCACAGCCTTA

a Abbreviations: HSP25, heat shock protein 25; IL6, interleukin 6; VTG2, vitellogenin 2; MMP13, metalloproteinase 13; PTRF, polymerase I and transcript

release factor; COL2A1, type II alpha 1 collagen; DDR2, discoidin domain receptor tyrosine kinase 2; KLF2, Kruppel-like factor 2; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase.

doi:10.1371/journal.pone.0143418.t001
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Multiples of changes in the microarray and qRT-PCR analysis of each individual of each group
are presented as the arithmetic mean of the three replicates.

Results

Effect of heat stress on physiological parameters in broiler-type B strain
TCCs
To evaluate the response of hens to acute heat stress, the hens were exposed to 38°C heat stress
for 2 h. The acute heat stress increased the respiratory rate and body temperature immediately
after the heat treatment began (p< 0.05; Fig 1). The hens started panting 30 min after heat
stress, which continued until 1 h of recovery after the heat stress. The respiratory rate and body
temperature normalized during the recovery period.

Effects of heat stress on gene expressions in the SYFs of broiler-type B
strain TCCs after acute heat stress
The mRNA profile of SYFs from control and heat-stressed hens were analyzed using a microar-
ray. When using a cutoff value of a two-fold change, 406 genes showed differential expression on
treatment (p< 0.05). The expression patterns of the 406 distinct genes are presented in Fig 2.
Compared with the control group, the H2R0, H2R2, and H2R6 groups differed in 203, 90, and
147 genes, respectively; 69, 51, and 15 gene transcripts upregulated (S1 Table) and 58, 15, and 56
genes downregulated (S2 Table) specifically in the H2R0, H2R2, and H2R6 groups, respectively.
After heat exposure, seven genes—HSP25,MYOC, PTRF, RGPD1, SOGA3, ChEST305c2 (Gallus
gallus finished cDNA), and ChEST920a4 (Gallus gallus finished cDNA)—exhibited higher
expression for all recovery times. The other six genes—ABI3, GAL2, GAL7, SERPINB10, alpha-
2-macroglobulin-like 1 [ENSGALT00000023052], and ChEST478o11 (Gallus gallus finished
cDNA)—exhibited downregulation for all recovery times.

Fig 1. Body temperature (A) and respiratory rate (B) of acute-heat-stressed and control hens during stress and recovery periods.Data are
mean ± standard error (n = 12; n = 6 and n = 3 in groups with 2-h and 6-h recovery after heat stress, respectively). * Values differed between heat-stressed
and control groups (p < 0.05).

doi:10.1371/journal.pone.0143418.g001
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Functional categories of the differentially expressed genes in the SYFs
of broiler-type B strain TCCs after acute heat stress
To characterize the functions of the differentially expressed genes, genes with known identi-
ties were subjected to GO annotation (Fig 3). The differentially expressed genes were pri-
marily localized in the membrane, cytoplasm, nucleus, and extracellular regions. Most
genes were associated with multiple biological processes and were involved in the metabolic
process (26%), cellular process (18%), biological regulation (10%), developmental process
(9%), immune system process (7%), localization (7%), response to stimulus (7%), and mul-
ticellular organismal process (6%). The majority of the differentially expressed genes were
associated with multiple molecular functions, including protein binding (17%), hydrolase
activity (13%), nucleic acid binding (11%), receptor activity (10%), transferase activity
(8%), enzyme regulator activity (7%), and nucleic acid binding transcription factor activity
(7%).

