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Nonadiabatic rate constants for proton transfer and proton-coupled
electron transfer reactions in solution: Effects of quadratic term
in the vibronic coupling expansion
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Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron
transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic
and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor
vibrational modes. These rate constants differ from previous rate constants derived with the cumulant
expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton
donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that
inclusion of this quadratic term in the framework of the cumulant expansion framework may signif-
icantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton
donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The
effects of the quadratic term may also become significant in these regimes when using the vibronic
coupling expansion in conjunction with a thermal averaging procedure for calculating the rate
constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating
the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the
quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic
models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally,
the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified.
In particular, the cumulant expansion rate constant includes effects from dynamical interference
between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally
averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes
in which each rate constant expression is valid and thus will be important for future applications to
proton transfer and proton-coupled electron transfer in chemical and biological processes. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4935045]

I. INTRODUCTION

Vibronic couplings play a key role in determining the
rate constants for proton transfer (PT) and proton-coupled
electron transfer (PCET). In the Golden Rule formulation,
the rate constant is proportional to the square of the vibronic
coupling at the environmental configurations corresponding to
the degeneracy of the reactant and product vibronic states. In
this context, the vibronic coupling is the Hamiltonian matrix
element between the reactant and product diabatic electron-
proton vibronic states. Typically, these vibronic couplings are
assumed to be only weakly dependent on the configuration of
the environment (i.e., the Condon approximation). In the case
of PT or PCET reactions, however, the proton donor-acceptor
distance coordinate represents an exception. In typical two-
dimensional (2D) potentials describing the PT interface in
terms of the proton coordinate q and the proton donor-acceptor
distance R, the coordinates q and R are strongly coupled, re-
sulting in the strong dependence of the PT barrier height along
the proton coordinate q on the proton donor-acceptor distance
R. A major consequence of this effect is the strong depen-
dence of the vibronic coupling on the proton donor-acceptor
distance.

The importance of the dependence of the vibronic coupl-
ing on the proton donor-acceptor vibrational motion has been
recognized in the literature. The effects of the proton donor-
acceptor motion were explicitly included in theoretical trea-
ments of PT1–5 and PCET6–8 reactions. The dependence of
the nonadiabatic vibronic coupling V on the proton donor-
acceptor distance R is often represented in exponential form
by expanding the natural logarithm of the coupling around
the equilibrium proton donor-acceptor distance R0. When only
the terms up to second order in δR = R − R0 are retained, this
dependence is expressed as

ln V (R) = ln V (R0) − αδR − 1
2
γδR2, (1)

where

α = − d ln V (R)
dR

�����R=R0

= − 1
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Using this expansion, the vibronic coupling can be written in
the following exponential form with V0 ≡ V (R0):

V (R) = V0 exp

−αδR − 1

2
γδR2


. (4)

Several previous treatments1,2,4,5,8,9 assumed that the terms
linear in δR are dominant and that the quadratic term can
be neglected. This approximation was justified by agreement
with the full quantum mechanical treatment of both the q
and R coordinates in various model PCET systems for the
electronically nonadiabatic case, where the vibronic coupling
is proportional to the R-dependent overlap integral between the
reactant and product proton vibrational wavefunctions.8,10 In
other cases,3,11,12 however, the quadratic term in Eq. (4) could
potentially have a significant effect on the rate constant, espe-
cially in the case of the so-called deep tunneling or electroni-
cally adiabatic but vibronically nonadiabatic regime, where the
vibronic coupling is represented by half the tunneling splitting
in a double-well PT potential. These effects are also relevant
to thermal averaging treatments of PT and PCET, in which
the rate constant is averaged over the equilibrium distribution
of proton donor-acceptor distances.6 In this treatment, the
classical distribution function over the proton donor-acceptor
distances may enable sampling of the relatively short distances
at which the linear approximation for the logarithm of the
vibronic coupling is insufficient, and the quadratic term may
become necessary.

In this paper, we systematically analyze the effects of the
quadratic term on the nonadiabatic rate constants for PT and
PCET in various regimes. The aim of this study is to obtain
deeper insight into how the characteristics of the PT interface,
including the features of the potential energy surface and the
effective mass and frequency of the proton donor-acceptor
vibrational mode, impact the significance of the quadratic term.
Section II summarizes the theoretical treatments for nonadia-
batic PT and PCET reactions and provides expressions for the
vibronic coupling in the relevant regimes. Section III presents
results for a range of model systems, and Section IV summa-
rizes the conclusions of this study.

II. THEORY

The nonadiabatic theories of PT and PCET are based
on the general Golden Rule formulation. In the conventional
formulation, nonadiabatic transitions occur between the reac-
tant and product quantum states interacting with the fluctuating
environment in thermal equilibrium at a given temperature.
The thermal fluctuations of the environment bring a pair of
quantum states into degeneracy, thereby enabling a quantum
transition with a probability that is proportional to the
square of the quantum mechanical coupling between the
corresponding states. Defining the reactant (I) and product
(II) channels with Hamiltonians Ĥ I and Ĥ II, which give rise
to the manifolds of reactant and product vibronic states for
the entire system, the Golden Rule rate constant expression
can be written as a thermodynamic average over the reactant
states (i.e., eigenstates of the Hamiltonian Ĥ I) of the entire
system:8

k =
1
~2

∞
−∞

dt

V̂ (0) exp(−)



i
~

t
0

∆Ĥ(τ) dτ


V̂ (t)

{I}

=
1
~2

∞
−∞

J(t) dt. (5)

The time-dependent quantities in the above expression are op-
erators for the coupling V̂ and the energy gap ∆Ĥ ≡ Ĥ II − Ĥ I

in the Heisenberg representation:

V̂ (t) = e
i
~ Ĥ

ItV̂ e−
i
~ Ĥ

It,

∆Ĥ(t) = e
i
~ Ĥ

It
�
Ĥ II − Ĥ I� e−

i
~ Ĥ

It .
(6)

The exp(−) denotes a negatively time-ordered exponential, and
⟨(· · · )⟩{I} ≡ Tr

�
exp

�
−βĤ I� (· · · )	 /Tr

�
exp

�
−βĤ I�	, where

β−1 = kBT , denotes a quantum mechanical thermal average
over initial states.

The reactant and product vibronic states form two sets of
quantum states in the electronically diabatic representation. As
in Marcus-Levich-Dogonadze nonadiabatic ET theory,13,14 the
diabatic electronic states are characterized by the reactant and
product electronic charge distributions in the reaction complex.
These diabatic electronic states are defined either by the trans-
ferring electron localized on the electron donor or acceptor
species, as in the case of ET or PCET, or by the specific
bonding pattern describing the proton bonded to the proton
donor or acceptor, as in the case of PT. For PCET and PT, the
proton donor-acceptor distance R warrants special treatment
due to its special role in modulating the couplings between
the reactant and product vibronic states. In the remainder of
this section, we consider different treatments of this coordinate,
emphasizing the effects of the linear and quadratic terms in the
logarithmic expansion of the coupling matrix element given
in Eq. (4). In the general rate constant expressions, we do not
specify the form of the vibronic coupling, assuming that any
coupling matrix element can be represented in the form of
Eq. (4) near the equilibrium value of the proton donor-acceptor
distance. Specific expressions for the vibronic coupling in the
electronically adiabatic and nonadiabatic limits, as well as the
intermediate regime, are provided at the end of Section II A.

