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Abstract

The urokinase receptor (uPAR) is a GPI-anchored cell surface receptor that is at the center of an 

intricate network of protein-protein interactions. Its immediate binding partners are the serine 

proteinase urokinase (uPA), and vitronectin (VTN), a component of the extracellular matrix. uPA 

and VTN bind at distinct sites on uPAR to promote extracellular matrix degradation and integrin 

signaling, respectively. Here, we report the discovery of a new class of pyrrolone small-molecule 

inhibitors of the tight ∼1 nM uPAR•uPA protein-protein interaction. These compounds were 

designed to bind to the uPA pocket on uPAR. The highest affinity compound, namely 7, displaced 

a fluorescently-labeled α-helical peptide (AE147-FAM) with an inhibition constant Ki of 0.7 µM 

and inhibited the tight uPAR•uPAATF interaction with an IC50 of 18 µM. Biophysical studies with 

surface plasmon resonance showed that VTN binding is highly dependent on uPA. This 

cooperative binding was confirmed as 7, which binds at the uPAR•uPA interface, also inhibited 

the distal VTN•uPAR interaction. In cell culture, 7 blocked the uPAR•uPA interaction in uPAR-

expressing human embryonic kidney (HEK-293) cells, and impaired cell adhesion to VTN, a 

process that is mediated by integrins. As a result, 7 inhibited integrin signaling in MDA-MB-231 

cancer cells as evidenced by a decrease in focal adhesion kinase (FAK) phosphorylation and Rac1 

GTPase activation. Consistent with these results, 7 blocked breast MDA-MB-231 cancer cell 

invasion with IC50 values similar to those observed in ELISA and surface plasmon resonance 

competition studies. Explicit-solvent molecular dynamics simulations show that the cooperativity 

between uPA and VTN is attributed to stabilization of uPAR motion by uPA. In addition, free 

energy calculations revealed that uPA stabilizes the VTN•uPARSMB interaction through more 
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favorable electrostatics and entropy. Disruption of the uPAR•VTNSMB interaction by 7 is 

consistent with the cooperative binding to uPAR by uPA and VTN. Interestingly, the 

VTNSMB•uPAR interaction was less favorable in the VTNSMB•uPAR•7 complex suggesting 

potential cooperativity between 7 and VTN. Compound 7 provides an excellent starting point for 

the development of more potent derivatives to explore uPAR biology.

INTRODUCTION

The urokinase receptor (uPAR) is a glycosyl-phosphatidylinositol (GPI)-anchored protein 

that is at the center of a network of more than 50 protein-protein interactions (1). 

Biochemical and biophysical studies reveal that its immediate binding partners are the serine 

proteinase urokinase-type plasminogen activator (uPA) (2) and the somatomedin B (SMB) 

domain of the extracellular matrix glycoprotein vitronectin (VTN) (3–5). uPA binding to 

uPAR is mediated by a 25-residue β-turn growth factor-like (EGF) domain that is ensconced 

in a large hydrophobic cavity lined with several residues known as hot-spots that contribute 

more than an order of magnitude to the binding (6). As a result, the uPAR•uPA interaction is 

a tight ∼1 nM and long-lived complex that occurs over a large protein-protein interface of 

more than 1,000 A2 (6–9). In contrast, the uPAR•VTN interaction occurs over a smaller 

interface of 75 Å (3–5), driven primarily by a by an electrostatic interaction between Arg91 

on uPAR and Asp22 on VTNSMB (3). The binding of the SMB domain is a transient 

interaction with micromolar affinity that is uPA-dependent (10,11) despite the lack of direct 

interaction between uPA and VTN. Studies have shown that VTN binds to uPAR but only in 

the presence of uPA (12) suggesting a potential allosteric mechanism (10,13,14). Crystal 

structures of the VTNSMB•uPAR•uPAATF multiprotein complex reveals that the VTN and 

uPA binding interfaces occur at distal sites (5).

In cancer cells, uPAR-bound uPA and VTN engender different biological responses. uPA 

promotes proteolysis in the cellular milieu following its activation upon binding to uPAR 

(15,16). Active uPA is highly specific to plasminogen, turning it into a non-specific protease 

that triggers a cascade of proteolytic events such as activation of matrix metalloproteinases 

(MMPs) (17) and extracellular matrix breakdown (18–22). Plasmin and MMPs activate 

latent growth factors to release them from extracellular matrix sequestration (23,24). 

Therefore, inhibition of the uPAR•uPA interaction is expected to reduce degradation of the 

extracellular matrix and therefore impair cancer cell invasion. VTN, on the other hand, 

mediates uPAR interaction with integrins through an RGD motif located near its N-terminal 

somatomedin (SMB) domain (25,26). Binding of integrins to the RGD motif on VTN 

triggers integrin signaling, cell migration, adhesion, lamellipodia formation, and 

modification of focal adhesion sites (4,27–29). uPAR interaction with the fibronectin 

receptor α5β1 integrin promotes ERK-dependent tumor cell proliferation, adhesion, 

migration, induction of MMPs, pericellular proteolysis, and cancer cell invasion (30–32). 

uPAR binding to β1 integrin leads to downstream activation of FAK and ERK signaling 

pathways (32–38). uPAR-β3 integrin interaction is associated with activation of Rac1 

(39,40). Src signaling is activated by uPAR downstream of both α5β1 and α3β1 integrins 

(33,41). In sum, inhibition of uPA and VTN binding to uPAR is expected to impair an array 

of cellular processes that include adhesion, cell spreading, and invasion.
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Small molecules that bind to uPAR can be used to disentangle its protein interactions and 

define their role in cancer invasion and metastasis and other pathological processes 

associated with the receptor. Despite the tight and stable uPAR•uPA complex, the presence 

of a large number of hot-spot residues at the protein-protein interface, and the well-defined 

hydrophobic binding pocket of uPA, makes it suitable for the design of small-molecule 

antagonists (42). Our previous efforts have led to the first small molecule that inhibited the 

uPAR•uPA interaction (43,44). The compound IPR-803 was discovered by molecular 

docking of multiple structures obtained from explicit-solvent molecular dynamics 

simulations of uPAR. IPR-803 inhibited cancer cell invasion and blocked cancer metastasis 

in vivo (43). Our work has shown that compounds that bind to uPAR share common 

structural features and occupy specific pockets in uPAR that accommodate critical hot-spot 

residues of uPA (45).

Here, we explore the effect of the uPAR•uPA interaction on the distant uPAR•VTN. First, 

we study the cooperative binding between uPA and VTN using surface plasmon resonance 

and other biochemical assays. We then use our small molecules to probe the uPAR•VTN 

interaction in cultured cells with uPAR-expressing HEK-293 cells. We further probe the 

effect of our compound on uPAR signaling through integrins using MDA-MB-231 breast 

cancer cells. Finally, we employ explicit-solvent molecular dynamics simulations and free 

energy calculations to explore the structural basis for the cooperative binding between uPA 

and VTN.

MATERIALS AND METHODS

Microtiter-based ELISA for uPAR•uPA

uPAR without the GPI anchor was obtained by a purification process as previously 

described (46). High-binding microplates (Greiner Bio-One) were incubated for 2 h at 4°C 

with 100 µL of 2 µg·mL−1 of uPAATF in PBS for immobilization as previously described 

(44). The plate was washed with 0.05% Tween-20 in PBS buffer between each step. A 1:1 

mixture of Superblock® buffer in PBS (Thermo Fisher Scientific, Inc. Waltham, MA) with 

0.04 M NaH2PO4 and 0.3 M NaCl buffer was used for blocking at room temperature for 1 h. 

75 nM uPAR in PBS with 0.025% triton X-100 was added with indicated concentrations of 

compounds. Compounds were screened initially at 50 µM. For concentration-dependent 

studies, a range of compound concentrations from 100 µM to 0.4 µM was used. Final DMSO 

concentration was 1%. Following incubation for 30 minutes and subsequent washing steps, 

human uPAR biotinylated antibody (1:3000 dilution of 0.2 mg·mL−1 BAF807, R&D 

Systems, Minneapolis, MN) in PBS containing 1% BSA was added to the wells (100 µL/

well) and incubated for 1 h to allow for the detection of bound uPAR. Following washing, 

streptavidin-horseradish-peroxidase in PBS containing 1% BSA was added for 20 min. The 

signal obtained in the presence of TMB in phosphate-citrate buffer (pH = 5) and hydrogen 

peroxide was stopped by adding H2SO4 solution and detected using a SpectraMax M5e 

(Molecular Devices, Sunnyvale, CA).
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Microtiter-based ELISA for uPAR•VTN

