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Abstract

Natural selection inference methods often target one mode of selection of a particular age and strength. However,
detecting multiple modes simultaneously, or with atypical representations, would be advantageous for understanding a
population’s evolutionary history. We have developed an anomaly detection algorithm using distributions of pairwise
time to most recent common ancestor (TMRCA) to simultaneously detect multiple modes of natural selection in whole-
genome sequences. As natural selection distorts local genealogies in distinct ways, the method uses pairwise TMRCA
distributions, which approximate genealogies at a nonrecombining locus, to detect distortions without targeting a
specific mode of selection. We evaluate the performance of our method, TSel, for both positive and balancing selection
over different time-scales and selection strengths and compare TSel’s performance with that of other methods. We then
apply TSel to the Complete Genomics diversity panel, a set of human whole-genome sequences, and recover loci pre-
viously inferred to be under positive or balancing selection.
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Introduction
Natural selection is the driving force behind adaptive evolu-
tion. The ability to detect regions of the genome that have
undergone natural selection has increased our understanding
of function and evolutionary history of many loci (Nielsen
et al. 2007). However, natural selection takes different forms,
all of which are informative, and current selection inference
methods each target only a subset of natural selection sce-
narios (Sabeti et al. 2006). Given the importance of many
modes and degrees of natural selection, a method that
could detect multiple, atypical, or combinations of selection
scenarios simultaneously would be both convenient and ad-
vantageous. Furthermore, given the current amount and con-
tinuing accumulation of sequencing data, designing methods
for whole-genome sequences, rather than genotype data, will
harness additional genetic information.

Detecting anomalous genomic sites has long been the
foundation of natural selection tests (Akey 2009). This ap-
proach is susceptible to errors, but using a statistic that better
distinguishes selected and neutral sites, using multiple statis-
tics, or both could improve performance. To be truly general,
an anomaly detection algorithm should also make use of any
number of features and account for correlations among fea-
tures. Furthermore, instead of using statistics based directly
on extended haplotypes or sequence diversity, which are
characteristic signatures of particular modes of selection, a
general natural selection algorithm should use a universal
measure that responds uniquely to each natural selection
mode. Theory and empirical studies demonstrate that natural
selection distorts local genealogies in distinct ways, and

exploiting these distortions could lead to a more general
method (Bamshad and Wooding 2003). For example, positive
selection will create a short, star-like genealogy whereas bal-
ancing selection will create an extremely deep tree. Although
inferring local ancestral recombination graphs genome-wide
is still computationally prohibitive, methods, such as the pair-
wise sequentially Markovian coalescent (PSMC), for inferring
pairwise time to most recent common ancestor (TMRCA)
distributions, approximations of local genealogies, are now
available (Li and Durbin 2011). As we will show, key advan-
tages of detecting selection based on TMRCA include detect-
ing multiple and uncharacterized forms of selection and
making full use of whole-genome sequence data.

Previous methods have been able to detect multiple types
of selection. These approaches include classic metrics such as
Tajima’s D and Fay and Wu’s H and newer programs such as
SweepFinder (SF), nSL, and the H12 method (Tajima 1989; Fay
and Wu 2000; Nielsen et al. 2005; Ferrer-Admetlla et al. 2014;
Garud et al. 2015). However, Tajima’s D and Fay and Wu’s H
are unable to distinguish influences of demography and pop-
ulation structure from those of selection. Newer methods are
either untested on a wide variety of selection scenarios, such
as Test 1 of SF, a test identifying natural selection by an ab-
errant local site frequency spectrum, or applicable only to a
subset of related forms of selection, such as the nSL test, which
was designed to detect hard and soft sweeps. Therefore, there
is still a need for a more expansive natural selection inference
method that, in addition, accounts for population structure.
Furthermore, several of these tests were designed with geno-
type data rather than sequence data in mind, and a method
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that not only accepts but requires full sequencing data would
be advantageous, especially in species like humans with large
numbers of rare mutations segregating in the population.