A. Reactant and product vibronic states
and vibronic couplings

The reactant and product vibronic states are the eigen-
states of the reactant and product channel Hamiltonians Ĥ I

and Ĥ II, respectively. Within each of these channels, the reac-
tant and product states can be represented in the following
form:

Ψ
J
µm(re,q,R, ξ) = ΦJ

µ(re,q|R, ξ) χJ
µm(R, ξ), J = I, II. (7)

Here, ΦJ
µ are the diabatic electron-proton vibronic wavefunc-

tions parametrically dependent on the donor-acceptor distance
R and the environmental coordinates ξ for the reactant (J = I)
and product (J = II) vibronic manifolds with corresponding
diabatic electronic charge distributions. The corresponding
vibronic energies, EJ

µ(R, ξ), serve as vibronic potential energy
surfaces for the remaining degrees of freedom, and the final
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quantization along R and ξ provides the vibrational wavefunc-
tions of the environment, χJ

µm(R, ξ). In the linear response
approximation, the vibronic surfaces EJ

µ(R, ξ) are represented
as harmonic surfaces in the multidimensional space spanned by
the proton donor-acceptor coordinate R and the environmental
modes.

The matrix elements of the coupling operator V̂ between
the reactant and product states defined in Eq. (7) are given by

Ψ
I
µm

��� V̂
�
Ψ

II
νn

�
=


χI
µm

���Vµν(R, ξ) �χII
νn

�
, (8)

where

Vµν(R, ξ) =

Φ

I
µ
��� V̂

�
Φ

II
ν

�
re,q
≈ Vµν(R) (9)

is the electron-proton vibronic coupling appearing in Eq. (4).
According to the Condon approximation, this coupling is
assumed to be independent of the environmental coordinates,
but its dependence on the proton donor-acceptor distance
cannot be neglected.

In the electronically diabatic channel representation, the
hierarchy of adiabatic approximations between the electrons
and the proton, as well as between the proton and the slower
nuclear degrees of freedom within each channel, is usually
well-justified. The adiabatic separation between the proton
coordinate q and the proton donor-acceptor coordinate R is
less obvious because these coordinates are strongly coupled
in typical two-dimensional potentials describing hydrogen-
bonded PT interfaces. However, previous work15 has estab-
lished that this adiabatic separation, in which the proton
coordinate q is treated as a “fast” coordinate and the proton
donor-acceptor coordinate R is treated as a “slow” coordinate,
is well-justified not only for electronically diabatic but also for
a wide range of electronically adiabatic potentials, including
double well potentials with high barriers (i.e., in the deep
tunneling regime).

The vibronic coupling V (R) can be calculated from the
proton potential energy curves associated with the reactant and
product diabatic electronic states, as depicted in Figure 1(a), in
conjunction with the electronic coupling V el between these two
states. Georgievskii and Stuchebrukhov16 derived a semiclas-
sical expression for the general vibronic coupling V (sc),

V (sc) = κV (ad), (10)

where V (ad) = ∆(tun)/2 is the vibronic coupling in the electron-
ically adiabatic limit, equal to the half the tunneling splitting
between the proton vibrational levels in the ground state adia-
batic electronic potential (Figure 1(b)), and

κ = (2πp) 1
2

ep ln p −p

Γ (p + 1) . (11)

In this expression, Γ(x) is the gamma function, and p = τp/τe
is the electron-proton adiabaticity parameter defined in terms
of the effective electronic transition time,

τe =
~

V el , (12)

and the effective proton tunneling time,

τp =
V el

|∆F | vt . (13)

FIG. 1. (a) Reactant (blue) and product (red) electronically diabatic pro-
ton potentials and associated proton vibrational wavefunctions at a fixed
proton donor acceptor distance; (b) ground state electronically adiabatic
proton potential and the corresponding ground (blue) and excited (red) state
proton vibrational wavefunctions at a fixed proton donor-acceptor distance.
The tunneling splitting is the energy difference between these two proton
vibrational energy levels, as indicated by dashed lines.

Here, V el is the electronic coupling between the reactant and
product diabatic electronic states,17 |∆F | is the difference be-
tween the slopes of the electronically diabatic potentials at the
crossing point, and the tunneling velocity is

vt =


2 (V † − E)

m
, (14)

where V † is the energy at which the potential energy curves
cross, E is the tunneling energy associated with the unper-
turbed degenerate proton vibrational levels in the reactant
and product diabatic potentials, and m is the mass of the
proton.

The semiclassical expression for the vibronic coupling
given in Eq. (10) spans the electronically adiabatic and nonadi-
abatic regimes. In the electronically adiabatic limit, p ≫ 1,
κ = 1, and the vibronic coupling simplifies to V (ad). Several
semiclassical expressions in terms of parameters associated
with proton double well potentials have been derived for
V (ad).5,11,12,18,19 In the electronically nonadiabatic limit, p ≪ 1,
κ = (2πp)1/2, and the vibronic coupling reduces to

V (na) = V el

ϕ(I) | ϕ(II) , (15)

where ϕ(I) and ϕ(II) are the proton vibrational wavefunctions in
the reactant and product wells, respectively (Figure 1(a)).
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From a physical perspective, the electronically adia-
batic limit corresponds to the case in which the electrons
respond instantaneously to the proton motion, resulting in
the reaction proceeding entirely on the ground adiabatic elec-
tronic state. In contrast, the electronically nonadiabatic limit
corresponds to the case in which the electrons are unable to
respond instantaneously to the proton motion, thereby lead-
ing to involvement of the excited electronic state. Most PT
and hydrogen atom transfer (HAT) reactions are electroni-
cally adiabatic, occurring on the ground adiabatic electronic
state. In contrast, PCET reactions that involve concerted
electron and proton transfer between different donors and
acceptors (i.e., different orbitals, atoms, or groups) are typi-
cally electronically nonadiabatic. The distinctions between
these types of reactions have been discussed extensively
elsewhere.20–24

B. Cumulant expansion approach to Golden Rule
nonadiabatic rate constant

In the approaches used previously for PT2,5 and PCET8

reactions in solution, the proton donor-acceptor coordinate R
is assumed to be adiabatically separated from the electron and
proton coordinates. Here, we limit our discussion to a single
pair of reactant and product electron-proton vibronic statesΦI

µ

andΦII
ν to avoid complicated notation; the total rate constant is

obtained by averaging over the reactant states and summing
over the product states.