High-binding microplates (Greiner Bio-One) were incubated for 12 h at 4°C with 100 µL of 

5 µg·mL−1 of VTN (2349-VN-100, R&D Systems, Minneapolis, MN) in carbonate buffer 

(PH=9.6) for immobilization. The plate was washed with 0.05% Tween-20 in PBS buffer 

between each step. A 1:1 mixture of Superblock® buffer in PBS (Thermo Fisher Scientific, 

Inc. Waltham, MA) with 0.04 M NaH2PO4 and 0.3 M NaCl buffer was used for blocking at 

room temperature for 1 h. 120 nM uPAR.uPAATF in PBS with 0.01% triton X-100 was 

added with indicated concentrations of compounds. Compounds were screened initially at 

50 µM. For concentration-dependent studies, a range of compound concentrations from 100 

µM to 0.4 µM was used. Final DMSO concentration was 1%. Following incubation for 60 

minutes and subsequent washing steps, human uPAR biotinylated antibody (1:3000 dilution 

of 0.2 mg·mL−1 BAF807, R&D Systems, Minneapolis, MN) in PBS containing 1% BSA 

was added to the wells (100 µL/well) and incubated for 1 h to allow for the detection of 

bound uPAR. Following washing, streptavidin-horseradish-peroxidase in PBS containing 

1% BSA was added for 20 min. The signal obtained in the presence of TMB in phosphate-

citrate buffer (pH = 5) and hydrogen peroxide was stopped by adding H2SO4 solution and 

detected using a SpectraMax M5e (Molecular Devices, Sunnyvale, CA).

Fluorescence Polarization

Polarized fluorescence intensities were measured using EnVision® Multilabel plate readers 

(PerkinElmer) with excitation and emission wavelengths of 485 and 530 nm, respectively 

(44). Samples were prepared in Thermo Scientific Nunc 384-well black microplate with a 

final volume of 50 µL in duplicates. First, the compounds were serially diluted in DMSO 

and further diluted in 1 x PBS buffer with 0.01% Triton X-100 for a final concentration of 

100 µM to 0.046 µM. Triton X-100 was added in the buffer to avoid compound aggregation. 

35 µL of the compound solution and 10 µL of PBS containing uPAR was added to the wells 

and incubated for at least 15 minutes to allow the compound to bind to the protein. Finally 5 

µL of fluorescent AE147-FAM peptide was added for a total volume of 50 µL in each well 

resulting in final uPAR and peptide concentrations of 320 nM and 100 nM respectively. The 

final DMSO concentration was 2%, which had no effect on the binding of the peptide. 

Controls included wells containing only the peptide and wells containing both protein and 

peptide each in quadruplicates to ensure the validity of the reaction assay. A unit of 

millipolarization (mP) was used for calculating percentage inhibition of the compounds. 

Inhibition constants were measured using the Ki calculator available at http://

sw16.im.med.umich.edu/software/calc_ki/.

Surface Plasmon Resonance

A Biacore 3000 instrument (GE Healthcare Life Sciences, Uppsala, Sweden) was used to 

study the effect of small molecules on the uPAR• uPAATF interaction. uPAATF was 

immobilized on a CM5 sensor chip (Biacore, Piscataway, NJ) using standard amine 

coupling chemistry recommended by the manufacturer. Surface densities of 179 RU of 

uPAATF were reached. The running buffer was HBS-EP and was obtained from GE (GE 

healthcare Bio-sciences, Piscataway, NJ). For the injection of compounds that included 

DMSO, the buffer was supplemented with 1% DMSO. Protein controls, that included 
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DMSO but no compounds, were injected following two to three injections with compounds 

to ensure that the regeneration or compounds were not affecting the levels of immobilized 

uPAATF. All samples were prepared from 10 mM stock solutions in final concentrations 

ranging from 0.7 µM to 100 µM in 1% DMSO. Injections of uPAR (60 µL) in the presence 

and absence of compounds were done at 20 µL/min with 180 s association and 120 s 

dissociation time. The concentration of uPAR for the inhibition studies with compound was 

selected from a curve following several injections at different concentration of uPAR to 

immobilized uPAATF. Bound uPAR response values were selected from the equilibration 

binding region of the curve 120 s after injection. Regeneration was done using a single 

injection of 10 µL of 5 mM HCl.

Two approaches were followed to study the binding between VTN to uPAR, uPAATF, and 

their complex uPAR•uPAATF. uPAATF or uPAR was immobilized on a CM5 sensor chip 

(Biacore, Piscataway, NJ) using standard amine coupling chemistry recommended by the 

manufacturer. Surface densities of 1,600 RU of uPAATF or 1,900 RU of suPAR were 

reached. The running buffer used in the experiment was HBS-EP (GE healthcare Bio-

sciences, Piscataway, NJ). For the chip immobilized with uPAATF, 60 µL of uPAR at a 

concentration of 100 nM was injected for 180 s with 120 s dissociation time. Then 60 µL 

VTN was injected at a concentration of 100 nM for 180 s with 120 s dissociation time. In the 

case of immobilized suPAR, 25 nM of uPAATF was injected with the kinject for 180 s (60 

µL total volume) with 120 s dissociation time. VTN was injected with the kinject option at a 

concentration of 100 nM VTN (60 µL, 180 s association time and 120 s dissociation time).

Isothermal Titration Calorimetry

Experiments were carried on an ITC200 microcalorimeter from MicroCal, LLC (GE 

Healthcare). The experiments were conducted at 25 °C. uPAR was concentrated and 

dialyzed against 150 mM NaCl, 10 mM potassium phosphate at pH 7.4. DMSO was added 

to the protein for a solution with 6% DMSO. Samples were degassed for 3 min. The 

microsyringe was loaded with a solution of 0.6 mM 7 in PBS with 6% DMSO and was 

inserted into the 0.2003 mL microcalorimeter cell, which was filled with the uPAR solution 

(0.0167 mM, PBS, 6% DMSO). The system was equilibrated to 25 °C. Titrations were 

conducted using an initial control injection of 0.2 µL followed by another 19 identical 

injections at 120 s intervals. The data was corrected for protein heats of dilution based on 

separate measurements by titrating protein into buffer. MicroCal Origin 7.0 software was 

used to process the data yielding the binding enthalpy (ΔH) and dissociation constant (KD). 

A single binding mode model was used, supplied with the MicroCal Origin software. 

Thermodynamic parameters ΔG and ΔS were determined using standard thermodynamic 

equations.

Saturation Transfer Difference (STD) NMR

To further characterize and confirm the binding of 7 to uPAR, saturation transfer difference 

(STD) nuclear magnetic resonance (NMR) was used (47). Selective pulses were applied at 

−0.2 ppm to irradiate the protein methyl groups (where no ligand peaks appear) while the 

off-resonance frequency was positioned at 30 ppm. Saturation was carried out with a total 2 

s pulse train composed of a repeated 50 ms gauss shaped pulse and 0.1 ms inter-pulse delay. 
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The STD experiment of the small molecule with protein was acquired with 2,048 scans. The 

same experiment was collected on small molecule alone using exactly the same acquisition 

parameters except with 1,024 scans. To ensure that we only observed magnetization from 

the small molecule, uPAR was added at a concentration of 50 fold less than the small 

molecule. 7 was dissolved in deuterated DMSO at a concentration of 20 mM; it was then 

diluted in phosphate buffer to a concentration of 438 µM for the NMR experiment. NMR 

experiments were acquired at 298 K on a VNMRS 600MHz NMR spectrometer operating at 

a magnetic field strength of 18.8 T and equipped with a cold probe (Agilent Technologies, 

Santa Clara CA). 5 mm NMR tubes were used for the NMR experiments. Water suppression 

was done using Varian water sculpting pulse sequence.

Reagents

Biotinylated anti-human uPAR antibody (BAF807) was purchased from R&D Systems 

(Minneapolis, MN).

Cell Culture

MDA-MB-231 cells were cultured in Dulbecco's Modified Eagle Medium (Cellgro, 

Manassas, VA) supplemented with 10% FBS, 1% penicillin/streptomycin in a 5% CO2 

atmosphere at 37°C.