Here, we develop an anomaly detection test using TMRCA
that can simultaneously detect multiple modes of selection.
There are many advantages to our formulation of the selec-
tion inference problem. Anomaly detection resembles the
intuition behind many selection tests, and our implementa-
tion can include any number and type of features and ac-
count for correlations between these features (Akey 2009). By
using the input data directly to construct a model of neutral-
ity, we also account for demography without specifying an
external demographic model. Furthermore, using features de-
rived from pairwise TMRCA distributions exploits our knowl-
edge about how natural selection causes local and systematic
distortions in genealogies and creates a general test that can
potentially detect uncharacterized, atypical, or combinations
of natural selection modes acting on a single locus. We believe
that TSel method truly deserves the label of general because
of the expansiveness of the simulations outlined below and
also because, unlike many previous methods, it is not a
method targeting a signature of a particular natural selection
mode. We discuss the performance of the method, which we
call TSel for TMRCA Selection, in simulated data, on hard and
soft complete sweeps, partial sweeps, and overdominance
selection scenarios and in four different demographic scenar-
ios: A population with constant size, a population that has
undergone a bottleneck and recent growth, and populations
with recent or ancient admixture. We then compare the
method’s performance with other selection inference meth-
ods using simulated data and apply our method to the
Complete Genomics (CG) diversity panel, a set of human
whole-genome sequences (Drmanac et al. 2010).

New Approaches
Each nonrecombining locus in the genome can be repre-
sented as a genealogical tree over the sampled individuals.
Our new method for natural selection inference, TSel, capi-
talizes on the idea that all forms of selection distort the shape
and size of the tree in distinct ways, relative to the majority of
the genome that is either evolving neutrally or under weak
selection. Representing each tree as a distribution of pairwise
TMRCA values, we extract features, such as the average, max-
imum, median, variance, skewness, kurtosis, a bimodality co-
efficient, fraction of pairs equal to the maximum, and various
quartile values, to describe each locus as a vector. Using these
features we construct an anomaly detection framework to
detect loci whose feature vector is highly deviant from the
genome as a whole. By outputting a score for each locus, the
method encapsulates the continuum and multidimensional-
ity of selection’s influence on the genome. Full details of the
development and implementation of TSel are provided in the
Materials and Methods section.

We ran TSel on the wide array of selection and demo-
graphic scenarios listed above in the introduction and com-
pared TSel’s performance with that of five other methods. For
positive selection scenarios, we compared TSel with the
methods identity-by-descent (IBD), iHS, SF, and nSL (Nielsen

et al. 2005; Voight et al. 2006; Albrechtsen et al. 2010; Han and
Abney 2013; Ferrer-Admetlla et al. 2014). For overdominance
scenarios, we compared TSel with the Hudson–Kreitman–
Aguad�e (HKA) test (Hudson et al. 1987). To summarize per-
formance of each method in each simulated scenario, we
used a metric called the F1-score (Zhao et al. 2014). The F1-
score is the harmonic mean of the precision and recall of a
classifier and has a minimum value of 0 and a maximum value
of 1, indicating perfect performance. From the precision–
recall curve, we extract the point that results in the largest
F1-score to represent the performance of each method. For
the sample sizes tested in the subsequent simulations, an F1-
score of approximately 0.67 indicates random performance.
More details on the description and calculation of the F1-
score are outlined in the Materials and Methods section.
Although some methods may be applied outside their
direct area of purpose, we include these results because
they serve to demonstrate that TSel has greater breadth of
application than the other methods with which our method
is compared.

Results

TSel Performance in Populations of Constant Size

TSel exhibits excellent performance on hard sweeps, especially
with stronger and more recent selection. F1-scores for TSel, in
addition to competing methods, on complete hard sweeps
for a constant effective population size of 10,000 are shown in
figure 1. TSel has an F1-score of nearly 1 for stronger, com-
plete hard sweeps and still shows some ability to detect
weaker sweeps. F1-scores are lower for other methods with
the exception of iHS and SF, whose performance matches or
is only slightly below that of TSel for the strongest sweeps.
However, F1-scores for iHS decline from 0.98 to 0.87, and from
0.99 to 0.72 for SF, when the selection coefficient falls from 0.1
to 0.01, whereas the F1-score for TSel remains nearly
unchanged. TSel matches or substantially outperforms most
other methods in detecting complete hard sweeps, especially
in scenarios with weaker selection.

We also applied TSel to partial hard sweeps. TSel’s perfor-
mance is shown for an effective population size of 10,000 and
partial hard sweeps ending with the selected allele at 75%
frequency in figure 2. Similar to the method’s performance on
complete hard sweeps, TSel exhibits an F1-score of nearly 1
for more recent and stronger partial hard sweeps. iHS, SF, and
the IBD method produce near perfect performance as well,
and nSL performs with a reasonable F1-score of 0.88.
Performance of the IBD method and SF diminishes with in-
termediate selection although the iHS and nSL retain approx-
imately equivalent performance until the weakest selection
scenario when only TSel retains an F1-score distinct from
random at approximately 0.78. In general, TSel tends to
have the widest breadth of performance in partial selection
scenarios.

