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Purpose: To compare liver coverage and tumor detectability by us-
ing preprocedural magnetic resonance (MR) images as 
a reference, as well as radiation exposure of cone-beam 
computed tomography (CT) with different rotational 
trajectories.

Materials and 
Methods:

Fifteen patients (nine men and six women; mean age 6 
standard deviation, 65 years 6 5) with primary or second-
ary liver cancer were retrospectively included in this insti-
tutional review board–approved study. A modified cone-
beam CT protocol was used in which the C-arm rotates 
from +55° to 2185° (open arc cone-beam CT) instead of 
2120° to +120° (closed arc cone-beam CT). Each patient 
underwent two sessions of transarterial chemoemboliza-
tion between February 2013 and March 2014 with closed 
arc and open arc cone-beam CT (during the first and 
second transarterial chemoembolization sessions, respec-
tively, as part of the institutional transarterial chemoem-
bolization protocol). For each cone-beam CT examination, 
liver volume and tumor detectability were assessed by us-
ing MR images as the reference. Radiation exposure was 
compared by means of a phantom study. For statistical 
analysis, paired t tests and a Wilcoxon signed rank test 
were performed.

Results: Mean liver volume imaged was 1695 cm3 6 542 and 1857 
cm3 6 571 at closed arc and open arc cone-beam CT, 
respectively. The coverage of open arc cone-beam CT was 
significantly higher compared with closed arc cone-beam 
CT (97% vs 86% of the MR imaging liver volume, P = 
.002). In eight patients (53%), tumors were partially or 
completely outside the closed arc cone-beam CT field of 
view. All tumors were within the open arc cone-beam CT 
field of view. The open arc cone-beam CT radiation ex-
posure by means of weighted CT index was slightly lower 
compared with that of closed arc cone-beam CT (25.1%).

Conclusion: Open arc cone-beam CT allowed for a significantly im-
proved intraprocedural depiction of peripheral hepatic tu-
mors while achieving a slight radiation exposure reduction.
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Transarterial chemoembolization 
(TACE) is an important treatment 
modality for a number of primary 

and secondary liver malignancies (1–5). 
In the past decade, C-arm cone-beam 
computed tomography (CT) has be-
come an indispensable part of TACE 
procedures for improved identification 
of tumors and their feeding arteries, 
as well as for the assessment of tech-
nical success of the procedure (6–12). 
In particular, cone-beam CT was shown 
to demonstrate tumors that were vis-
ible on preprocedural cross-sectional 
images but occult on digital subtraction 
angiography images and thus can lead 
to alteration of treatment strategy and 
procedure end point assessment (13–
15). Additionally, the use of cone-beam 
CT was recently reported to prolong 
survival in patients with unresectable 
hepatocellular carcinoma (16). How-
ever, investigators in several studies 
on cone-beam CT concluded that the 
limited field of view (FOV) led to missed 
or only partially depicted tumors, espe-
cially in the lateral segments of the liver 
(17–19). This limitation might be espe-
cially relevant for obese patients with 
larger girth of the abdomen.

Current commercial solutions to 
increase the FOV include expanding 
the bore size (increasing the space 
between the tube and the detector), 
fusing images from two cone-beam CT 
scans (20), and using a larger detec-
tor (21). However, these solutions are 
implemented at the cost of increased 
radiation exposure and/or reduced im-
age quality. Specifically, an increased 
bore size requires greater x-ray flux by 
the inverse-square law to have enough 
x-rays reach the detector. Similarly, a 
larger x-ray tube cone angle is required 

liver volume covered by cone-beam CT, 
and one subjective method involved the 
assessment of liver tumors partially or 
completely outside the FOV.

The purpose of our study was to 
compare liver coverage and tumor de-
tectability by using preprocedural mag-
netic resonance (MR) images as the 
reference, as well as radiation exposure 
of cone-beam CT with different rota-
tional trajectories.