Expanding the energy gap in a Taylor series in the coor-
dinate R up to the linear term and substituting the expansion
in Eq. (4) for the vibronic coupling, we obtain the following
expression for the reaction flux correlation function, J(t), in
Eq. (5):5

J(t) = V 2
0 exp


i
~


Ê


t
 

e−
i
~ α̃ δ R̂(0)− i

2~ γ̃ δ R̂2(0)exp(−)



i
~

t
0

(
δÊ(τ) + Λ̃RδR̂(τ)) dτ


e−

i
~ α̃ δ R̂(t)− i

2~ γ̃ δ R̂2(t)

{I}

, (16)

where δÊ(τ) and δR̂(τ) are the Heisenberg operators describing the time evolution of fluctuations of the energy gap Ê ≡ ∆Ĥ
and proton donor-acceptor distance R, respectively. Moreover, α̃ = −i~α, γ̃ = −i~γ, and Λ̃R is the derivative of the energy gap
with respect to the proton donor-acceptor coordinate R evaluated at the minimum of the reactant vibronic energy surface. In the
harmonic approximation, Λ̃R is proportional to ∆R, the shift of the equilibrium value of the proton donor-acceptor distance in the
product state relative to that in the reactant state. Note that for symmetric systems, the reactant and product equilibrium proton
donor-acceptor distances are equal, and thus, Λ̃R = 0.

Expanding the exponentials in Eq. (16) and collecting terms of the same order in i/}, we obtain a series that can be represented
as a cumulant expansion of the time-ordered exponential for the time-dependent variable X̂(τ),

⟨exp(−)



i
~

t
0

X̂(τ)dτ


⟩ = exp




i
~

t
0

dτ⟨⟨X̂(τ)⟩⟩ +
(

i
~

)2 t
0

dτ1

τ1
0

dτ2⟨⟨X̂(τ2)X̂(τ1)⟩⟩ + · · ·


, (17)

where

X̂(τ) = α̃

t
δR̂(0) + γ̃

2t
δR̂2(0) + δÊ(τ) + Λ̃RδR̂(τ) + α̃

t
δR̂(t) + γ̃

2t
δR̂2(t), 0 < τ < t (18)

and double angular brackets denote the cumulants of X̂(τ), which can be expressed in terms of the central moments and correlation
functions of the time-dependent fluctuations of the energy gap and proton donor-acceptor distance, δÊ and δR̂, respectively. These
moments can in turn be expressed in terms of the corresponding cumulants. Next, we assume that these time-dependent fluctuations
can be described by Gaussian processes corresponding to the time evolution on harmonic surfaces. For the proton donor-acceptor
coordinate R, the Gaussian process δR̂(t) corresponds to the time evolution of a harmonic oscillator with an effective mass M
and frequency Ω. In practice, the effective mass and frequency can be defined in terms of the normal modes of the system that
have nonvanishing projections on the proton donor-acceptor axis and thus contribute to the fluctuations of the coordinate R.25 In
addition, we assume that the corresponding harmonic potential along R is uncoupled from the other environmental degrees of
freedom, which can be achieved by considering the normal modes of the entire system in the reactant state.

For Gaussian processes δÊ(τ) and δR̂(τ), all of the corresponding cumulants higher than second order vanish exactly.
However, the cumulant expansion for the rate constant based on the expansion of the time-ordered exponential with the variable
X̂(τ) does not truncate even for Gaussian δÊ(τ) and δR̂(τ) due to the presence of the quadratic terms δR̂2(t) in Eq. (18). The final
expression for the reaction flux can be written as

J(t) = V 2
0 exp


i
~
⟨E⟩ t


exp



α2 �⟨δR2⟩ + CR(t)� − 2iα

~
Λ̃R

t
0

CR(τ) dτ +
∞
n=1

(−1)nγn


1
n

K (1)
n (t) + α2K (2)

n+1(t)


− 1
~2

t
0

dτ1

τ1
0

dτ2CE(τ1 − τ2) − Λ̃
2
R

~2

t
0

dτ1

τ1
0

dτ2CR(τ1 − τ2)


, (19)
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where

⟨E⟩ = ∆G + Λ (20)

and the operator notation is omitted for simplicity. Here, ∆G
and Λ are the reaction free energy and the total reorganization
energy, respectively, and the correlation functions are defined
as

CE(τ1 − τ2) = ⟨δE(τ2) δE(τ1)⟩ ,
CR(τ1 − τ2) = ⟨δR(τ2) δR(τ1)⟩ . (21)

Eq. (19) is similar to the analogous expression derived in Ref. 5
for PT and Ref. 8 for PCET reactions except for an additional

time-dependent term with K (1)
n (t) and K (2)

n (t) denoting nth or-
der polynomials in CR(t) and



δR2� = CR(0). This additional

term arises because of the quadratic term in the logarithmic
expansion of the coupling. The explicit expressions for K (1)

n (t)
and K (2)

n (t) for n = 1–8 (i.e., up to eighth order in γ) are given
in Table I.

In the high-temperature approximation for the solvent
fluctuations and for a simple Debye model of solvent relax-
ation, the correlation function of the energy gap becomes a
single exponential.26 In this case, the double time integral
with the energy gap correlation function in Eq. (19) can be
approximated by a Gaussian,

t
0

dτ1

τ1
0

dτ2CE(τ1 − τ2) ≈ exp

−λs t2

β ~2


, (22)

where λs is the solvent reorganization energy. Note that the simple Debye model of solvent relaxation breaks down when the short
time scale solvent dynamics is important, in which case the energy gap correlation function may include Gaussian components to
describe the short time scale relaxation processes.27,28 Using the readily available analytical expressions for the variance ⟨δR2⟩ and
correlation function ⟨δR(0) δR(τ)⟩ of the quantum harmonic oscillator with mass M and frequency Ω,29 we obtain the following
general expression for the reaction flux J(t):

J(t) = V 2
0 exp


2λα
~Ω

ζ


exp



∞
n=1

(−1)n
(
λγζ

~Ω

)n (
1
n

K̃ (1)
n (t) + λαζ

~Ω
K̃ (2)

n+1(t)
)

× exp

−1

2
χΩ2t2 + p (cosΩt − 1) + i (q sinΩt + θ Ωt)


. (23)

In this expression, λα = ~
2α2

2M and λγ =
~2γ
2M are the coupl-

ing reorganization energies corresponding to the linear and
quadratic terms, respectively, in the logarithmic expansion of
the coupling, ζ = coth [β~Ω/2], and K̃ (i)

n = K (i)
n /



δR2�n for

i = 1, 2. The remaining parameters are defined exactly as in
our previous work:8

p = ζ
λR + λα
~Ω

− 2
√
λRλα
~Ω

,

q =
λR + λα
~Ω

− 2ζ
√
λRλα
~Ω

,

χ =
2λs

β ~2Ω2 , θ =
∆G + λs

~Ω
,

(24)

where λR =
1
2 MΩ2∆R2 is the proton donor-acceptor mode

reorganization energy, which is zero for systems with a sym-
metric proton transfer interface.

The additional exponential factor arising from the qua-
dratic term in the coupling expansion is an infinite sign-
alternating series that in certain regimes may cause conver-
gence difficulties for the calculation of the reaction flux given
in Eq. (23). The key temperature-dependent convergence para-
meter is ηγ = λγζ/~Ω, which depends on γ as well as on the
mass M and the frequency Ω of the proton donor-acceptor
mode. In the low-frequency limit for the proton donor-acceptor

mode, β~Ω ≪ 1, the convergence parameter becomes
ηγ = γ/

�
βMΩ2�. Thus, at high temperatures and for a very soft

proton donor-acceptor mode with small force constant MΩ2,
the convergence may become slow. The convergence should
improve significantly in the high-frequency limit, β~Ω ≫ 1,
where ηγ = λγ/ (~Ω) ≪ 1.