Invasion

Invasion assays were performed using BD Biocoat Matrigel invasion chambers (BD 

Biosciences, San Jose, CA) as previously described (43,44,48,49). The undersurface of the 

inserts was coated with 30 ng µl−1 of fibronectin at 4 °C overnight. The inserts were 

equilibrated with 0.5 mL of serum-free medium in the upper and lower chamber separately 

for 2 h at 37 °C. After 4 h of serum starvation, cells were harvested and 5 × 104 cells in 500 

µL medium containing 0.1% FBS and the compounds at the indicated concentrations or 1% 

DMSO control were plated onto the upper chamber. As a control of cell viability, 104 cells 

at the above conditions were plated in 100 µl in each well of 96-well plates. 500 µL of 10% 

FBS medium containing the same amount of compounds or DMSO control was added to the 

lower chamber. After a 16 h incubation at 37°C in 5% CO2, non-invaded cells were 

removed from the upper chamber with a cotton swab, and the invaded cells were fixed in 

methanol for 30 min at room temperature and stained with Hematoxylin Stain Harris 

Modified Method (Fisher Scientific, Waltham, MA) for 1 h at room temperature. We 

washed the filters with water 3 times. Filters were air-dried, and the number of invaded cells 

was counted in ten separate 200 × fields; meanwhile, 20 µl 5 mg/ml MTT (Sigma-Aldrich, 

St. Louis, Missouri) were added to each well, cells were incubated at 37°C in 5% CO2 for 2 

h, viable cells were quantified at absorbance of 570 nm and 630 nm (reference background) 

as previously described (48,50,51).

Cell Viability Assay

104 cells MDA-MB-231 were plated overnight in 100 µl in each well of 96 well plates. Cells 

were treated with DMSO (control) or compounds at the indicated concentrations for 3 days. 

20 µl 5 mg/ml MTT (Sigma-Aldrich, St. Louis, Missouri) were added to each well, cells 
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were incubated at 37°C in 5% CO2 for 2 h, viable cells were quantified at absorbance of 570 

nm and 630 nm (reference background) as previously described (48,50,51).

Fluorescence-Activated Cell Sorting (FACS) Analysis

A confluent flask of HEK-293-uPAR cells was treated with PMA at 100 µM for 48 hours, 

and then harvested with trypsin. Harvested cells were treated with 50 mM glycine-HCL, 0.1 

M NaCl, at pH 3.0 and room temperature for 1 min. Subsequently, the acidic buffer was 

neutralized by 10 equivalents of 0.5 M HEPES and 100 mM NaCl at a pH of 7.5. The cells 

were washed and re-suspended in 1 x PBS and 0.1 BSA and then adjusted to 106 cells ml−1. 

HEK-293-uPAR cells were pre-incubated with different concentration of 7 (45 mins, room 

temperature) prior to addition of 40 nM of FITC-conjugated HMW-uPA (Innovative 

Research, Novi, MI) and allowed to incubate for 30 mins at room temperature. Stained cells 

were washed and re-suspended with 1xPBS and 0.1 BSA, 1 µl of 100 µg·ml−1 propodium 

iodide (Sigma-Aldrich, St. Louis, Missouri) was added to the samples and the cells were 

incubated for 15 min at room temperature. 105 cells of each sample were analyzed with a 

BD Biosciences FACSCalibur cytometer.

Adhesion Assay

96-well plates were coated with 5 ng•µl−1 vitronectin (R&D, Minneapolis, MN, USA) at 4 

°C overnight, and then blocked with 2 % bovine serum albumin (BSA) in PBS for 1 h. After 

starving with serum-free medium for 4 h, 293-uPAR and HEK293 cells (2.5×104 cells 

mL−1) were suspended in 100 µL of DMEM containing 0.1 % FBS with indicated 

concentrations of IPR1110, or DMSO control in the presence or absence of 500pM uPA-

ATF at 37 °C for 90 min. Medium was then carefully suctioned out from each well. Each 

well was washed three times with PBS. After washing, the adherent cells were fixed, stained 

with crystal violet, and quantified by measuring the absorbance at 540 nm.

Wound Healing Assay

MDA-MB-231 cells were allowed to grow confluently in 12-well plates. A linear wound 

was created by scraping the wells with a micropipette tip. The floating cells were removed 

by gentle washes in culture medium, and then the cells were cultured with completed media 

in the presence of 7 at 100 µM or 1% DMSO. The degree of wound closure was assessed 

using a Nikon Diaphot 300 microscope in three randomly chosen regions by measuring the 

distance between the wound edges just after wounding and after 16 h.

Western Blot Analysis

Total cell lysates were prepared in standard RIPA extraction buffer containing protease and 

phosphatase inhibitors (Sigma-Aldrich, St. Louis, Missouri). Thirty micrograms of protein 

were separated by 10% SDS-PAGE and transferred to nitrocellulose membranes 

(Amersham, Arlington Heights, IL). The membranes were immunoprobed with FAK, 

Phospho-FAK (Y397) (Cell Signaling, Danvers, MA) or Actin (C-2) antibodies (Santa Cruz 

Biotechnology, Santa Cruz, CA) at 4°C overnight separately. Next, membranes were 

incubated with IRDye 800-conjugated goat anti-mouse IgG (Rockland, Immunochemicals, 

Gibertsville, PA) or Alexa Fluor 680 goat anti-rabbit IgG (Life Technologies, Grand Island, 
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NY) as secondary antibodies. Bands were detected using Li-Cor Odyssey Imaging System 

(Li-Cor, Lincoln, NE).

Rac1 Pull-Down Assay

Rac1 pulldown kits (Thermo Scientific) were used to assay the active GTP-bound Rac1. 

MDA-MB-231 cells were seeded in 10-cm plates at a density of 2.2 × 106 cells in DMEM 

with 10% FBS and 1% of P/S till 80–90% confluence. The cells were then treated with 25 

µM 7 or 1% DMSO for 24 hours. After rinsing with ice-cold PBS, cell samples were 

collected with 0.5 ml of lysis/binding/wash Buffer and transferred to a microcentrifuge tube. 

After incubating on ice for 5 minutes, the supernatant of cell samples (total lysate) were 

collected through centrifuging at 16000 x g for 15 minutes. 500 µg of total lysate was added 

to the spin cup containing the glutathione resin and 20 µg of GST-human Pak1-PBD. Sealed 

spin cups were incubated at 4°C for 1 hour with gentle rocking for pulling down active 

RAC1. The pulled down active RAC1 was then eluted and subjected to western blot 

analysis. 20 µg of cell lysate was analyzed by SDS-PAGE and Western Blot to determine 

the level of total Rac1 protein.

Cheminformatics Search

The ChemDiv library containing 969,572 compounds in its SMILES string format was 

obtained from the ZINC (v12) website. The compound library was pre-processed with the 

RDKit (31) cheminformatics tool to eliminate the ones that are not able to be processed by 

the software, which resulted in a new set of 802530 compounds. Duplicates were removed 

using ZINC codes, leading to a set of 716113 with unique ZINC codes. A substructure 

search was carried out on the core structure of pyrazole, piperidinone, and pyrrolidinone 

compounds that were previously shown to bind to uPAR with inhibition constants ∼ 25 µM 

(45,50). The fragments that were used for the search are shown in Scheme S1. The search 

was done with RDKit against the processed ChemDiv compounds, which gave rise to 6213, 

3370, and 636 compounds from the pyrazole, pyrrolidinone, and piperidinone cores 

respectively. Based on the binding mode predicted for the parental structures (45,50), we 

further filtered these compounds for molecules that possessed three or more substituents 

attached to the core, of which at least three were required to contain a ring structure (ring 

size greater or equal to 5). Finally a molecular weight filter (300 ∼ 650 Dalton) was applied 

to eliminate fragments for large compounds, resulting in a set of 2196 molecules. The 

compounds were imported into the Canvas program (Schrödinger, Inc., New York, NY, 

2009) for further clustering. Atom pair fingerprints (52) and K-mean clustering algorithm 

were employed. The program was specified to cluster each set of compounds into 100 

subsets, resulting in the selection of 72 compounds that were purchased and tested for 

activity as described below.

Compound Docking and Clustering

Three-dimensional structures of the commercial compounds were downloaded from ZINC 

Web site in mol2 file format. The compound structures were imported into Maestro (version 

9.5, Schrödinger, LLC, New York, NY, 2013) and prepared by LigPrep (version 2.6, 

Schrödinger, LLC, New York, NY, 2013). The prepared compounds were docked into 
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uPAR protein (3BT1) using Glide (version 5.9, Schrödinger, LLC, New York, NY, 2013) in 

standard precision (SP). 100 poses per ligand were included in the post-docking 

minimization. 20 poses per ligand were collected in the output file. All the binding poses 

generated by Glide were visually checked and clustered into different groups.