Materials and Methods

P.W., A.R., I.M.v.d.B., and M.L. are 
employees of Philips. J.F.H.G. is a grant 
recipient of Philips. The control of the 
data and the information submitted 
for publication were maintained by the 
remaining authors (R.E.S., J.C., S.S., 
R.D., and J.H.S.), who had no conflict 
of interest.

Study Cohort
This retrospective, single-institution study 
was conducted in compliance with the 
Health Insurance Portability and Ac-
countability Act and was approved by 

to sufficiently expose a larger detector, 
which again increases the radiation 
dose to the patient. Additionally, this 
solution increases the amount of scat-
ter radiation, which degrades image 
quality. Fusing two offset rotation axis 
cone-beam CT scans by using software 
is a cost-efficient solution, since it does 
not require hardware modifications like 
the solutions mentioned previously. 
However, this requires two cone-beam 
CT scans and would double the radi-
ation dose. Furthermore, fusing two 
three-dimensional (3D) volumetric data 
sets requires additional postprocessing 
that is time consuming and can intro-
duce image artifacts.

Meyer et al reported a mean trans-
versal liver diameter of approximately 
22 cm, with a range of 15–28 cm (17). 
Thus, for most patients, the liver should 
fit into the 25-cm FOV provided by a 
standard cone-beam CT scanner. How-
ever, cone-beam CT data are currently 
obtained by rotating the C-arm more or 
less symmetrically around the patient’s 
spine, whereas the liver is offset in the 
body with predominant localization to 
the right side of the patient, resulting 
in frequent truncation of this organ. 
We hypothesized that an improved ro-
tational trajectory could be a potential 
solution, by allowing for a wider trans-
lation of the angiographic table toward 
the left side of the patient, thus cen-
tering the liver in the FOV of the cone-
beam CT volume. Two methods for 
testing this hypothesis were used, with 
preprocedural cross-sectional images 
as the reference: One objective method 
involved volumetric assessment of the 
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Advance in Knowledge

 n Modification of the rotational tra-
jectory of the C-arm allows for 
advanced off-center positioning 
of the patient table to facilitate 
better centering of the liver in 
the cone-beam CT field of view, 
resulting in a significantly 
increased coverage of the liver 
volume (97% vs 86%, P = .001).

Implications for Patient Care

 n Complete coverage of the liver 
during cone-beam CT imaging 
allows for improved depiction of 
peripheral hepatic tumors, which 
is essential for intraprocedural 
quantitative response assessment 
based on cone-beam CT images.

 n No increase in radiation exposure 
is necessary to improve the liver 
coverage; in fact, a slight 
decrease in radiation exposure 
can be achieved.
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discussed at our multidisciplinary liver 
tumor board on a case-by-case basis. 
All TACE procedures were performed 
by the same interventional radiologist 
(J.F.H.G., with 18 years of experience 
in hepatic interventions) by using a 
standardized approach according to 
our institutional protocol (24). Briefly, 
access was gained in the common 
femoral artery by using the Seldinger 