The functional annotation pathway analysis of the differentially expressed genes and
their interrelationships are depicted in Fig 4. These networks were associated with the bio-
logical functions of reproduction, responses to stress, and regulation of such responses. The
major upregulated genes in the network after heat stress and recovery for 0 h were IL6, GC,
FGA, NFACT1, TNFRSF11B, CAV3, and RAD21; for 2 h were IL6, FGA,MMP1, and
MMP13; and for 6 h were FGA, NFACT1, BLNK, SMC4, and ECT2 (S1 Table). The major
downregulated genes in the network after heat stress and recovery for 0 h were CD44, IL15,
DDR2, KLF2, VCAM1, and ANGPT1; for 2 h was FGF7 only; and for 6 h were SRC, VDR,
NES, DDR2, IL15, CAMP, KLF2, VCAM1, EFNB1, IRAK4, COL2A1, and PPP2R2B
(S2 Table).

Fig 2. Venn diagram analysis of 219 upregulated (A) and 187 downregulated (B) genes in the small yellow follicles of broiler-type Taiwan country
chickens with 38°C acute heat stress for 2 h and recovery for 0, 2, and 6 h. H2R0, recovery for 0 h after heat stress; H2R2, recovery for 2 h after heat
stress; H2R6, recovery for 6 h after heat stress.

doi:10.1371/journal.pone.0143418.g002
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Validation of representative differentially expressed genes in the SYFs
of broiler-type B strain TCCs after acute heat stress
Through functional annotation pathway analysis, 8 significantly changed genes revealed
through microarray analysis were further validated using qRT-PCR (Table 2). The coefficient
of variation of Cp value of GAPDH in the 4 groups ranged from 1.2% to 2.3% and implied that
the heat stress did not affect its expression. Consistent with the microarray analysis, HSP25,
IL6, VTG2, andMMP13 were upregulated after heat stress. COL2A1 and KLF2 expressions
were reduced by the acute heat stress in both the microarray and qRT-PCR analyses. PTRF and
DDR2 expression of qRT-PCR differed from those of the microarray analysis, and DDR2 was
upregulated after 2-h recovery in the qRT-PCR analysis. PTRF expression did not significantly
differ after acute heat treatment in the qRT-PCR analysis.

Fig 3. Classification of differentially expressed genes in small yellow follicles of broiler-type B strain Taiwan country chickens with 38°C acute
heat stress for 2 h and recovery for 0, 2, and 6 h by cellular components (A), biological processes (B), andmolecular functions (C).Only the 212
genes with known functional definitions in the Gene Ontology and PANTHER databases were included.

doi:10.1371/journal.pone.0143418.g003
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Discussions

Effect of acute heat stress on physiological parameters and gene
expressions in the SYFs of broiler-type B strain TCCs
Numerous studies have shown that heat stress affects egg production, egg weight, egg quality,
and shell quality in chickens [22,23,24,25]. Few studies, however, have explored the global
changes of gene expressions in the ovarian follicles. The results of the current study showed
that the respiratory rate and body temperatures of heat-stressed hens increased significantly
during acute heat stress and normalized after recovery at 25°C, which is consistent with the a
previous report on roosters [13]. Global gene expression changes in ovarian SYFs were associ-
ated with metabolic, developmental, immune system, multicellular organismal, apoptotic, and
cellular processes, apoptosis, biological regulation, localization, response to stimulus, biological
adhesion, cellular component organization (biogenesis), and reproduction changes in the SYFs
after acute heat stress (Fig 3).

Fig 4. Network analysis of the differentially expressed genes in small yellow follicles of heat-stressed broiler-type B strain Taiwan country
chickens. (A) H2R0, recovered for 0 h after heat stress; (B) H2R2, recovered for 2 h after heat stress; (C) H2R6, recovered for 6 h after heat stress.

doi:10.1371/journal.pone.0143418.g004
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Heat shock protein family genes and other stress response related
genes were induced in response to acute heat stress in the SYFs of
broiler-type B strain TCCs
HSP25 expression was significantly upregulated after acute heat stress (S1 Table; Table 2).
HSP25 is a small heat shock protein (sHSP) belonging to a family of conserved and ubiqui-
tously expressed proteins [26].HSP25 stabilizes the unfolding proteins and prevents them
from precipitating in cells [27]. Moreover, HSP25 refolds numerous unfolding proteins and
cooperates with other chaperones when organisms are recovered under optimal environmental
conditions [28,29]. The elevated HSP25 expression in this study suggests thatHSP25 facilitates
protein refolding and chaperoning for preventing protein denaturation through acute heat
insults in SYFs.