Molecular Dynamics Simulations

The initial coordinates of uPAR, uPA and vitronectin (VTN) were obtained from the Protein 

Data Bank (PDB). The PDB file (PDB code 3BT1) was imported into Maestro (version 9.4, 

Schrödinger, LLC, New York, NY, 2013) and prepared using the Protein Preparation 

Wizard. Bond orders were assigned, hydrogen atoms were added, disulfide bonds were 

created. Three separate simulations were carried out: (i) VTN·uPAR·uPA; (ii) VTN·uPAR 

(uPA chain subtracted manually); (iii) VTN·uPAR·7. A mol2 file for 7 was downloaded 

from the ZINC Web site (http://zinc.docking.org), imported into Maestro and prepared by 

LigPrep (version 2.6, Schrödinger, LLC, New York, NY, 2013). The compound was docked 

to uPAR protein (3BT1) using Glide (version 5.9, Schrödinger, LLC, New York, NY, 2013) 

in standard precision (SP). The compound was assigned AM1-BCC (53) charges and gaff 

(54) atom types using the antechamber program from the AMBER12 package (55). 

Complexes were immersed in a box of TIP3P (56) water molecules to perform molecular 

dynamics simulations. No atom on the complex was within 14 Å from any side of the box. 

The solvated box was further neutralized with Na+ or Cl− counterions using the leap 

program from the AMBER12 package.

Simulations were carried out using the pmemd program in AMBER12 with ff10 (57) and 

gaff (54) force field in periodic boundary conditions. All bonds involving hydrogen atoms 

were constrained by using the SHAKE algorithm (58), and a 2 fs time step was used in the 

simulation. The particle mesh Ewald (59) (PME) method was used to treat long-range 

electrostatics. Simulations were run at 298 K under 1 atm in NPT ensemble employing 

Langevin thermostat and Berendsen barostat. Water molecules were first energy-minimized 

and equilibrated by running a short simulation with the complex fixed using Cartesian 

restraints. This was followed by a series of energy minimizations in which the Cartesian 

restraints were gradually relaxed from 500 kcal·Å−2 to 0 kcal·Å−2, and the system was 

subsequently gradually heated to 298 K via a 48 ps molecular dynamics run. By assigning 

different initial velocities, 10 independent simulations 10 ns in length were carried out for 

each complex.

Molecular Dynamics-Based Free Energy Calculations

For each trajectory among the 10 conducted for each complex (10 ns in length), the first 2 ns 

were discarded for equilibration. Molecular dynamics simulation snapshots were saved 

every 1 ps yielding 8000 structures per trajectory. A total of 80000 snapshots were generated 

per 100 ns of simulation. 100 snapshots were selected at regular intervals from the 80000 

snapshots for free energy calculations. Molecular Mechanics-Generalized Born Surface 

Area (MM-GBSA) (60) method were used to calculate the free energy using the sander 

program in the AMBER12 suite. The entropy is determined by normal mode analysis with 

the nmode module from AMBER (61). In normal mode entropy calculation, distance-

dependent dielectric constant was set to 4. Maximum number of cycles of minimization was 
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set to 10000. The convergence criterion for the energy gradient to stop minimization was 

0.5.

The MM-GBSA binding free energy is expressed as:

where ΔEGBTOT is the combined internal and solvation energies, T is system temperature. 

ΔSNM is entropy determined by normal mode analysis. The internal energy is determined 

using the Lennard-Jones and Coulomb potentials in the AMBER force-field (ΔEGAS). The 

solvation energy is determined using Generalized-Born solvation models (ΔEGBSOL):

where ΔEGBSOL is the solvation free energy calculated with GB model, and ΔEGAS:

where ΔEELE is the non-bonded electrostatic energy, ΔEVDW is non-bonded van der Waals 

energy, and ΔEINT is the internal energies composed of bond, angle, and dihedral energies.

The GB solvation free energy is expressed by:

where ΔEGBSUR is hydrophobic contribution to desolvation energy, ΔEGB is reaction field 

energy (62).

The total electrostatic energy ΔEelectrostatic is the combination of ΔEELE and ΔEGB. Total 

non-polar energy ΔEnon-polar is the combination of ΔEVDW and ΔEGBSUR. The final energy 

is:

where ECOM, EREC and ELIG are total energies corresponding to complex, receptor and 

ligand, respectively. In these three system, complexes are VTN·uPAR·uPA, VTN·uPAR and 

VTN·uPAR·7; receptors are uPAR·uPA, uPAR and uPAR·7; ligands are all VTN.

Residue-compound distance, RMSD, correlation matrix for dynamic cross-correlation map 

(DCCM) and atomic fluctuation of the complexes were determined using the ptraj program 

in AMBER12.

Chemistry

β-diketoesters were synthesized by Claisen condensation of ketones with diethyl oxalate in 

the presence of sodium ethoxide. The subsequent room temperature three-component 
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condensation of β-diketoesters, amines, and aldehydes in acetonitrile gave the desired 2-

pyrrolinones.

All chemicals were purchased from commercially available sources and used as received. 

Column chromatography was carried out with silica gel (25–63µ). High-Res Mass Spectra 

were measured on an Agilent 6520 Accurate Mass Q-TOF instrument. 1H NMR was 

recorded in CDCl3 or DMSO-d6 on a Bruker 500 MHz spectrometer. RP-LCMS was carried 

out on a Agilent 1100 LC/MSD fitted with a Eclipse XBD-C18 (4.6 × 150 mm) column 

eluting at 1.0 ml/min employing a gradient of (acetonitrile:methanol):water (each containing 

5mM NH4OAc) from 70% to 100% acetonitrile:methanol over 15 min and holding at 100% 

acetonitrile:methanol for 2 min. Chemical shifts are reported in ppm using either residual 

CHCl3 or DMSO-d6 as internal references. All compounds are more than 95% purity unless 

otherwise stated. Synthesis of 3-(hexyloxy)aniline and 3-(hexyloxy)-4-methylaniline were 

carried out using a protocol from Marco et al. (63) β-diketoesters were synthesized with 

modification according to Milagre et al. (64). IPR-993 derivatives were synthesized by a 

modified procedure from Rose et al (65).

General Procedure for Synthesis

To a solution of β-diketoester (1 eq) in acetonitrile (1 mL) was added the appropriate amine 

or aniline (1 eq) and stirred for 10 min whereupon the aldehyde (1 eq) was added. The 

reaction was left to stir for 20 h at ambient temperature. The solvent was removed in vacuo 

and the product was isolated either by filtration (the precipitate was washed with cold 

diethyl ether) or flash chromatography (2–5% MeOH/DCM).

4-benzoyl-5-(4-ethylphenyl)-1-(3-(hexyloxy)phenyl)-3-hydroxy-1H-pyrrol-2(5H)-one (1)

(yellow solid, 7 mg, 15%); 1H NMR (500 MHz, DMSO-d6) δ 7.70 (d, J=7.0 Hz, 2H), 7.39 

(m, 1H), 7.25-7.20 (m, 3H), 7.189-7.15 (m, 1H), 7.12 (t, J=8.5 Hz, 2H), 7.11-7.05 (m, 2H), 

6.94-6.85 (m, 2H), 6.61 (s, 1H), 3.93-3.81 (m, 2H), 2.41 (q, J=7.5 Hz, 2H), 1.63 (q, J=6.5 

Hz, 2H), 1.40-1.33 (m, 2H), 1.31-1.24 (m, 4H), 1.04 (t, J= 7.5 Hz, 3H), 0.87 (t, J=6.5 Hz, 

3H); 13C NMR (126 MHz, DMSO-d6) δ 188.7, 164.2, 162.9, 160.8, 158.6, 141.8, 138.3, 

136.6, 135.3, 129.8, 129.2, 128.4, 127.3, 127.2, 126.9, 114.0, 112.6, 110.9, 67.4, 61.2, 31.0, 

28.5, 27.6, 25.2, 22.1, 15.1, 13.9. HRMS m/z calcd for C31H34NO4 [M+H]+: 484.2482, 

found 484.2495.