unenhanced single-phase cone-beam 
CT acquisition right after drug delivery 
to confirm correct deposition of the 
chemotherapeutic and embolic agents. 
The liver was positioned as much as 
possible in the isocenter of the C-arm 
system without the patient or the table 
obstructing the C-arm rotation. The 
new cone-beam CT protocol changed 
the trajectory of the C-arm to rotate 
from +55° to 2185° (open arc) in-
stead of 2120° to +120° (closed arc). 
This new protocol opens the arc to the 
left side of the patient and allows for 
a wider translation of the angiographic 
table toward this direction; thus, cen-
tering the liver in the FOV of the cone-
beam CT volume becomes possible  
(Fig 1, Movie E1 [online]). For both 
protocols, the acquisition parameters 
were set to 120-kV tube voltage, 0.4-
mm Cu filtration, 5–6-msec exposure 
time, and 250-mA tube current, the 
latter being modulated automatically 
during the acquisition to adjust for pa-
tient size. After implementation of our 
institutional protocol, the dual-phase 
cone-beam CT scans were triggered at 
3 and 28 seconds after a single injection 
of 20 mL of undiluted contrast agent 
(Oxilan, 300 mg of iodine per milliliter; 
Guerbet) with a power injector (Me-
drad, Indianola, Pa) at a flow rate of 2 
mL/sec and a pressure of 700 psi. The 
patients were instructed to perform a 
breath hold at end expiration during 
each of the cone-beam CT scans, with 
free breathing between the early and 
the delayed arterial phase scans. With 
the motorized C-arm covering a 240° 
clockwise arc at a rotation speed of 
up to 55° per second, 312 projection 
images (60 frames per second) were 
acquired in 5.2 seconds. On comple-
tion of the acquisition, the two-dimen-
sional projections were automatically 
transferred to a dedicated workstation 
where 3D volumetric reconstructions 
were generated with an isotropic reso-
lution of 0.6 mm, a FOV of 250 3 250 
3 194 mm, and a matrix size of 384 3 
384 3 296.

TACE Protocol
The indication for treatment and the 
choice of treatment modality were 

the institutional review board. All pro-
cedures were performed on the same 
C-Arm system (Allura Xper FD20; Phil-
ips Healthcare, Best, the Netherlands), 
equipped with the XperCT module, en-
abling C-arm cone-beam CT acquisition 
and volumetric image reconstruction 
(22). In September 2013, an additional 
cone-beam CT protocol involving a dif-
ferent rotational trajectory was installed. 
The hardware of the C-arm system re-
mained unchanged. Fifteen consecutive 
patients with primary or secondary liver 
cancer were retrospectively identified 
who underwent their first TACE proce-
dure between February and September 
2013, before the installation of the mod-
ified cone-beam CT protocol, and who 
underwent a second TACE procedure 
between September 2013 and March 
2014, after the installation (a mean in-
terval of 7 months between the proce-
dures; range, 2–12 months). Baseline 
characteristics of the study group are 
summarized in Table 1.

MR Imaging Technique
All patients underwent MR imaging ap-
proximately 3 weeks (mean, 22 days; 
range, 0–62 days) before each TACE 
procedure on a 1.5-T MR imaging unit 
with a phased-array torso coil for signal 
reception (Magnetom Avanto; Siemens 
Medical Solutions, Forchheim, Germa-
ny). A standard liver protocol was per-
formed, including axial T1-weighted 3D 
fat-suppressed spoiled gradient-echo 
images in the arterial, portal venous, 
and delayed phases (20, 70, and 180 
seconds after administration of intra-
venous contrast material, respectively).

Cone-Beam CT Technique
Each patient underwent two C-arm 
cone-beam CT acquisition sessions dur-
ing a TACE procedure: one contrast ma-
terial–enhanced dual-phase cone-beam 
CT acquisition (23) before delivery of 
chemoembolic agents (either drug-
eluting beads or a mixture of ethiodized 
oil [Lipiodol; Guerbet, Villapinte,  
France], doxorubicin, and mitomycin 
C followed by bland beads) to confirm 
correct positioning of the microcath-
eter in the main tumor feeding branch 
of the hepatic artery and another 

Table 1

Baseline Characteristics of the Study 
Group

Parameter Value

No. of patients 15
Patient sex
 Women 6 (40)
 Men 9 (60)
Age (y)*
 All patients 65 6 5  

(60–74)
 Women 64 6 4  

(60–70)
 Men 66 6 5  

(60–74)
Body mass index (kg/m2)*
 All patients 27.9 6 5.6  

(15.8–39.3)
 Women 28.4 6 3.4  

(23.6–32.5)
 Men 27.6 6 6.9  

(15.8–39.3)
Child-Pugh class
 Class A 12 (80)
 Class B 3 (20)
Tumor type
 Hepatocellular carcinoma 11 (73)
 Intrahepatic  

 cholangiocarcinoma
2 (13)

 Metastatic neuroendocrine  
 cancer

2 (13)

No. of tumors
 One 5 (33)
 Two 2 (13)
 Three 2 (13)
 More than three 6 (40)
Type of TACE
 Conventional TACE 8 (53)
 TACE with drug-eluting  

 beads
7 (47)

Note.—Except where indicated otherwise, data are 
numbers of patients, with percentages in parentheses.