For the case in which only the linear term in the logarith-
mic coupling expansion is retained (i.e., γ = 0), closed analyt-
ical forms of the rate constant have been derived in the low- and
high-frequency regimes for the proton donor-acceptor mode.5,8

In the case when the quadratic term is included (i.e., γ , 0),
a closed analytical expression for the rate constant can be
obtained if we neglect the equilibrium dynamics of the proton
donor-acceptor coordinate R by replacing the time correlation
function CR(t) = ⟨δR(0) δR(t)⟩ by its value at t = 0, CR(0)
=


δR2�. This approximation for the proton donor-acceptor

mode is valid when the characteristic time scale of the correla-
tion function CR(t) is much longer than the time scale asso-
ciated with the solvent damping term given in Eq. (22). In
previous work,7 we analyzed the time dependence of the
correlation function CR(t) calculated from molecular dynamics
simulations of model PCET systems and its effects on the
rate constant for the linear logarithmic coupling expansion.
For typical PT interfaces, we found that the approximation
CR(t) ≈ CR(0) is valid at ambient temperatures for solvents
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TABLE I. Explicit expressions for polynomials K
(1)
n (t) and K

(2)
n+1(t) in

Eq. (19) for n = 1–8 (up to eighth order in γ). The polynomials are given
in terms of cumulants κ2,0≡



δR2� and κ1,1≡ ⟨δR(0)δR(t)⟩.

n K
(1)
n (t) K

(2)
n+1(t)

1 κ2,0 κ2
1,1+2κ2,0κ1,1+κ

2
2,0

2 κ2
1,1+κ

2
2,0 κ3

1,1+3κ2,0κ
2
1,1+3κ2

2,0κ1,1+κ
3
2,0

3 κ3
2,0+3κ2

1,1κ2,0 κ4
1,1+4κ2,0κ

3
1,1+6κ2

2,0κ
2
1,1+4κ3

2,0κ1,1

+κ4
2,0

4 κ4
1,1+6κ2

2,0κ
2
1,1+κ

4
2,0 κ5

1,1+5κ2,0κ
4
1,1+10κ2

2,0κ
3
1,1

+10κ3
2,0κ

2
1,1+5κ4

2,0κ1,1+κ
5
2,0

5 κ5
2,0+10κ2

1,1κ
3
2,0+5κ4

1,1κ2,0 κ6
1,1+6κ2,0κ

5
1,1+15κ2

2,0κ
4
1,1

+20κ3
2,0κ

3
1,1+15κ4

2,0κ
2
1,1+6κ5

2,0κ1,1

+κ6
2,0

6 κ6
1,1+15κ2

2,0κ
4
1,1+15κ4

2,0κ
2
1,1

+κ6
2,0

κ7
1,1+7κ2,0κ

6
1,1+21κ2

2,0κ
5
1,1

+35κ3
2,0κ

4
1,1+35κ4

2,0κ
3
1,1+21κ5

2,0κ
2
1,1

+7κ6
2,0κ1,1+κ

7
2,0

7 κ7
2,0+21κ2

1,1κ
5
2,0+35κ4

1,1κ
3
2,0

+7κ6
1,1κ2,0

κ8
1,1+8κ2,0κ

7
1,1+28κ2

2,0κ
6
1,1

+56κ3
2,0κ

5
1,1+70κ4

2,0κ
4
1,1+56κ5

2,0κ
3
1,1

+28κ6
2,0κ

2
1,1+8κ7

2,0κ1,1+κ
8
2,0

8 κ8
1,1+28κ2

2,0κ
6
1,1+70κ4

2,0κ
4
1,1

+28κ6
2,0κ

2
1,1+κ

8
2,0

κ9
1,1+9κ2,0κ

8
1,1+36κ2

2,0κ
7
1,1

+84κ3
2,0κ

6
1,1+126κ4

2,0κ
5
1,1+126κ5

2,0κ
4
1,1

+84κ6
2,0κ

3
1,1+36κ7

2,0κ
2
1,1+9κ8

2,0κ1,1

+κ9
2,0

with large reorganization energy. In this case, the infinite series
in Eq. (23) reduces to a time-independent prefactor, and the
time integral of the reaction flux correlation function can be
readily evaluated. For PT interfaces with Λ̃R = 0, the rate
constant acquires the following analytical form:

k =
V 2

0

~
exp


2λαζ

~Ω + 2λγζ

 (
1 +

2λγζ
~Ω

)− 1
2

×

π β

λs
exp


− β(∆G + λs)2

4λs


. (25)

The low-frequency (β~Ω ≪ 1) and high-frequency
(β~Ω ≫ 1) limits for the proton donor-acceptor mode can
be obtained from the above expression by substituting the
corresponding limits for ζ = coth [β~Ω/2].

Unfortunately, in the general case, when the time depen-
dence of CR(t) is retained and the interference effects between
the short time dynamics of the proton donor-acceptor mode and
the fluctuations of the energy gap are included, the inclusion of
the quadratic term in the coupling expansion leads to expres-
sions that are not easily simplified into this type of analytical
form. In this case, the effects of the quadratic term on the rate
constant cannot be represented as a simple prefactor in the rate
constant expression. In our calculations of the nonadiabatic
rate constants for model systems discussed below, we use
Eq. (5) with the full reaction flux given in Eq. (23) and perform
the integration numerically.

C. Thermal averaging over proton
donor-acceptor motion

The alternative thermal averaging approach6 assumes that
the proton donor-acceptor mode remains in thermal equilib-

rium during the reaction and that the nonadiabatic transitions
or proton tunneling events occur independently at all values
of R. This assumption is valid when the relaxation along R
is fast compared to the rate of nonadiabatic transitions and is
similar to the slow reaction limit in the Sumi-Marcus model for
electron transfer.30 In this case, ignoring the weak dependence
of the reorganization energy and the reaction free energy on R,
the nonadiabatic rate constant is given by the following expres-
sion:

k =
1
~

|V (R)|2
π β

λs
exp


− β(∆G + λs)2

4λs


, (26)

where the first prefactor is obtained by simple thermal aver-
aging of the squared vibronic coupling over an equilibrium
distribution of the proton donor-acceptor distances. For the
exponential form of the coupling given in Eq. (4), the average
is expressed as

|V (R)|2 = ∞
−∞

P(R)|V (R)|2dR

= V 2
0

∞
−∞

P(R) exp
�
−2α(R − R0) − γ(R − R0)2� dR,

(27)

where P(R) is the equilibrium distribution function for proton
donor-acceptor distances.