1-(3-bromo-4-methylphenyl)-4-(4-chlorobenzoyl)-3-hydroxy-5-(3-methoxyphenyl)-1H-
pyrrol-2(5H)-one (6)

(white solid, 20 mg, 20%); 1H NMR (500 MHz, DMSO-d6) δ 7.94 (s, 1H), 7.73 (d, J=8.0 

Hz, 2H), 7.53 (d, J=8.0 Hz, 2H), 7.50 (d, J=8.0 Hz, 1H), 7.28 (d, J=8.0 Hz, 1H), 7.12, (t, 

J=7.5Hz, 1H), 7.02–6.89 (m, 2H), 6.69 (d, J=7.5 Hz, 1H), 6.28 (s, 1H), 3.65 (s, 3H), 2.24 (s, 

3H); 13C NMR (126 MHz, DMSO-d6) δ 188.0, 164.4, 159.1, 150.2, 137.7, 137.6, 136.5, 

135.3, 134.3, 130.9, 130.7, 129.5, 128.4, 125.7, 123.7, 121.6, 119.8, 119.7, 113.9, 113.2, 

61.0, 55.0, 21.8. HRMS m/z calcd for C25H20BrClNO3 [M+H]+: 512.0259, found 512.0267.
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1-(3-bromo-4-methylphenyl)-4-(4-chlorobenzoyl)-5-(3-fluorophenyl)-3-hydroxy-1H-
pyrrol-2(5H)-one (7)

(white solid, 11 mg, 11%); 1H NMR (500 MHz, DMSO-d6) δ 7.94 (s, 1H), 7.73 (d, J=8.5 

Hz, 2H), 7.52 (d, J=8.5 Hz, 2H), 7.49 (d, J=8.5 Hz, 1H), 7.32 (d, J=10.0 Hz, 1H), 7.30-7.22 

(m, 3H), 6.99-6.92 (m, 1H), 6.34 (s, 1H), 2.24 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ 

188.0, 164.4, 162.9, 161.0, 150.7, 139.3, 139.2, 137.6, 136.5, 135.2, 134.4, 130.9, 130.6, 

130.3, 128.4, 125.8, 123.9, 123.7, 121.6, 119.3, 115.1, 114.9, 60.5, 21.8. HRMS m/z calcd 

for C24H17BrClFNO3 [M+H]+: 500.0059, found 500.0054.

RESULTS

Computational Search for uPAR·uPA Small-Molecule Antagonists

We had previously identified through structure-based virtual screening a set of small 

molecules (pyrazole, piperidinone, pyrrolidinone, and propylamine) that bind to uPAR 

(45,50). The compounds displaced a fluorescently-labeled small peptide (AE147-FAM) in 

the micromolar range with Ki ∼ 25 µM. Here, we search for small molecules that not only 

bind to uPAR but also disrupt the tight uPAR•uPA interaction. To that end, we used these 

small molecules as a starting point to conduct a sub-substructure search using 800,000 

compounds in the ChemDiv library. A total of 2,196 compounds were identified and were 

further filtered to only include compounds with 3 or 4 substituents attached to the central 

ring. We also excluded fragments or larger compounds. Small molecules were clustered into 

100 subsets, leading to the selection of 72 candidates. Compounds were purchased and 

screened for activity at an initial concentration of 50 µM. Among the 72 candidates that 

were screened, those that inhibited 50 percent or more were selected for a follow-up 

concentration-dependent study (Fig. S1A). One compound, namely 1 (IPR-993), inhibited 

AE147-FAM binding to uPAR with a Ki of 4.2 µM (Table 1 and Fig. 2a).

The nearly one order of magnitude increase in potency of 1 over previously-identified 

compounds prompted us to assess whether it inhibits the full uPAR•uPA protein-protein 

interaction. A microtiter-based ELISA that we have previously developed was used for this 

purpose (44). The ELISA uses uPAR as well as the amino-terminal fragment of uPA 

(uPAATF), which contains the entire binding interface of the protein-protein interaction (Fig. 

1) (7). The assay is particularly suitable since washing steps following addition of uPAR and 

compound rules out any interference of the compound with components of the assay. The 

compound inhibited the uPAR•uPAATF interaction with an IC50 of 58 µM (Table 1 and Fig. 

2b). The difference between IC50 in the FP and ELISA is not unexpected, since the 

uPAR·uPAATF interface is significantly larger than the uPAR•AE147 interface, and higher 

concentration of the compound is required to shift the equilibrium towards dissociation.

The activity of 1 prompted us to conduct another computational search of the Chemdiv 

chemical library for additional compounds. Forty-eight derivatives were identified, 

purchased and tested for inhibition of uPAR•uPAATF initially at 50 µM. The 12 compounds 

that inhibited uPAR·uPAATF binding by more than fifty percent were evaluated in a 

concentration-dependent manner (Table 1 and Fig. S1B). The compound with highest 

affinity was 7 (IPR-1110). It inhibited fluorescently-labeled AE147-FAM binding with a 

Liu et al. Page 12

ACS Chem Biol. Author manuscript; available in PMC 2015 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sub-micromolar Ki of 0.7 µM (Fig. 2a) and inhibited uPAR•uPAATF interaction with an IC50 

of 18.4 µM (Fig. 2b). Among all active compounds, the inhibition constant using FP with the 

AE147-FAM probe ranged from 0.7 µM for 7, to 10 µM for 3 (Table 1 and Fig. S1A). The 

IC50 values for inhibition of the full uPAR·uPAATF interaction of these compounds ranged 

from 18 µM for 7 (Fig. 2b) to 79 µM for 12 (IPR-1124) (Table 1 and Fig. S1B). To confirm 

the ELISA and FP results we resorted to the use of surface plasmon resonance in 

competition mode. uPAATF was immobilized on a dextran layer while uPAR was injected 

with increasing concentration of compound (Fig. 2c). The resulting IC50 of 12.9 µM for 7 is 

consistent with the ELISA results of 18 µM.

Direct Binding Studies

Saturation transfer difference (STD) NMR (66) was used to probe direct binding of 7 to 

uPAR. STD NMR is a ligand-based method. Measurement of the binding of a small 

molecule to a protein is done by monitoring the transfer of magnetization by fast chemical 

exchange. 1H NMR spectra were recorded for 7 and uPAR (Fig. 2d). STD spectra for 7 
alone (Fig. 2e) and in the presence of uPAR (Fig. 2f) were subsequently collected. As 

expected, no saturation transfer is seen for compound only, as evidenced by the complete 

absence of peaks in Fig. 2e. Saturation transfer can be seen particularly in the aromatic range 

(6.5–8.0 ppm), 5.83 ppm and 2.17 ppm. These peaks occur only when spin diffusion signal 

(originating from the protein) is transferred to the small molecule.

Isothermal titration calorimetry (ITC) was used to further probe the direct binding of 7 to 

uPAR. Titration of 7 against purified uPAR led to protein binding site saturation (Fig. 2g). A 

fit of the data resulted in a dissociation constant Kd of 17.2 µM and an enthalpy (ΔH) of −6.4 

kcal/mol (N = 1.1). Based on this data, the entropy (ΔS) was 0.01 kcal/mol. The binding is 

entirely driven by enthalpy. The negligible entropy suggests that (i) conformational changes 

in the receptor or (ii) displacement of water molecules likely compensate for the loss of 

entropy that is typically associated with ligand binding. A conformational change would be 

consistent with the highly dynamic nature of uPAR (10). It may also explain the difference 

between the inhibition constants Ki obtained in the FP studies (0.7 µM) and the ITC 

dissociation constant Kd (17.2 µM). The large AE147 peptide in the FP study likely 

promotes different conformational states of the protein that may not exist in the apo 

structure of uPAR.

Structure-Activity Relationships

Like 1, several derivatives had a hexyloxy moiety at R1. These compounds had relatively 

weaker potency with Ki values greater than 3 µM for inhibition of AE147-FAM binding to 

uPAR. These compounds also inhibited the uPAR•uPAATF interaction more weakly than 

other compounds as evidenced by ELISA IC50 values that were higher than 25 µM. In the 

remaining derivatives, the R1 group is a di-substituted benzene with a methyl group at the 

para-position and a meta-bromine 2 (IPR-1112), 3 (IPR-1099), 5 (IPR-1117), 6 (IPR-1109) 

and 7 (IPR-1110). Compound 4 (IPR-1101) is the exception as it bears a methyl group 

instead of bromine and has a hydrogen atom at the para-position.
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At the R2 position, there was greater diversity in the structure and properties of the 

substituents. Two compounds (3 and 4) had a bromine atom instead of the ethyl group of 1, 

while other compounds such as 8 (IPR-1122) and 11 bear a methyl ester and an isopropyl 

group, respectively. It is worth noting that all compounds with a substituent at the para 

position had relatively weaker affinity with a Ki for inhibition of AE147-FAM binding to 

uPAR ranging from 3.6 µM for 4 to 4.9 µM for 8 and 11. Similarly, IC50 for blocking the 

uPAR•uPAATF interaction were higher among these compounds (37 µM for 4 and 46 µM for 

11). Despite the similar Ki values for 8 and 11, compound 8 exhibited slightly greater 

potency in blocking the uPAR•uPAATF interaction suggesting that the compounds engage 

different residues on uPAR. When the benzene ring at R2 had a substituent at the meta 

position, higher affinity was observed with FP Ki values that were 1 µM or lower. 