* Data are means 6 standard deviations, with ranges in 
parentheses.
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T1-weighted portal venous MR images 
and delayed arterial phase cone-beam 
CT images to automatically create a 3D 
segmentation mask (25). The software 
allows for interactive adjustments, yield-
ing the nomenclature “semi-automatic,” 
by using two steps. In the first step, the 
user interactively expands or contracts 
the 3D mask around control points de-
fined by the user (balloon mode). In 
the second step, the user sets control 
points on the border of the liver, which 
will grow or shrink the pre-existing seg-
mentation mask automatically (contour 
point algorithm). With the 3D nature of 
the segmentation, the liver volume can 
be directly calculated. In the case of in-
complete liver depiction on cone-beam 
CT images, only the visible liver volume 
was segmented.

Liver Tumor Depiction
Axial cone-beam CT images from both 
acquisition techniques were evaluated 
by an interventional radiologist (R.E.S.) 
and a radiology resident with 2 years of 
experience in liver MR imaging (J.C.) 
independently of each other. An ordinal 
scale was defined with regard to missed 
or partially depicted target tumors, by 
using the corresponding preinterven-
tional contrast-enhanced MR images 
as a side-by-side reference. The ordi-
nal scale was based on the clinical rel-
evance of partial and complete tumor 
depiction on cone-beam CT images for 
intraprocedural guidance and 3D volu-
metric response assessment. If all liver 
tumors seen on the corresponding MR 
images were inside the cone-beam CT 
FOV, the cone-beam CT images could 
be used for guidance and response 
assessment (score of 1). If one of the 
tumors was partially outside the cone-
beam CT FOV, the cone-beam CT im-
ages could be used for guidance but not 
for response assessment (score of 2). If 
one of the tumors was completely out-
side the cone-beam CT FOV, the cone-
beam CT images could not be used for 
guidance or for response assessment 
(score of 3).

Radiation Exposure Measurements
Because of the retrospective design 
of the study, only the cumulative dose 

solution of DC Beads (Biocompatibles/
BTG, Surrey, United Kingdom) with a 
diameter of 100–300 mm was loaded 
with 100 mg of doxorubicin hydrochlo-
ride (25 mg/mL) and mixed with 4 mL 
of Oxilan (Guerbet). For both TACE 
modalities, the technical end point 
was substantial flow reduction within 
the arterial supply of the tumor, while 
avoiding complete occlusion to main-
tain arterial patency for repeat treat-
ment and prevent nontargeted reflux 
into healthy tissue.

Volumetric Analysis of the Liver
Liver segmentation was performed on 
both MR images and cone-beam CT 
images by an interventional radiologist 
with 7 years of experience (R.E.S.) who 
did not participate in the TACE proce-
dures. Dedicated 3D semiautomatic 
prototype software (Medisys; Philips 
Research, Suresnes, France) involving 
non-Euclidean geometry and theory 
of radial basis functions was used on 

technique. The celiac axis was then 
catheterized by using a 5-F Simmons-1 
catheter (Cordis, Miami Lakes, Fla) 
through which a 2.8-F Renegade Hi-Flo 
microcatheter (Boston Scientific, Marl-
borough, Mass) was advanced coaxially. 
Several angiographic steps were per-
formed to define the hepatic arterial 
anatomy to determine portal venous 
patency and tumor localization. Selec-
tive injection rates were adapted to the 
caliber of the blood vessels and ranged 
from 1 to 3 mL/sec. After confirmation 
of good microcatheter positioning, the 
drug payload was delivered. For con-
ventional TACE (n = 8), ethiodized 
oil (Lipiodol; Guerbet) was mixed 1:1 
with a solution that contained 50 mg of 
doxorubicin and 10 mg of mitomycin-
C. The injection of that emulsion was 
followed by the administration of bland 
microspheres with a diameter of 100–
300 mm (Embospheres; Merit Medical, 
South Jordan, Utah). For TACE with 
drug-eluting beads (n = 7), a 4-mL 