Acute phase response (APR) is a systemic and cellular reaction provoked by local or sys-
temic disturbances in homeostasis caused by pathogen infection, tissue injury, trauma, stress,
surgery, neoplasia, and immune disorders [30,31]. Numerous responses, including the produc-
tion of proinflammatory cytokines (e.g., IL6, IL1β, and TNF-α) have been reported [32,33].
Furthermore, APR maintains physical homeostasis by activating the innate immune responses.
IL6 production during APR suppresses the production of proinflammatory cytokines without
hampering the other anti-inflammatory cytokines [34]. IL6 expression was significantly
increased in the SYF (S1 Table; Table 2). Functional annotation analysis suggested that IL6
upregulates interleukin 15 (IL15), matrix metalloproteinase-1 (MMP-1), matrix metalloprotei-
nase-13 (MMP-13), fibroblast growth factor 7 (FGF7), vascular cell adhesion molecule 1
(VCAM-1), myeloid differentiation primary response 88 (MYD88), and CD44 (Fig 4). How-
ever, the expression of FGF7 and VCAM-1 was downregulated, suggesting that epithelial cell
injuries were exacerbated by acute stress [35,36]. Xing et al. [37] demonstrated that IL6 is criti-
cal in controlling the extent of local and systemic acute inflammatory responses, particularly
the levels of proinflammatory cytokines. Because functional pathway analysis showed that the
differentially expressed genes were primarily associated with the biological processes of

Table 2. Multiples of changes of significantly differentially expressed genes in small yellow follicles of broiler-type B strain Taiwan country chick-
ens after acute heat stress determined usingmicroarray and quantitative reverse transcription polymerase chain reaction analyses.

Fold change* Genea

HSP25 IL6 VTG2 MMP13 PTRF COL2A1 DDR2 KLF2

H2R0/CTL

M 34.42 2.54 8.88 0.76 2.18 0.68 0.41 0.32

Q 54.40 1.93 3.37 0.96 0.91 0.81 1.09 0.27

H2R2/CTL

M 38.20 2.11 1.21 3.21 2.08 0.98 0.82 0.95

Q 36.39 3.05 1.01 3.40 0.84 0.48 3.98 0.32

H2R6/CTL

M 10.46 0.96 1.75 0.73 2.03 0.43 0.41 0.43

Q 8.40 1.82 1.65 0.82 0.74 0.53 0.94 0.34

* Multiples of changes of two-fold or higher increase or decrease were defined as different (p < 0.05). The fold expression or repression of the target gene

were normalized using glyceraldehyde-3-phosphate dehydrogenase as an internal control gene.
a Abbreviations: HSP25, heat shock protein 25; IL6, interleukin 6; VTG2, vitellogenin 2; MMP13, metalloproteinase 13; PTRF, polymerase I and transcript

release factor; COL2A1, type II alpha 1 collagen; DDR2, discoidin domain receptor tyrosine kinase 2; KLF2, Kruppel-like factor 2.

doi:10.1371/journal.pone.0143418.t002
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reproduction, response to stress, and regulation of these responses (Fig 3), IL6may initiate a
protective mechanism against damage induced by heat stress in the SYF cells.

KLF2, a eukaryotic zinc finger transcription factor, has been reported to regulate various
gene expressions in response to shear stress of vasculature endothelial cells for establishing and
maintaining endothelial function [38,39]. KLF2 has 3 carboxy-terminal zinc fingers with high
homology to KLF4, the expression of which was significantly upregulated after heat stress in
several tissues [40]. Liu et al. [40] reported that the overexpression of KLF4 increased the mor-
tality of C2C12 murine myogenic cells. Conversely, KLF4 deficiency reduced C2C12 cell injury
after heat stress [40]. KLF2 expression was significantly downregulated (S2 Table; Table 2),
implying that KFL2 play a role in preventing SYF damage in hens exposed to acute heat stress.