Comparison of 5 and 7 shows that replacement of a hydroxyl moiety of 5 with fluorine 

resulted in nearly two-fold increase in the FP Ki, and a reduction of the ELISA IC50 by 10 

µM. Compound 7 showed the highest affinity in both FP and ELISA.

In contrast to R1 and R2, the R3 substituent did not vary significantly. It consisted mostly of 

a benzene ring (1, 8, and 10–12) or a benzene ring with a chlorine atom at the para position 

(4–7, or 13). One compound, namely 3, had a nitro group at the para position and had the 

weakest affinity to uPAR.

Compound 7 Impairs the Distal VTN•uPAR Interaction in a uPA-dependent Manner

Previous studies have shown that uPA is required for VTN to bind to uPAR despite the large 

distance in the binding sites of the two ligands (3,10). Since 7 inhibits the uPAR•uPA 

interaction, we wondered whether the compound also affected the distant VTN•uPAR 

interaction. To explore this, we first investigate the cooperative binding of uPA and VTN to 

uPAR using surface plasmon resonance. Subsequently, we develop an ELISA to probe the 

effect of compound 7 on VTN binding to uPAR.

uPAR is well-known to bind to uPA in a tight and long-lived complex. We confirmed by 

surface plasmon resonance. uPAR was immobilized on the dextran surface of a CM5 chip 

and injection of uPAATF onto the immobilized protein resulted in a Kd of 2.2 nM (Fig. S2). 

Sensorgrams shown in Fig. S2 reveal a stable complex as evidenced by the lack of 

appreciable dissociation detected during the time period of the run. We performed the 

reverse experiment to ensure that we detect binding when uPAATF is immobilized on the 

surface. A similar tight and stable interaction with a Kd of 25.1 nM is observed (Fig. S2).

We subsequently investigated the binding of full-length VTN to uPAR. uPAR is 

immobilized on the dextran surface of the CM5 chip. First, VTN was injected onto 

immobilized uPAR. No binding between VTN and uPAR was detected (Fig. 3a). Next, 

uPAATF is injected on the immobilized uPAR resulting in strong binding as expected (Fig. 

3a). The uPAATF injection was stopped after 180 s, and, 120 s later, VTN was injected. 

Strong binding of VTN to the uPAR•uPAATF complex was detected confirming that VTN 

binds to uPAR only in the presence of uPA (Fig. 3a). To rule out that VTN is binding to 

uPAATF, we immobilized uPAATF on the CM5 chip and injected VTN. No binding to 

uPAATF was detected (Fig. 3b). uPAR was subsequently injected resulting in tight binding 
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as expected (Fig. 3b). After 120 seconds post uPAR injection, VTN was injected to the 

uPAR•uPAATF complex resulting in robust binding (Fig. 3b).

To test for the effect of 7 on the uPAR•VTN interaction, a microtiter-based ELISA was 

developed (Fig. 3c). First, wells were coated with full-length VTN followed by titration of 

uPAR at increasing concentration. As expected, no binding uPAR alone to VTN only was 

detected. This process was repeated in the presence of uPAATF. uPAR concentration was 

held fixed at 120 nM and an increase in uPAATF concentration showed a gradual increase of 

binding to VTN that eventually plateaued at 120 nM (Fig. 3c). Even more binding is 

observed as a result of an increase in uPAR concentration to 240 nM, confirming that the 

process is uPAR-dependent (Fig. 3c). To confirm that the binding of the uPAR•uPAATF 

complex was to VTN, we tested whether soluble VTN can compete with immobilized VTN. 

To that end, uPAR and uPAATF were pre-incubated with VTN and the complex was added 

to VTN immobilized on the microtiter plate. As expected, soluble VTN inhibited 

uPAR•uPAATF binding to immobilized VTN (Fig. 3d). Finally, the ELISA was used to test 

the effect of 7 on the VTN•uPAR•uPAATF interaction. The compound was found to inhibit 

the interaction with an IC50 of 32.8 µM (Fig. 3e). We show that the AE147 peptide, which 

also binds to the uPA pocket on uPAR, also inhibited uPAR binding to VTN albeit with 

weaker potency with an IC50 close to 100 µM.

Effect of 7 on Cellular Processes and Signaling Mediated by uPAR

The ability of 7 to inhibit the uPAR•uPA and uPAR•VTN interaction at the cell surface was 

investigated by flow cytometry. HEK-293 cells that stably expressed membrane-associated 

uPAR were treated with fluorescein isothiocyanate-conjugated uPA (uPA-FITC) in the 

presence and absence of compound. Binding of uPA-FITC to uPAR was detected by 

fluorescence-activated cell sorting (FACS) analysis. As shown in Fig. 4a, 7 inhibited uPA 

binding to uPAR by nearly 40 percent.

To probe the effect of 7 on the uPAR•uPA and uPAR•VTN interaction at the cell surface, 

we employed a microtiter-based adhesion assay that has been previously developed (4). The 

assay consists of using uPAR-expressing HEK-293 cells that are added to wells containing 

full-length VTN. We find that addition of exogenous uPA consistently enhanced uPAR-

expressing HEK-293 cell adhesion to VTN as previously reported. This increase in adhesion 

was abrogated by compound 7 in a concentration-dependent manner (Fig. 4b). The 

compound inhibited uPAR-mediated HEK-923 cell adhesion to VTN by 60 percent at 25 

µM. This is consistent with IC50 values obtained from the ELISA and surface plasmon 

resonance competition assay. The fact that uPA causes an increase in adhesion confirms our 

biophysical studies that VTN binding to uPAR is a uPA-dependent process.

It is well-established that uPAR promotes signaling by interaction with integrins 

(4,37,38,67). One mechanism by which uPAR activates integrins is through uPAR-bound 

VTN, a ligand of β3 integrins. An RGD motif located a few residues away from the SMB 

domain of VTN recruits β3 integrins to promote signaling. This interaction leads to FAK 

phosphorylation (34,68,69) as well as downstream activation of Rho family small GTPase 

Rac1 (39,70). Immunoblot analysis for phospho-FAK and pull-down assays for active Rac1 

were conducted in MDA-MB-231 breast cancer cells treated with 7. As a result, FAK 

Liu et al. Page 15

ACS Chem Biol. Author manuscript; available in PMC 2015 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phosphorylation at Y397 was significantly inhibited by the compound (Fig. 4c). We also 

conducted a study to determine the effect of 7 on Rac1 activity in MDA-MB-231 cancer 

cells. This was done using a pull-down approach where the Rac1 effector Pak1 was used to 

test for Rac1 activity in MDA-MB-231. Pak1 only binds to GTP-bound (active) Rac1. As 

shown in Fig. 4d, 7 inhibited Rac1 activation in a concentration-dependent manner.

The inhibition of uPAR•uPA binding at the cell surface prompted a study of the effect of the 

compound on uPA-mediated cell invasion. A Boyden chamber apparatus that is pre-coated 

with a reconstituted basement membrane known as Matrigel was used for these studies (49). 

Using this approach, we have previously shown that siRNA knockdown of uPAR 

significantly inhibited invasion of breast MDA-MB-231 cells (44) and non-small cell lung 

cancer (NSCLC) cells A549, H460 and H1299 (48). We find that 7 inhibited MDA-MB-231 

cell invasion with an IC50 of 35 µM (Fig. 4e and 4f). This IC50 is consistent with the IC50 

for inhibition of the uPAR•uPA interaction measured in the ELISA and surface plasmon 

resonance competition assays (Fig. 2). 7 had little cytotoxicity in MDA-MB-231 cells with 

over 80 percent of cells remaining viable even after 3 days of treatment at 100 µM (Fig. 4e 

and 4f). This confirms that the effects on invasion are not due to cell killing.

uPA Promotes VTN binding by Stabilization of uPAR

To understand the structural basis by which 7 modulates the distal VTN•uPAR interaction, 

we resorted to explicit-solvent molecular dynamics simulations (71–73). Molecular 

dynamics simulations use Newton’s equations of motion to follow the trajectory of each 

atom with respect to time. Molecular dynamics simulations can thus provide a detailed 

account of the motion of a macromolecule with respect to time. Here, we are particularly 

interested in understanding how the binding of uPA and 7 affects uPAR and its interaction 

with VTN. To that end, we carried out separate molecular dynamics simulations for (i) 

VTNSMB•uPAR•uPAATF (Fig. 5a and 5d); (ii) VTNSMB•uPAR (Fig. 5b and 5e); (iii) uPAR 

(Fig. 5c and 5f); and (iv) uPAR•7 complexes. In each case a total of 100 ns of simulation is 

conducted (10 trajectories that are 10 ns in length). The structural changes over the course of 

each trajectory of each of the proteins in the multiprotein complexes is quantified with the 

root-mean-squared deviation (RMSD) (Fig. 5). Larger RMSDs correspond to greater 

deviation from the crystal structure. In the VTNSMB•uPAR•uPAATF complex, VTN 

experiences RMSD fluctuations that range between 2 and 4.5 Å (Fig. 5a). uPAR experiences 

fluctuations in RMSDs between 2 and 2.5 Å except for trajectory number 9 where the 

RMSD reaches 3.5 Å. In the uPAR•VTNSMB complex, VTNSMB experiences similar 

structural changes with RMSDs ranging between 2 and 4.5 Å (Fig. 5b). uPAR structures, on 

the other hand, show significantly greater deviation from the crystal structure with uPAR 

RMSDs that range from 3 to 5 Å (Fig. 5b). An illustration of the structural changes 

experienced by uPAR in the VTNSMB•uPAR•uPAATF and VTNSMB•uPAR complexes is 

shown in Fig. 5c and 5d.