Figure 1

Figure 1: Images in a 60-year-old man (body mass index, 29.7 kg/m2) with multiple neuroendocrine liver 
metastases in the liver who was treated twice with conventional TACE at our institution with an interval of 3 
months between treatments. Both panels have orientation indicators and show the cone-beam CT (CBCT ) 
images acquired during closed arc (in red) and open arc (in green) cone-beam CT, respectively, and the 
corresponding preinterventional T1-weighted MR images (in blue) to visualize the FOV of the entire patient. 
The left panel shows the geometric motion of the C-arm with the detector as the reference during closed arc 
cone-beam CT. This geometric setup allowed only a limited movement of the table on the x-axis such that 
the FOV was centered on the spine rather than on the liver, resulting in a truncated depiction of the liver and 
some liver tumors being missed entirely (white box on the left panel). The right panel shows the geometric 
motion of the C-arm during open arc cone-beam CT. This geometric setup opens the rotation arch to the left 
side of the patient so that the procedure table can be moved left on the x-axis (red arrow on the right panel), 
allowing for better centering of the FOV on the liver.
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difference in liver volume coverage 
(11%) between closed and open arc 
cone-beam CT was statistically signifi-
cant (P = .001). Detailed measurements 
for each patient are shown in Table 2.

Liver Tumor Depiction
Both readers reported independently 
the same rating for each patient and 
cone-beam CT method, respectively, 
with regard to tumor depiction, result-
ing in a correlation coefficient of 1.0 (P 
, .001). In seven patients (47%), the 
closed arc cone-beam CT images were 
rated as having a score of 1 (all tumors 
within the FOV), whereas scores of 2 
and 3 were assigned to images in three 
(20%) and five (33%) patients, respec-
tively. Open arc cone-beam CT was sig-
nificantly better, as all tumors in the 15 
patients were within the FOV (P = .009) 
(Fig 4).

Radiation Exposure Measurements
The weighted CTDI for closed and open 
arc cone-beam CT was 25.49 mGy 6 
0.02 and 25.47 mGy 6 0.01, respec-
tively, by using the circular phantom and 
23.98 mGy 6 0.02 and 22.75 mGy 6 
0.05, respectively, by using the ellipsoid 
phantom. In other words, the circular 
phantom did not yield a significant dif-
ference in radiation exposure between 
closed and open arc cone-beam CT (P = 
.227), whereas the radiation exposure 
measured in the ellipsoid phantom was 

used to calculate interobserver vari-
ability. Means and standard deviations 
were calculated for radiation exposures 
measured, and paired t tests were per-
formed for comparison.

Results

Volumetric Analysis of the Liver
The mean liver volume measured on the 
first and second series of MR images 
was 1973.4 cm3 6 633.3 and 1926.5 
cm3 6 632.7, respectively (range, 
1189.5–3197.1 cm3 and 1024.9–3275.9 
cm3, respectively). Although some of 
the livers showed growth or shrinkage 
over time, related to either disease pro-
gression or treatment response, there 
was no significant difference in liver vol-
ume between the first and the second 
series of MR images (P = .611). The 
mean liver volume recorded by using 
closed arc cone-beam CT was 1695.3 
cm3 6 542.5 (range, 944.2–2807.3 
cm3). On average, 86% of the liver 
volume that was measured on the pre-
treatment MR images was depicted on 
closed arc cone-beam CT images. The 
mean liver volume recorded by using 
open arc cone-beam CT was 1855.1 
cm3 6 568.0 (range, 1022.8–2877.4 
cm3) and showed that on average, 97% 
of the liver volume measured on the 
corresponding pretreatment MR im-
ages could be visualized (Fig 3). The 