In the low-frequency (β~Ω ≪ 1) and high-frequency
(β~Ω ≫ 1) limits for a harmonic oscillator representing the
proton donor-acceptor vibrational mode, the integral in Eq. (27)
can be evaluated analytically, resulting in the following analyt-
ical expressions:|V (R)|2

low-freq
= V 2

0 exp


2α2

βMΩ2



× exp

− 4α2γ

βMΩ2 (βMΩ2 + 2γ)


×
(
1 +

2γ
βMΩ2

)−1/2

, (28)

|V (R)|2
high-freq

= V 2
0 exp


~α2

MΩ


exp


− ~2α2γ

MΩ (MΩ + ~γ)


×
(
1 +

~γ

MΩ

)−1/2

. (29)

As pointed out previously,31 in the absence of the quadratic
term in the coupling expansion, the averaging of the squared
coupling with the classical harmonic distribution function
leads to a prefactor that coincides with the prefactor in the
rate constant expression derived with the cumulant expansion
approach in the low-frequency limit for the proton donor-
acceptor mode. When the quadratic term is included in the
coupling expansion, the expressions given in Eqs. (28) and
(29) coincide with the low-frequency (β~Ω ≪ 1) and high-
frequency (β~Ω ≫ 1) limits of the prefactor in Eq. (25).
Thus, the thermal averaging of the rate constant with the
equilibrium distribution function for the proton donor-acceptor
mode, resulting in the rate constant expression in Eq. (26),
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corresponds to an approximation that completely neglects the
effects from the dynamical interference between the proton
donor-acceptor motion and the fluctuations of the energy gap.
This relation between the cumulant expansion and thermally
averaged rate constant expressions can be proven for any form
of the vibronic coupling. From a theoretical perspective, the
cumulant expansion approach is more general and consistent
because the equilibrium dynamics along the R coordinate is
treated explicitly on the same level as the dynamics of the
energy gap.

The expression in Eq. (28) is similar to the result obtained
by Trakhtenberg et al.1 for hydrogen tunneling reactions with
a single promoting mode (cf. Eq. (8) in Ref. 1). Analyzing the
tunneling splittings in proton potentials derived from Morse
functions for chemical bonds, the authors concluded that the
additional prefactors arising from the quadratic term in the log-
arithmic coupling expansion can be safely neglected. However,
other studies3,12,32 have found that at high temperatures and for
soft PT interfaces with very small force constants MΩ2, the
second exponential factor in Eq. (28) can become small and
thus can significantly reduce the rate constant. When only the
linear term in the coupling expansion is included, the coupling
is overestimated at short proton donor-acceptor distances, and
for soft PT interfaces at high temperatures, the distribution
function P(R) is broad enough to allow sampling of these
short distances. On the other hand, the use of more realistic
potentials along the coordinate R for hydrogen-bonded PT
interfaces, such as Morse-like potentials with repulsive walls
preventing the proton donor and acceptor from unphysical
close contact, reduces the effects of the quadratic term due
to decreased sampling probability at unphysical short donor-
acceptor distances.

In an alternative, explicit thermal averaging approach, the
vibronic coupling is calculated analytically or numerically at
each proton donor-acceptor distance along a grid, followed by
numerical evaluation of the first integral in Eq. (27).25,33–36

Thus, the vibronic couplings are calculated explicitly for the
entire range of proton donor-acceptor distances sampled. This
approach does not rely on the expansion of the vibronic coupl-
ing near the equilibrium proton donor-acceptor distance and
therefore avoids any assumption of linear or quadratic behavior.

D. Two-dimensional quantum treatment of proton
and donor-acceptor coordinates

Another approach, which should be valid for a wide
range of proton donor-acceptor mode effective masses M
and frequencies Ω, employs a 2D quantum treatment of the
PT interface. In this case, the R coordinate is treated on the
same level as the electron and proton coordinates, and the
reactant and product vibronic states are defined as solutions
of the vibrational Schrödinger equation for the proton and
its donor and acceptor moving on 2D diabatic electronic
potentials UJ(q,R) corresponding to the reactant and product
diabatic electronic states, J = I, II. The shape of these diabatic
potentials is assumed to be independent of the environmental
coordinates ξ according to the definition of diabatic electronic
states. In the case of 2D harmonic potentials UJ(q,R), the solu-
tions of the vibrational Schrödinger equation can be obtained

analytically,12 and the vibronic couplings can be evaluated
analytically in the electronically nonadiabatic regime when
they are proportional to the overlap integrals between the
2D vibrational wavefunctions, ψJ

µ(q,R), of the reactant and
product states. A detailed analysis of such overlap integrals
has been performed recently.12 For more realistic anharmonic
2D potentials, the 2D vibrational wavefunctions ψJ

µ(q,R) can
be calculated numerically using, for example, Fourier Grid
Hamiltonian (FGH) methods.37,38

Alternatively, the adiabatic separation between the pro-
ton coordinate q and the donor-acceptor coordinate R can be
invoked by treating q as a fast coordinate and R as a slow
coordinate. In this case, the reactant and product vibronic states
are products of the adiabatic proton vibrational wavefunctions
χJ
µ(q|R), parametrically dependent on the R coordinate, and

vibrational wavefunctions for the R coordinate φJµm(R). As
mentioned in Section II A, such an approximation is justified
for hydrogen-bonded PT interfaces due to the specific form of
the coupling between the coordinates q and R and the large
difference in associated masses.15 For adiabatically separated
q and R in the reactant and product potentials, the nonadiabatic
rate constant for a Debye solvent is given by

k =
1
~

{I}
µm

PI
µm

{II}
νn

���

φI
µm

���Vµν(R) �φII
νn

����
2

×

π β

λs
exp


−
β
�
∆Gµm,νn + λs

�2

4λs


, (30)

where PI
µm is the Boltzmann probability for the reactant state

���χ
I
µ

 ���φI
µm


and∆Gµm,νn is the reaction free energy for the pair

of vibronic states µm and νn.
In previous work,8 we compared the full 2D quantum

treatment of coordinates q and R with other approaches for a
series of models with anharmonic diabatic electronic poten-
tial energy surfaces. Numerical calculations of the nonadia-
batic rate constants in the electronically nonadiabatic regime
for various models illustrated that at ambient temperatures of
∼300 K and typical R-mode frequencies of 100–500 cm−1

and masses of 10–100 amu, the full 2D quantum and explicit
thermal averaging approaches provide very similar results.
Note that the general cumulant expansion approach described
in Section II B2,5,8,10 also treats both the q and R coordinates
quantum mechanically when the quantum mechanical correla-
tion function for the harmonic R-mode is utilized. Moreover,
similar to the thermal averaging approach, the 2D quantum
approach neglects the interference effects arising from the dy-
namics of the proton donor-acceptor motion that are included
in the cumulant expansion approach.

III. MODEL CALCULATIONS

In this section, we analyze the effects of the quadratic term
in the logarithmic expansion of the vibronic coupling on the
rate constants for model systems spanning various regimes.