The dynamics of uPAR in the VTNSMB•uPAR•uPAATF and VTNSMB•uPAR complexes is 

further investigated using a dynamical cross-correlated map (normalized covariance matrix) 

of the proteins (73). The map is a two-dimensional matrix that provides correlation 

coefficients between among all residues within a three-dimensional structure. These 
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coefficients range from −1 (highly anti-correlated motion) to 1 (highly correlated motion). 

Negative values correspond to anti-correlated motion, where residues are generally moving 

in opposite directions, and positive values correspond to correlated motions, during which 

residues are generally moving in the same direction. The maps in the presence (Fig. 5h) and 

absence (Fig. 5i and 5j) of uPA show correlations that range from highly anti-correlated 

(blue) to highly correlated (red). Comparison of the two maps confirms that uPA 

significantly alters the motion of uPAR. The most pronounced change in the correlations 

occurs on VTNSMB (Fig. 5h and 5i). In particular, the correlation of motion between the 

residues of VTNSMB and residues 1 and 150 on uPAR are significantly altered and switch 

from slightly anti-correlated motion to strongly anti-correlated motion.

To gain insight into the flexibility of uPAR in the various multiprotein complexes, the 

trajectories are used to measure the atomic fluctuations for individual residues over the 

course of the entire trajectory. Both VTNSMB•uPAR•uPAATF and VTNSMB•uPAR 

trajectories were analyzed (Fig. 5k). Overall, uPAR residues experience much larger 

fluctuations in the absence of uPAATF confirming previous results. Two regions on uPAR in 

particular experience the largest fluctuations. The first occurs between residues 125 and 150 

(Region1) and residues 180 and 273 (Region2). These two regions are mapped onto the 

structure of uPAR (Fig. 5l).

Finally, we resorted to free energy calculations to better understand how uPA and 7 are able 

to affect binding of VTNSMB to uPAR despite the large distance between the ligands. Using 

the trajectories of VTNSMB •uPAR•uPAATF and VTNSMB •uPAR•7, we determined the free 

energy of binding of VTN to uPAR•uPAATF and uPAR•7 using the MM-GBSA approach 

(71–74). We find that the binding affinity of VTNSMB is significantly more favorable in the 

VTN•uPAR•uPA complex (ΔGMMGBSA = −19.8 kcal•mol−1) than in the VTNSMB •uPAR•7 
complex (ΔGMMGBSA = −12.4 kcal•mol−1). Analysis of the components of the free energy 

reveals that the electrostatics and non-polar components ΔEelectrostatics and ΔEnon-polar are 

more favorable in the presence of uPA, while the entropy is more favorable when 7 is 

bound. These results are fully consistent with the ELISA, FP and surface plasmon resonance 

studies that reveal that VTNSMB binds more favorably to uPAR in the presence of uPA.

A question of interest is how uPA and 7 contribute to the free energy of binding of the distal 

VTN interaction. To address this, we used the same snapshots from the VTNSMB 

•uPAR•uPAATF and VTN•uPAR•7 trajectories to determine the VTNSMB •uPAR binding 

free energy in the presence or absence of uPA or 7. This approach removes the contributions 

of conformational change caused by uPA or 7 binding and provides information strictly on 

the direct effects of uPA and 7 to VTNSMB binding to uPAR. Interestingly, we find that the 

presence of uPA resulted in more favorable free energy of binding with a ΔGMMGBSA of 

−19.8 kcal•mol−1 compared to ΔGMMGBSA of −16.9 kcal•mol−1 in the absence of uPA (Fig. 

5i). Inspection of the components of the free energy reveals that the absence of uPA led to 

less favorable contributions of the electrostatics and entropy to the binding of VTN, but no 

effect on the non-polar components. The less favorable entropy is consistent with uPA’s 

ability to stabilize the structure of uPAR and also consistent with our observations from the 

analysis of uPAR structures. In contrast to uPA, the removal of 7 from the structures 
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resulted in negligible effect on the uPAR• VTNSMB free energy by 0.7 kcal mol−1 (Fig. 5h). 

This was primarily due to an unfavorable entropy of 0.7 kcal mol−1 (Fig. 5i).

DISCUSSION

Small-molecule inhibitors of uPAR protein interactions could provide valuable chemical 

probes to further explore the role of the receptor in a range of pathological processes 

including cancer metastasis particularly in vivo. Here, we report the discovery of new 

pyrrolone compounds that inhibit the tight and highly stable uPAR•uPAATF interaction. 

Among them, compound 7 was the most potent. The compound displaced an α-helical 

peptide AE147-FAM in the sub-micromolar range (Ki = 0.7 µM) using an FP assay, and 

inhibited the uPAR•uPAATF interaction with an IC50 of 18.4 µM based on an ELISA and 

surface plasmon resonance. The difference between the FP and ELISA are not unexpected, 

since the FP assay probe is a small α-helical peptide with a much smaller footprint than uPA 

used in the ELISA. STD-NMR and ITC were conducted to confirm that 7 directly binds 

directly to uPAR. The ITC study revealed that the binding of 7 was primarily driven by 

enthalpy. The favorable enthalpy change suggests good complementarity between small 

molecule and target. The lack of entropy change in the binding suggests that the 

displacement of water molecules from the hydrophobic binding cavity on uPAR as well as 

changes in conformations of uPAR likely compensate for the loss in entropy associated with 

binding of the small molecule.

Multiprotein complexes often involve cooperativity as binding events tend to lead to 

stabilization of the receptor and invariably affect the subsequent binding of other ligands at 

distal sites (75). The VTN•uPAR•uPAATF multiprotein complex occurs gradually as uPA 

first binds to uPAR leading to a series of proteolytic events that lead to the release of VTN 

from the extracellular matrix and its binding to uPAR (4,12,76). X-ray structures show that 

there is no contact between uPA and VTN (Fig. 1) (5,7,77,78). We conducted biophysical 

studies with surface plasmon resonance to explore the cooperative binding between uPA and 

VTN. We show that VTN and uPA binding to uPAR is highly cooperative confirming 

previous studies (3,10). While uPA binds to uPAR in a high-affinity and highly stable 

complex, VTN binds to uPAR only in the presence of uPA. This was elegantly illustrated by 

Ploug and co-workers when they showed that constraining uPAR using an engineered 

disulfide bond to resemble its structure in complex with uPA led to similar phenotype on 

vitronectin that is observed as a result of vitronectin binding (79). Our study found no 

binding of VTN to uPA confirming that the cooperative binding to uPAR is not due to direct 

contact of these two proteins in the VTN•uPAR•uPAATF multiprotein complex. The 

cooperative uPA and VTN binding was further supported by the fact that 7 also led to the 

inhibition of the uPAR•VTN interaction with an IC50 of 35.6 µM. These results show that 

the inhibition of the uPAR•uPA is expected to shut down all biological processes mediated 

by uPAR through uPA and VTN.