Acute heat stress may cause damage to the SYFs of broiler-type B strain
TCCs
In chickens, vitellogenin, the major precursor protein of yolk, is synthesized in the liver [41].
Three vitellogenin genes exist, and the VTG2 transcript is the most abundant [42]. VTG2
expression in SYF was significantly increased after acute heat stress (Table 2). The role of upre-
gulated VTG2 expression in response to acute heat stress in chickens SYFs remains unknown.
In this study, the expression ofMMP1 was upregulated after acute heat stress (Table 2). MMPs
are zinc-dependent endopeptidases capable of degrading various extracellular matrix compo-
nents [43,44]. Furthermore, MMPs play a critical role in follicular extracellular remodeling in
mammalian ovaries [45]. Park et al. [46] reported that heat shock increased theMMP1 and
MMP3 expression through an autocrine interleukin-6 loop. IL6 inhibition by a monoclonal
antibody significantly reduced theMMP1 andMMP13 expression in response to heat shock.
MMP1 expression was stimulated by a follicle-stimulating hormone, luteinizing hormone, pro-
gesterone, and estrogen, and remained low in the preovulatory follicles but increased in posto-
vulatory follicles in chicken ovaries [45].MMP1 upregulation after heat stress thus may be
disturbed by disordered secretion of sex hormones and can induce matrix disintegration in the
follicles. This suggestion was further confirmed by the COL2A1 downregulation and the tran-
sient upregulation ofMMP13 because of heat stress. DDR2 inducesMMP13 expression [47],
and COL2A1 plays a critical role in collagen synthesis [48] and shares a majority of the total
collagen genes in the ovary [49]. Liang et al. [49] reported that large amounts of misfolded pro-
collagen were synthesized and retained in the dilated endoplasmic reticulum in COL2A1
knockout mice [48]. In addition, COL2A1 downregulation was observed in hypothyroid ovar-
ian tissue, accompanied by the upregulation ofMMP1,MMP8, andMMP13 [49]. Thus, the
downregulation of COL2A1 and upregulation ofMMP1,MMP13, and IL-6 after acute heat
stress suggest the proteolytic disintegration of the structural matrix and inflamed damage of
the follicle cells after acute heat insults. In this study, DDR2 was downregulated in H2R0 and
H2R6 in the microarray analysis after acute heat stress.

PTRF, also known as cavin-1, participated in the dissociation of transcription complexes
[50,51]. PTRF was recently reported to respond to mechanical stress by disassembling caveolae,
[52] which, as a compact and rigid microdomain on the plasma membranes, has been impli-
cated in several biological processes, including cell signaling, lipid regulation, and endocytosis
[53]. Mechanical stress, such as osmotic swelling and unsymmetrical stretching, results in the
rapid disappearance of caveolae [54]. The inner surface of caveolae is coated with a scaffolding
protein formed by caveolin members [53]. CAV3 concentration is significantly increased in
damaged chicken muscle [55]. PTRF expression was significantly upregulated after acute stress,
and CAV3 expression was significantly upregulated at 0 h of recovery after heat stress (S2
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Table; Table 2). These results indicate membrane permeability damaged by acute heat stress in
SYF cells.

Conclusions
Heat stress affects SYF gene expression in broiler-type B strain TCCs. The differentially
expressed genes participated in such biological processes as metabolic, cellular, and develop-
mental processes and biological regulation. Functional pathway analysis showed that IL6 is a
key regulator in the networks and connects the processes of reproduction, responses to stress,
and regulation of such responses. The upregulation of heat shock protein 25, interleukin 6,
metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen,
discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggest that acute heat
stress induces proteolytic disintegration of the structural matrix and inflamed damage and
adaptive responses of follicle cell gene expressions.
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