A. Model potentials

For the analysis in the electronically nonadiabatic regime,
we employed two simple analytical models with harmonic
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and Morse proton potentials, denoted 1D-HARM and 1D-
MORSE, respectively. These simple symmetric models as-
sume that the shape of the diabatic proton potentials does not
depend on the proton donor-acceptor coordinate R, which af-
fects only the distance between the minima on the reactant and
product potentials. The motion along R is assumed to be har-
monic with effective mass M and frequency Ω. The harmonic
proton potentials in the 1D-HARM model have an equilibrium
distance of 1.0 Å, proton mass of 1.007 amu, and frequency of
2900 cm−1. The parameters of the Morse proton potentials in
the 1D-MORSE model are similar to the parameters used to
describe the nonadiabatic PCET reaction in soybean lypoxy-
genase:39 the bond dissociation energy D = 80 kcal/mol, the
Morse parameter β = 2.1189 Å−1, and the bond equilibrium
distance r0 = 1.0 Å. The proton vibrational wavefunctions and
overlap integrals for the harmonic and Morse proton potentials
were calculated analytically,40,41 and the coupling attenuation
parameters α and γ were calculated by evaluating the deriva-
tives in Eqs. (2) and (3) numerically.

For the analysis in the intermediate and electronically
adiabatic regimes, we used 2D hybrid non-harmonic pro-
ton potentials that combine a London-Eyring-Polanyi-Sato
(LEPS) potential ULEPS(q,R) for triatomic collinear systems
and a harmonic potential Uharm(R) along the proton donor-
acceptor coordinate R. The electronically diabatic potentials
are represented by the diagonal elements of the 2 × 2 matrix
of the electronic Hamiltonian with matrix elements:

HI,I(q,R) = ULEPS
I (q,R) +Uharm(R),

HII,II(q,R) = ULEPS
II (q,R) +Uharm(R),

HI,II(q,R) = V el,

(31)

where V el is a constant electronic coupling parameter cho-
sen to be 10 kcal/mol. The corresponding adiabatic potential
U (ad)

0 (q,R) for the ground electronic state is obtained by diag-
onalization of this [2 × 2] matrix.

This potential was used in one of our earlier model stud-
ies,8 and the reader is referred to Ref. 8 for technical details
and the values of the parameters for the LEPS potentials. The
two symmetric models are denoted as LEPS-M10-Ω200 and
LEPS-M50-Ω200 according to the values of the effective mass

M and frequency Ω of the donor-acceptor mode. The contour
plots for the diabatic 2D reactant and product potentials are
shown in Figure 2 for one of the models. We point out that
these 2D model potentials include the effects of Duschinski
rotations that have been considered to be important.12 We used
the FGH method for the numerical calculation of the tunneling
splittings in the electronically adiabatic proton potential for
one-dimensional slices along the proton coordinate q. From
these tunneling splittings, we obtained the vibronic coupling
in the electronically adiabatic limit and calculated the semi-
classical vibronic couplings in the intermediate regime using
Eq. (10). The corresponding coupling attenuation parameters
α and γ were calculated numerically using Eqs. (2) and (3),
respectively.

B. Analysis in electronically nonadiabatic regime

In the electronically nonadiabatic regime, the vibronic
coupling is of the form given in Eq. (15), which is proportional
to the overlap integral between the reactant and product proton
vibrational wavefunctions associated with the reactant and
product diabatic electronic states, respectively. To estimate the
significance of the quadratic term in the logarithmic coupling
expansion, we calculated the linear and quadratic attenuation
parameters, α and γ, respectively, for the proton vibrational
overlap integrals for the model systems with harmonic and
Morse proton potentials. The calculated values of these atten-
uation parameters for proton donor-acceptor distances ranging
from 2.7 to 3.0 Å are provided in Table II. Because of the
Gaussian nature of the harmonic overlap integrals, the γ attenu-
ation parameters are larger for the harmonic potentials than for
the Morse potentials. The asymmetry of the Morse potentials
leads to slightly enhanced proton delocalization toward the
acceptor site, leading to smaller values of the γ parameters.

The important quantities affecting the nonadiabatic rate
constant obtained by the cumulant expansion approach, based
on the reaction flux given in Eq. (23), are the coupling reorga-
nization energies λα and λγ, which are provided in Table II.
The values of λγ are an order of magnitude smaller than
the already very small values of λα for M = 10 amu, and
they become even smaller as the effective mass of the proton

FIG. 2. Contour plots of the reac-
tant (left) and product (right) electron-
ically diabatic potentials HI,I(q,R) and
HII,II(q,R), respectively, for the LEPS-
M50-Ω200 model. The effective mass
and frequency of the proton donor-
acceptor mode are M = 50 amu and Ω
= 200 cm−1, respectively.
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TABLE II. Attenuation parameters α (in Å−1) and γ (in Å−2) and coupling
reorganization energies λα and λγ (in kcal/mol) for the overlap integrals
between the ground state reactant and product vibrational wavefunctions
for displaced harmonic and Morse proton potentials for hydrogen (H) and
deuterium (D). The effective mass of the proton donor-acceptor mode used in
the calculations of the coupling reorganization energies is M = 10 amu.

R0, Å α (H) γ (H) α (D) γ (D) λα (H) λγ (H) λα (D) λγ (D)

1D-HARM model
2.7 30.32 43.32 42.87 61.25 4.432 0.209 8.860 0.295
2.8 34.67 43.32 48.99 61.25 5.789 0.209 11.57 0.295
2.9 38.99 43.32 55.12 61.25 7.327 0.209 14.65 0.295
3.0 43.32 43.32 61.24 61.25 9.045 0.209 18.08 0.295

1D-MORSE model
2.7 19.83 20.64 28.69 29.18 0.379 0.0199 0.79 0.0281
2.8 21.79 18.57 31.46 26.25 0.458 0.0179 0.95 0.0253
2.9 23.55 16.70 33.95 23.61 0.535 0.0161 1.11 0.0228
3.0 25.14 15.03 36.19 21.24 0.609 0.0145 1.26 0.0205

donor-acceptor mode increases. The small magnitude of λγ
results in small values of the convergence parameter ηγ that
ensures convergence of the series in Eq. (23) at ambient
temperatures. Figure 3(a) depicts the convergence parameter
ηγ as a function of the effective mass M for R0 = 2.8 Å and
Ω = 200 cm−1 at T = 300 K. The convergence of the series in
the factor of the reaction flux that originates from the quadratic
term in the coupling expansion requires only two or three terms
for systems with moderate to large effective force constants
associated with the proton donor-acceptor mode. For systems
with small effective force constants (i.e., soft hydrogen-bonded
PT interfaces), full convergence may require the inclusion
of more terms. For example, to achieve convergence for the
1D-HARM model with M = 10 amu and Ω = 200 cm−1 at
T = 300 K, we had to include terms up to tenth order in γ. For
the more realistic Morse proton potentials, the convergence
parameter is sufficiently small to ensure efficient convergence
even for small effective force constants.