We use compound 7 to probe uPAR protein-protein interactions at the cell surface. The 

compound inhibited the uPAR•uPAATF interaction in uPAR-expressing HEK-293 cell line 

as evidenced by FACS analysis. This is consistent with our observed inhibition of breast 

MDA-MB-231 cancer cell invasion by compound 7 with an IC50 of 35 µM. To probe the 
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effect of 7 on the uPAR•VTN interaction, we used an adhesion assay with uPAR-expressing 

HEK-293 cells and VTN coated on the surface of wells. Addition of uPA causes a 

significant increase in adhesion of these cells to VTN as expected since uPAR is the VTN 

receptor at the cell surface. Compound 7 inhibited uPAR-expressing HEK-293 cells 

adhesion to VTN in a concentration-dependent manner with an IC50 similar to the ELISA 

and surface plasmon resonance studies. Since VTN contains an RGD motif that is 

recognized by β3 integrins, it is expected that the compound should also impair the 

recruitment of these integrins by uPAR. Signaling through these integrins usually occurs 

through FAK and Rac1 activation (34,39,68–70). Immunoblotting analyses revealed that 7 
blocked phosphorylation of FAK in MDA-MB-231 cells. The compound also impaired Rho 

GTPase Rac1 activation confirming the role of uPAR as a cell surface receptor of VTN that 

mediates signaling through integrins to promote invasion and metastasis. It was encouraging 

that the compound was not cytotoxic to cells even at 100 µM suggesting that the effects on 

invasion are not due to cell killing.

We resorted to explicit-solvent molecular dynamics simulations to gain more insight into the 

structural basis by which 7 modulates the distal uPAR•VTN interaction. Analysis of 

molecular dynamics simulation structures for the VTN•uPAR•uPA and VTN•uPAR•7 
complexes showed that uPA considerably dampened uPAR motion as evidenced by reduced 

RMSDs and residue-based atomic fluctuations for uPAR in complex with uPA. A principal 

component analysis of the complex confirmed that uPA binding to uPAR had a significant 

effect on the correlation of the motion of VTN and uPAR. Free energy calculations using the 

MM-GBSA approach further shed light into the allosteric modulation of VTN by uPA. The 

calculations showed that the VTN•uPAR binding free energy is significantly more favorable 

in the presence of uPA compared with 7. We repeated these calculations using molecular 

dynamics structures of VTN•uPAR•uPAATF and VTN•uPAR•7 complexes except that uPA 

and 7 were deleted from these structures. Comparison of VTN•uPAR•uPAATF and 

VTN•uPAR free energy calculations show that the allosteric effects of uPA originates from 

the electrostatic and entropy component by making both more favorable. But the 

VTN•uPAR•7 and VTN•uPAR calculations show that the allosteric effects of 7 are confined 

to the entropy component by making it slightly unfavorable. This suggests that the 

compound works not only by displacing uPA and promoting conformational states of uPAR 

that are unsuitable for VTN binding, but may also contributes directly to the allosteric 

inhibition of VTN by affecting its entropy of binding to uPAR. Further experimental 

investigations will be required to confirm this effect.

In sum, our work demonstrates that inhibition of the uPAR•uPA protein-protein interaction 

with a small molecule also leads to the inhibition of the distal uPAR•VTN interaction. By 

inhibiting uPA binding to uPAR, compound 7 causes uPAR to become more flexible, 

weakening its interaction with VTN. Hence, blocking the uPAR•uPA interaction should 

have the dual effect of inhibiting uPA-mediated proteolysis at the cell surface and VTN-

mediated integrin signaling. Compound 7 provides a scaffold for the development of higher 

affinity derivative compounds that will likely possess significantly greater in vivo efficacy 

for further probing of uPAR signaling.
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Figure 1. 
Stereoview of the three-dimensional structure of uPAATF in complex with uPAR (PDB ID: 

3BT2). uPAATF is shown in orange surface, while uPAR is depicted in green surface 

representation. VTNSMB is shown in red surface rendering.

Liu et al. Page 25

ACS Chem Biol. Author manuscript; available in PMC 2015 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(a) Fluorescence polarization (mP) for FAM-AE147 and uPAR measured at increasing 

concentration of 7. Data are shown as mean +/− S.D. (n = 2). (b) An ELISA was used to 

measure inhibition of uPAR binding to uPAATF-coated microtiter plate by serial dilutions of 

compounds. Data are shown as mean +/−S.D. (n = 2). (c) A competition assay using surface 

plasmon resonance with uPAR injected along with increasing concentration of compound on 

immobilized uPAATF. Data are shown as mean +/− S.D. (n = 2). (d)1H NMR spectrum of 7. 
(e) STD NMR spectrum of 7 only showing no ligand peaks arising. (f) STD NMR spectrum 

of 7 in the presence of uPAR. (g) Isothermal titration calorimetry (ITC) data as a result of 

titration of 7 to uPAR.
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Figure 3. 
(a) Direct binding assay using surface plasmon resonance with uPAR immobilized on the 

surface of the CM5 chip. First, VTN is injected onto uPAR as illustrated by the schematic 

and the curve labeled I; then uPAATF is injected as illustrated by the schematic and curve 

labeled II; this is followed by injection of VTN as illustrated by schematic and curves 

labeled III. The injection of uPAATF and VTN is carried out in duplicate as illustrated by the 

red and green curves. (b) Direct binding assay using surface plasmon resonance with 

uPAATF immobilized on the surface of the CM5 chip. First, VTN is injected onto uPAATF as 

illustrated by the schematic and the curve labeled I; then uPAR is injected as illustrated by 

the schematic and curve labeled II; this is followed by injection of VTN as illustrated by 

schematic and curves labeled III. The injection of uPAR and VTN is carried out in duplicate 

as illustrated by the red and green curves. (c) An ELISA was used to measure binding of 

uPAR to VTN in the presence of serial dilutions of uPAATF. Data are shown as mean +/− 

S.D. (n = 2). (d) An ELISA was used to measure inhibition of uPAR•uPAATF binding to 

VTN coated microtiter plate by serial dilutions of VTN. (c) An ELISA was used to measure 

inhibition of uPAR•uPAATF binding to VTN coated microtiter plate by serial dilutions of 

compounds or peptides. Data are shown as mean +/− S.D. (n = 2).
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Figure 4. 
(a) Flow cytometry analysis using FITC-conjugated HMW-uPA and PI staining. 100 µM of 

7 and control analyzed for uPAR•uPA binding. (b) Effects of 7 on HEK-293-uPAR 

adhesion to VTN; data are shown as mean +/− S.D. (n = 3). (c) Immunoblot showing the 

expression levels of FAK, p-FAK in MDA-MB-231 cell lines. (d) GST-Rac1 pull-down 

assay. The protein complexes were subjected to immunoblot analysis to detect active Rac1. 

Rac1 from total cell lysates was used as a control. (e) Cell invasion studies with the Boyden 

Matrigel Invasion Chamber and MTT assay to characterize the role of 7 in cell proliferation 

and cell Invasion; data are shown as mean +/− S.D. (n = 3). (f) Representative experimental 

cells from control and in the presence of 7 were photographed (×400) to illustrate the effect 

of 7 on invasion.
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Figure 5. 
RMSD for 10 × 10 molecular dynamics simulation of (a) VTNSMB·uPAR·uPA complex, (b) 

VTNSMB·uPAR complex and (c) uPAR apo structure. Stereoview of the superimposed 

structure of 100 snapshots selected at regular intervals from molecular dynamics simulations 

of (d) VTNSMB·uPAR·uPA complex, (e) VTNSMB·uPAR complex and (f) uPAR apo 

structure, respectively. VTN, uPA, and uPAR are shown in red, yellow and green ribbon 

representation, respectively. Dynamic cross-correlation map (DCCM) for (h) 

VTNSMB·uPAR·uPA, (i) VTNSMB·uPAR, and (j) uPAR. (k) Atomic fluctuations of the 

VTNSMB·uPAR·uPA (magenta), VTNSMB·uPAR (blue), and uPAR (dark blue). (l) Three-

dimensional structure of VTNSMB·uPAR·uPA to illustrate region1 and region2 that undergo 

significant level of atomic fluctuation.
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Scheme 1. 
Reagents and Conditions: a) MeCN, r.t.
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Table 2

Free energy Calculations Conducted using the MM-GBSA Approach Based on Snapshots Collected from the 

MD Simulations

Binding Event ΔG MMGBSA

(kcal·mol−1)
ΔE electrostatic

(kcal·mol−1)
ΔE non-polar

(kcal·mol−1)
−TΔS

(kcal·mol−1)

VTNSMB→uPAR·uPA(I) −19.8±1.3 21.2±0.3 −71.8±0.1 30.9±1.0

VTNSMB→uPAR(II) −16.9±1.3 22.2±0.4 −71.8±0.1 32.7±1.0

ΔΔG (I-II) −2.9±1.3 −1.0±0.4 0.0±0.0 −1.8±1.0

VTNSMB→uPAR·7 (I) −12.4±1.6 25.4±0.6 −66.4±0.1 28.6±1.1

VTNSMB→uPAR(II) −13.1±1.8 25.5±0.6 −66.5±0.1 27.9±1.0

ΔΔG (I-II) 0.7±1.7 −0.1±0.6 −0.1±0.1 0.7±1.0
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