of the entire procedure was available, 
not detailed dose information for cone-
beam CT specifically. Thus, dose mea-
surements were performed on two dif-
ferent phantoms made of poly(methyl 
methacrylate). A Raysafe 32 system 
(Unfors RaySafe AB, Billdal, Sweden) 
with a CT dose index (CTDI) probe was 
used, which needs to be recalibrated 
once a year, and was calibrated 2 days 
before. The phantoms were placed on 
the center of the examination table, in-
cluding a circular CTDI phantom with 
a diameter of 320 mm and a modified 
CTDI phantom with an ellipsoid shape 
with long and short diameters of 380 
and 270 mm that better mimics the 
human body (26). Both phantoms had 
a depth of 150 mm and five measure-
ment holes, 12.5 mm in diameter each, 
that reached the middle of the phan-
tom along the z-axis. One measurement 
hole was in the center of the phantom; 
the four remaining measurement holes 
were symmetrically placed in the pe-
riphery (top, bottom, left, and right), 
10 mm from the phantom edge (Fig 2).  
Open and closed arc cone-beam CT 
dose was measured three times at all 
five locations while the unused holes 
were filled with poly(methyl methacry-
late) rods. Weighted CTDI (CTDIw in 
the following equation) was calculated 
as follows (27):

( )

( )
w

2CTDI  mean top, bottom, left, right3

1 center .3

 = ⋅  

+ ⋅

Statistical Analysis
All statistical computations were per-
formed in SPSS Statistics version 22 
(IBM, Armonk, NY). A P value less 
than .05 was considered to indicate a 
statistically significant difference. De-
scriptive statistics were performed 
to summarize the data. After normal 
distribution was confirmed with the 
Shapiro-Wilk test, liver volumes were 
expressed as means, standard devi-
ations, and ranges and compared by 
using the paired t tests. For tumor de-
tectability rating, count and percentage 
were used and a Wilcoxon signed rank 
test was performed. Spearman r was 

Figure 2

Figure 2: Schematic of the circular and ellipsoid phantoms used for radiation exposure measurements.
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5.1% lower (1.2 mGy) during open arc 
cone-beam CT compared with closed 
arc cone-beam CT, which was signifi-
cant (P , .001). Of note, by switching 
from closed arc to open arc cone-beam 
CT, the radiation exposure significantly 
decreased on the right and bottom side 
of the phantom and increased on the 
top and left side of the phantom (P , 
.001 for all four sides; Fig 5).

Discussion

The main finding of our study was that 
open arc cone-beam CT significantly 
increased the imaging coverage of 
the liver volume. This confirms that a 
more complete depiction of the liver 
is possible without changing the size 
of the FOV; rather, it is achieved by 
improving the positioning of the liver 
in the cone-beam CT FOV. This was 
attained without any hardware chang-
es by modifying only software so that 
the geometric motion of the C-arm 
can have a wider lateral translation of 
the angiographic table and off-center 
cone-beam CT acquisition.

Table 2

Liver Volumes as Measured on Cone-Beam CT Images and the Corresponding MR 
Images

Patient No.

First MR  
Imaging  
Series (cm3)

Closed Arc  
Cone-Beam  
CT (cm3)

Second  
MR Imaging  
Series (cm3)

Open Arc  
Cone-Beam  
CT (cm3)