For the thermally averaged rate constant, when an expan-
sion of the coupling is used, the effects of the quadratic term on
the rate constant can be significant for soft hydrogen-bonded
PT interfaces with a small effective force constant. In this
limit, the quadratic term is necessary to accurately describe the
coupling at shorter proton donor-acceptor distances, which are
sampled when the distribution function P(R) is broad (i.e., at
high temperatures or for a very low-frequency proton donor-
acceptor mode). As illustrated in Figure 3(b), however, the
effects of the quadratic term become insignificant when the
force constant of the proton donor-acceptor mode increases
and the distribution function becomes more localized around
the equilibrium value of the proton donor-acceptor distance
in the reactant state. Note that the assumption of a harmonic
potential along the proton donor-acceptor coordinate R is ex-
pected to become invalid for soft hydrogen-bonded interfaces.
A more realistic anharmonic potential along the R coordinate
would favor longer proton donor-acceptor distances, thereby
avoiding the small distances at which the quadratic term in the
coupling expansion is important.

For further analysis, we compared the rate constants ob-
tained from the 2D quantum treatment of the proton donor-

FIG. 3. Key parameters in the rate constant expressions originating
from the quadratic term in the vibronic coupling expansion, as func-
tions of the effective mass M of the proton donor-acceptor vibra-
tional mode. Solid and dashed lines are calculated using the over-
lap integrals of the ground state proton vibrational wavefunctions for
Morse and harmonic reactant and product proton potentials, respectively.
(a) The convergence parameter ηγ = λγcoth[β~Ω/2]/(~Ω) for the rate con-
stant expression derived using the cumulant expansion approach. The fre-
quency of the proton donor-acceptor mode used in these calculations is

200 cm−1. (b) The prefactors exp

− 4α2γ

βMΩ2(βMΩ2+2γ)
 (

1+ 2γ
βMΩ2

)−1/2
and

exp

− ~2α2γ

MΩ(MΩ+~γ)
 (

1+ ~γ
MΩ

)−1/2
in the low-frequency (red lines) and high-

frequency (blue lines) limits, respectively, for the rate constant obtained from
the thermal averaging approach. The frequencies of the proton donor-acceptor
mode used in these calculations are 200 cm−1 and 600 cm−1 for the low-
frequency and high-frequency limits, respectively. The equilibrium proton
donor-acceptor distance is R0= 2.8 Å for all curves in both panels.

acceptor and proton coordinates, the thermally averaged rate
constants with explicitly calculated couplings for all proton
donor-acceptor distances, and the rate constants obtained from
the cumulant expansion with and without the quadratic term.
The results for M = 50 amu and M = 10 amu with
Ω = 200 cm−1 are presented in Figure 4. For both models, the
2D quantum rate constants, thermally averaged rate constants
with explicitly calculated couplings, and rate constants from
the cumulant expansion with the quadratic term are in good
agreement (dashed red, blue, and black lines, respectively).
For the model with effective mass M = 50 amu, depicted in
Figure 4(a), all of these rate constants are virtually indistin-
guishable for a wide temperature range. The rate constants
calculated without the quadratic term in the coupling expansion
are in good agreement with the others except for a slight devi-
ation at higher temperatures (solid black line in Figure 4(a)),
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FIG. 4. Temperature dependence of the nonadiabatic rate constants for the
proton donor-acceptor mode without the quadratic term (black line) and with
the quadratic term (black dashed, blue dashed, and red dashed lines) for the
1D-MORSE model with R0= 2.8 Å. The solid black line indicates the rate
constant obtained from the cumulant expansion without the quadratic term
(i.e., γ = 0). The dashed black lines indicate the rate constant obtained from
the cumulant expansion including terms up to tenth order in γ. The red dashed
lines indicate the rate constant obtained from the 2D quantum treatment of
the proton donor-acceptor and proton coordinates. The blue dashed lines
indicate the thermally averaged rate constant with the coupling calculated
explicitly for the entire range of proton donor-acceptor distances. The dashed
blue and red lines are virtually indistinguishable in both panels. The results
are provided for models with (a) effective mass and frequency of the proton
donor-acceptor mode M = 50 amu and Ω= 200 cm−1, respectively, and (b)
effective mass and frequency of the proton donor-acceptor mode M = 10 amu
and Ω= 200 cm−1, respectively.

indicating that the effects of the quadratic term are insignificant
for this model and therefore can be neglected.

The model with a lower effective mass M = 10 amu,
corresponding to a soft hydrogen-bonded PT interface, ex-
hibits greater differences among the various rate constant
expressions, as depicted in Figure 4(b). The deviation of the
rate constant calculated from the cumulant expansion with the
quadratic term (dashed black line in Figure 4(b)) from the
2D quantum and thermally averaged rate constants at higher
temperatures is due to the slow convergence of the cumulant
expansion. These results were generated by including terms
up to tenth order in γ in the cumulant expansion rate constant,
and the inclusion of higher-order terms is expected to improve
the agreement at higher temperatures. On the other hand,
the slight persistent deviation of the rate constant calculated
from the cumulant expansion with the quadratic term (dashed
black line in Figure 4(b)) from the 2D quantum and thermally
averaged rate constants at ambient and lower temperatures is

due to the neglect of the dynamical interference effects in the
2D quantum and thermally averaged rate constants. In this
regime, the cumulant expansion rate constant is expected to
be more accurate because it includes the dynamical interfer-
ence between the proton donor-acceptor mode and the energy
gap.

More significant differences are observed between the
rate constants calculated without the quadratic term in the
coupling expansion (solid black line in Figure 4(b)) and the
rate constants that include the quadratic term, implying that
the quadratic term is important when shorter proton donor-
acceptor distances are more accessible. Note that in realistic
chemical or biological systems, the shorter proton donor-
acceptor distances will not be as readily accessible even for
weakly hydrogen-bonded PT interfaces due to strong repul-
sive nonbonding interactions between the donor and acceptor
groups. Thus, the models based on a harmonic description of a
low-frequency proton donor-acceptor mode appear to overem-
phasize the region of short distances that are not relevant for
physically realistic systems.

C. Analysis in electronically adiabatic
and intermediate regimes

In the electronically adiabatic regime, typical for PT and
HAT reactions, the vibronic coupling V (R) at each proton
donor-acceptor distance R is related to the tunneling splitting
for a symmetric double well proton potential on the electron-
ically adiabatic ground state surface U (ad)

0 (q,R). Because the
models studied herein are symmetric, the proton potentials are
symmetric for a fixed proton donor-acceptor distance R. Calcu-
lation of the semiclassical couplings and associated electron-
proton adiabaticity parameters for a range of proton donor-
acceptor distances for the two models LEPS-M10-Ω200 and
LEPS-M50-Ω200 with different effective masses M = 10 amu
and M = 50 amu, respectively, revealed that both models are in
the intermediate regime. This property is illustrated in Figure 5
for the LEPS-M50-Ω200 model.

FIG. 5. Proton donor-acceptor distance dependence of the vibronic coupling
for the LEPS-M50-Ω200 model calculated using the electronically nonadi-
abatic limit expression (blue dashed line), the electronically adiabatic limit
expression (red dashed line), and the semiclassical expression bridging both
limits (black line).
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TABLE III. Attenuation parameters α (in Å−1) and γ (in Å−2) for the overlap
integrals, tunneling splittings, and semiclassical vibronic couplings for the
two LEPS models.