Cone-Beam  
CT Interval  
(mos)*

1 1345.9 1281.0 (95.2) 1357.2 1321.0 (97.3) 11.5
2 1473.3 1029.8 (69.9) 1717.0 1715.8 (99.9) 10.5
3 1189.5 944.2 (79.4) 1024.9 1022.8 (99.8) 12.4
4 1712.5 1644.1 (96.0) 1854.3 1796.5 (96.9) 11.0
5 1895.4 1803.2 (95.1) 1934.3 1885.3 (97.5) 7.3
6 1544.0 1510.7 (97.8) 1616.4 1612.0 (99.7) 9.0
7 3197.1 2727.7 (85.3) 2863.7 2795.8 (97.6) 4.0
8 1644.6 1458.1 (88.6) 1462.9 1321.8 (90.4) 6.1
9 1776.5 1617.7 (91.1) 1554.5 1498.6 (96.4) 4.1
10 2270.8 1904.8 (83.9) 3275.9 2877.4 (87.8) 5.0
11 1304.6 1114.4 (85.4) 1250.1 1250.3 (100.0) 2.4
12 2436.5 2045.5 (84.0) 2036.9 2032.2 (99.8) 3.8
13 2234.0 1688.0 (75.6) 1999.0 1893.7 (94.7) 3.4
14 2396.0 1853.2 (77.3) 2164.0 2156.5 (99.6) 3.7
15 3180.7 2807.3 (88.3) 2785.9 2646.0 (95.0) 4.5

Note.—Except where indicated otherwise, data are liver volumes, and numbers in parentheses are the percentage of liver 
coverage of cone-beam CT, calculated by dividing the liver volume on cone-beam CT images by the liver volume on the 
corresponding MR images and multiplying by 100%.

* Data are the intervals between cone-beam CT acquisitions.

Figure 3

Figure 3: A, C, Axial and, B, D, coronal 
images in a 69-year-old woman with 
intrahepatic mass-forming cholangiocar-
cinoma in segment 6 (arrowheads on B 
and D ) who was treated with conven-
tional TACE twice at our institution. The 
preprocedural T1-weighted MR images 
are shown with the intraprocedural 
cone-beam CT (CBCT ) liver perimeter 
overlay, where the black and white 
outlines indicate the liver segmenta-
tion based on MR and intraprocedural 
cone-beam CT images, respectively. A, 
B, Baseline MR images and closed arc 
cone-beam CT images are shown, and 
C, D, follow-up MR images and open 
arc cone-beam CT images are shown. 
Closed arc cone-beam CT was unable 
to demonstrate the outer parts of the 
liver (only 85.4% depiction) and failed to 
show the entire tumor (arrowheads on B ), 
whereas open arc cone-beam CT covered 
the complete liver volume and depicted 
the entire tumor (arrowheads on D ).
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reported 11%–12% of tumors being 
outside of the cone-beam CT FOV 
(10,19). Our study showed a higher 
percentage of tumors partially or com-
pletely outside of the closed arc cone-
beam CT FOV, (20% and 33% of the 
patients, respectively). However, one 
of the previously mentioned studies in-
cluded only patients with fewer than 
four hepatocellular carcinoma tumors 
(19), whereas 40% of the patients in 
our study had more than three tumors. 
Another factor for this difference 
could be the small number of patients 
in both our study and one mentioned 
previously (10). The complete depic-
tion of an intrahepatic tumor and its 
feeding arteries is desirable to opti-
mize the placement of the microcath-
eter before delivery of the chemo-
embolic agents. The use of open arc 
cone-beam CT allowed all tumors to be 
depicted completely, which facilitates 
the full potential of cone-beam CT for 
tumor detection and in the evaluation 
of the technical success of therapy.

A limitation of this feasibility study 
is the small number of patients. The 
small sample size could limit the gen-
eralizability of our results to the patient 
population suitable for TACE with re-
gard to the number of peripheral he-
patic tumors being better depicted. 
However, the liver sizes in this small 
study cohort covered a wide range. 
Thus, the results for improved liver cov-
erage should be similar for other pa-
tients. Additionally, the intraindividual 
comparison had the substantial advan-
tage of avoiding bias due to differences 
between two subcohorts, as in a two-
arm trial. The possibility of intraindi-
vidual comparison of both cone-beam 
CT techniques and the corresponding 
MR images was of great benefit, es-
pecially for the volumetric assessment 
of the liver in our study. This was sup-
ported by the similarity of liver volumes 
measured on MR images before and 
after the first TACE procedure, with 
no significant differences observed. An-
other limitation was that this technique 
was evaluated by using only one C-arm 
system vendor, since the other vendors, 
to the authors’ knowledge, do not have 
such solutions. However, the change of 