Overlap
Tunneling
splitting

Semiclassical
couplinga

R0, Å α γ α γ α γ

LEPS-M10-Ω200 model
2.72 17.81 25.43 16.77 27.67 16.87 27.23

LEPS-M50-Ω200 model
2.78 19.75 25.84 19.33 26.45 19.39 26.08

aThe effective proton tunneling time is τp= 0.4479 (0.4267) fs, the effective electronic
transition time is τe= 1.518 (1.518) fs, and the electron-proton adiabaticity parameter is
p = 0.2951 (0.2811) for the LEPS-M10-Ω200 (LEPS-M50-Ω200) models.

The equilibrium proton donor-acceptor distances R0 and
attenuation parameters α and γ for the overlaps, tunneling
splittings, and semiclassical vibronic couplings are given in
Table III. The values of the attenuation parameters in these
models are similar to those calculated for the overlaps in the
1D-MORSE model (Table II). Thus, the effects of the quadratic
term in the coupling expansion on the rate constants in the
various limits are also expected to be similar.

To illustrate the effects on the thermally averaged rate con-
stant, we examined the distance dependence of the semiclas-
sical vibronic coupling and the approximations to this coupling
based on the logarithmic expansion, as given in Eq. (4), in
relation to the width of the classical distribution function for
the proton donor-acceptor distances. The classical distribu-
tion function P(R) ∝ exp

�
−εI

0(R)/kBT
�

was calculated for the
ground state reactant vibronic potentials εI

0(R) obtained by
quantization of the proton moving on the electronically dia-
batic reactant electronic surface HI,I(q,R). The results are de-
picted in Figure 6 for two models with soft and rigid hydrogen-
bonded PT interfaces. In both cases, the second-order logarith-
mic expansion of the coupling is sufficient to reproduce the
semiclassical vibronic coupling nearly quantitatively. For the
soft R-mode (Figure 6(b)), significant deviations of the first-
order approximation to the coupling from the semiclassical
vibronic coupling are observed within the sampling region
covered by the distribution function P(R). In contrast, for the
more rigid R-mode (Figure 6(a)), the first-order approximation
to the vibronic coupling is satisfactory within the sampling
region covered by the distribution function. Thus, the quadratic
term will impact the rate constant only for the case of PT
interfaces with weak hydrogen bonds and soft proton donor-
acceptor vibrational modes.

As discussed above, more realistic potentials that include
repulsion between the proton donor and acceptor would pre-
vent the sampling of the unphysical short distances. In this
case, the short distances sampled extensively for the soft R-
mode system described by Figure 6(b) would be energetically
inaccessible, and the probability distribution P(R) would not
be a Gaussian function but rather would be steeper at short
distances. As in the nonadiabatic case, the thermal averaging
procedure can also be performed with the explicit calcula-
tion of the vibronic coupling for each proton donor-acceptor
distance followed by numerical integration, thereby avoiding

FIG. 6. Proton donor-acceptor distance dependences of the semiclassical
vibronic coupling (black line) and the approximations to this coupling based
on the logarithmic expansion to first order (blue dashed line) and second
order (red dashed line), as given in Eq. (4). The results were obtained for
(a) the LEPS-M50-Ω200 model and (b) the LEPS-M10-Ω200 model. The
gray shaded Gaussian is the classical distribution function (in arbitrary units)
for the proton donor-acceptor distances associated with the ground reactant
vibronic state for each of the models.

the expansion of the coupling altogether and allowing a non-
Gaussian probability distribution function.

We also emphasize that the Golden Rule formalism, which
is based on second-order perturbation theory, is invalid for
short proton donor-acceptor distances associated with large
vibronic coupling. The Golden Rule formalism is the basis
for all of the rate constant expressions discussed in this paper,
including those in the electronically adiabatic and nonadiabatic
limits, as well as the intermediate regime. Thus, all of these
nonadiabatic rate constants are expected to be invalid when the
thermal averaging procedure includes significant contributions
from such short proton donor-acceptor distances. Models that
allow the sampling of unphysical short distances should be
treated with great care within these frameworks.

IV. CONCLUDING REMARKS

In this paper, we presented rate constant expressions
for vibronically nonadiabatic PT and PCET reactions using
a cumulant expansion approach based on the Golden Rule
formalism. The resulting rate constant expressions are valid
in both the electronically adiabatic and electronically nonadi-
abatic regimes, as well as the intermediate regime, as long as
the appropriate form of the vibronic coupling is utilized. The
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general semiclassical expression for the vibronic coupling and
its form in the electronically adiabatic and nonadiabatic limits
are available from the literature. These rate constants differ
from the previous rate constants derived with the cumulant
expansion approach in that the logarithm of the vibronic
coupling was expanded to second order. Thus, the logarithmic
expansion of the vibronic coupling includes a quadratic as well
as a linear term. The significance of this quadratic term was
explored for a series of model systems.

Our analysis illustrates that inclusion of the quadratic term
in the logarithmic expansion of the nonadiabatic coupling may
lead to significant effects on the PT or PCET rate constant at
high temperatures for PT interfaces with weak hydrogen bonds
and soft proton donor-acceptor vibrational modes. The inclu-
sion of the quadratic term in the framework of the cumulant
expansion form of the nonadiabatic rate constant leads to a
sign-alternating series in the expression for the time-dependent
reaction flux correlation function. The convergence of this
series may become slow at high temperatures for systems with
a small effective force constant associated with the proton
donor-acceptor mode. The effects of the quadratic term may
also become significant when using the thermal averaging
procedure for calculating the nonadiabatic rate constants in
these regimes.

In both the cumulant expansion and the thermally aver-
aged formulations, the effects of the quadratic term for weak
hydrogen-bonding systems are less significant for more phys-
ically realistic models that prevent the sampling of unphys-
ical short proton donor-acceptor distances. In particular, the
assumption of a harmonic potential along the proton donor-
acceptor coordinate is invalid for soft hydrogen-bonded inter-
faces, and more realistic anharmonic potentials along this coor-
dinate inhibit sampling of the small proton donor-acceptor
distances at which the quadratic term is important. Moreover,
all of these rate constant expressions are based on the Golden
Rule formalism, which is invalid at short proton donor-acceptor
distances associated with large vibronic couplings. Thus, these
rate constant expressions should be used only for systems
that remain in the vibronically nonadiabatic limit (i.e., the
Golden Rule regime) at all proton donor-acceptor distances
sampled significantly. According to our analysis, the inclusion
of the quadratic term in the coupling expansion is less likely to
substantially impact the PT or PCET rate constant for physi-
cally realistic systems that remain in the Golden Rule regime.

In addition to the analysis of the quadratic term, the
rigorous relation between the cumulant expansion and thermal
averaging approaches was clarified. The cumulant expan-
sion rate constant was shown to include effects arising from
dynamical interference between the proton donor-acceptor and
solvent motions. These dynamical effects are not included in
the thermal averaging approach or in the two-dimensional full
quantum approach. The general cumulant expansion and ther-
mal averaging rate constants become mathematically equiva-
lent for any form of the vibronic coupling when these dynam-
ical effects are neglected. Understanding the regimes in which
each rate constant expression is valid is important for future

applications to PT and PCET in chemical and biological
processes.
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