CT is even more important in recent C-
arm machines that offer significant radi-
ation exposure reduction during two-di-
mensional imaging, such as fluoroscopy 
and digital subtraction angiography, and 
so the contribution of cone-beam CT to 
the cumulative radiation exposure of a 
procedure is increased (28). Addition-
ally, the radiation exposure by using 
open arc cone-beam CT significantly 
decreased at the bottom of both phan-
toms, which anatomically would be the 
back of the patient, and this mimics the 
position of the x-ray tube during fluo-
roscopy and digital subtraction angiog-
raphy, where the highest skin dose is 
normally observed.

Investigators in several studies on 
tumor detectability at cone-beam CT 

In contrast to previously described 
techniques to increase the liver cov-
erage during cone-beam CT (20,21), 
open arc cone-beam CT did not lead to 
an increase in radiation exposure. The 
measurements conducted on an ellipsoid 
phantom in our study show a slight de-
crease in radiation exposure. This can 
be explained by the fact that the trans-
verse diameter, given the ellipsoid shape 
of the body, is the greatest x-ray path 
length and where the automatic tube 
current modulation is tuned to the high-
est x-ray flux. This transverse diameter 
of the phantom is swept only once by the 
x-ray tube and detector during open arc 
cone-beam CT but twice during closed 
arc cone-beam CT. This slight reduction 
in radiation exposure during cone-beam 

Figure 4

Figure 4: Axial images in a 72-year-old man with multifocal hepatocellular carcinoma, with the index le-
sion in segment 6. A, Baseline T1-weighted MR image acquired in the portal venous phase shows the index 
lesion in segment 6 (arrowheads). B, Reconstruction of the closed arc cone-beam CT (CBCT ) data acquired 
during the first conventional TACE procedure depicts the tumor only to a limited extent (arrowheads), owing 
to suboptimal centering of the FOV. C, Follow-up MR image acquired 4 months later demonstrates extensive 
growth of the tumor (arrowheads); the patient was referred for another cycle of conventional TACE. D, Even 
though the tumor has grown, the axial reconstruction of the open arc cone-beam CT data from the intrapro-
cedural imaging depicts the complete tumor (arrowheads).
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the rotational trajectory should be ap-
plicable to C-arm systems from other 
vendors. Additionally, because of the 
retrospective design of the study, the 
setup time for cone-beam CT acquisi-
tion, as well as the effect of open arc 
cone-beam CT on catheter positioning 
and treatment end point, was not re-
corded. These could be evaluated in 
a future prospective study. The wider 
translation of the angiographic table 
may ease the workflow for cone-beam 
CT acquisition by reducing collisions 
(between the C-arm and the procedure 
table or the patient) and the need for 
patient repositioning, thus shortening 
setup time. Further validation of the 
results and benefits of open arc cone-
beam CT in terms of procedure work-
flow, as well as patient outcome in a 
larger trial, are recommended.

In conclusion, open arc cone-beam 
CT allowed for a significantly improved 
intraprocedural depiction of peripheral 
hepatic tumors while achieving a slight 
radiation exposure reduction.

Figure 5

Figure 5: Diagram of mean x-ray exposure (in milligrays) at each probe po-
sition in the circular (left) and ellipsoid (right) phantoms during closed and open 
arc cone-beam CT (CBCT), respectively. For the circular phantom, weighted 
CTDI (CTDI

w 
) was similar for both closed and open arc cone-beam CT, whereas 

for the ellipsoid phantom, weighted CTDI was slightly lower during open arc 
cone-beam CT.
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