In a final positive selection test, we looked at the method’s
power to detect soft sweeps arising from standing variation
at 0.1%, 1%, or 10% frequency. Results are shown in figure 3
for soft sweeps starting from 1% frequency and
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supplementary figures S1 and S2, Supplementary Material
online, for 0.1% and 10%, respectively. TSel performance suf-
fers for soft sweeps compared with that of hard sweeps, but
the method still retains the ability to detect sweeps from
standing variation. For soft sweeps beginning from standing
variation at 1% frequency, TSel reaches a maximum F1-score
of 0.93 over all soft sweep scenarios whereas other methods
do not perform notably better than random. This result is
unexpected for nSL, given that the method was designed to
detect soft sweeps. However, nSL was designed to detect
currently ongoing soft sweeps whereas our selection scenar-
ios are sampled after the sweeps have completed. This ex-
planation may clarify why nSL can detect partial sweeps but

not the soft sweeps simulated here. From standing variation
at 0.1% frequency, TSel, iHS, and SF perform better than
random, reaching a score of 1.00, 0.85 and 0.84, respectively.
All methods show no power to detect soft sweeps from
standing variation at 10% frequency in a population of con-
stant size. Although TSel shows reduced power when com-
pared with hard sweeps, the method can still detect soft
sweeps starting from an initial frequency of 0.1% and even
1% in a population of constant size.

Having analyzed TSel’s performance for positive selection,
we then turned to examine the method’s performance for
balancing selection (fig. 4). TSel obtains a maximum F1-score
of 0.92 to detect more recent overdominance. The HKA test
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FIG. 1. TSel performance on complete hard sweeps with an effective population size of 10,000. Performance is demonstrated through the maximum F1-
score, the harmonic mean of the precision and recall score. The x axis of the grid corresponds to the strength of selection and the y axis corresponds to
the time of sweep completion. The dashed, black line indicates the maximum F1-score when predicted calls are randomly assigned.

2786

Hunter-Zinck and Clark . doi:10.1093/molbev/msv142 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv142/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv142/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv142/-/DC1


shows limited power to detect overdominance in the scenar-
ios tested here, with no F1-score notably better than random,
and is outperformed by TSel in most cases. In a constant size
population, TSel only has power to detect more recent
overdominance.

TSel Performance in Populations with Complex
Demography

Results of natural selection inference in complex demo-
graphic contexts are shown in supplementary figures S3
through S17, Supplementary Material online, and the

demographic models themselves are described in detail in
the Materials and Methods section. TSel performance in a
population with a bottleneck and recent growth is much the
same as in constant population simulations. For the admix-
ture scenarios, however, results are sometimes drastically dif-
ferent. Overall, TSel performance suffers slightly but
still outperforms most other methods with the exception
of the IBD and iHS methods. For recent admixture simula-
tions, the IBD and iHS methods start to outperform TSel, but
only in the most recent and strongest selection scenarios. For
example, for the complete hard sweeps, TSel obtains an F1-
score of 0.95 whereas the iHS method reaches 0.99, but for the
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FIG. 2. TSel performance on partial hard sweeps with an effective population size of 10,000. The final selected allele frequency of the partial hard sweep
was set to 75%. The x axis of the grid corresponds to the strength of selection and the y axis corresponds to the time of sweep completion. Performance
is demonstrated through the maximum F1-score, the harmonic mean of the precision and recall score. The dashed, black line indicates the maximum
F1-score when predicted calls are randomly assigned.
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next weakest selection scenario, TSel retains an F1-score of
approximately 0.99 whereas the F1-score for iHS drops to 0.83.
For the ancient admixture simulations, the IBD and iHS meth-
ods do even better, with performance matching or slightly
exceeding that of TSel in many more scenarios, but again, TSel
retains some performance in the weakest selection scenarios
whereas all other methods do not perform notably better
than random. In admixture contexts, TSel, IBD, iHS, and
even SF to a limited extent, have the power to detect several
soft sweep scenarios starting from an initial allele frequency of
10% unlike soft sweeps from the same initial frequency in
other demographic contexts. Additionally, TSel shows

potential for the detection of both recent and ancient over-
dominance in admixture contexts, unlike its performance in
the constant population size simulation where the method
can only detect recent overdominance. TSel’s performance,
and that of other methods, is highly dependent on demo-
graphic context, but TSel demonstrates a persistence of per-
formance over a wide variety of demographic and selection
scenarios.

TSel Performance with Alternate Features

To test whether other feature subsets have equivalent per-
formance, we examined TSel performance with exact pairwise
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FIG. 3. TSel performance on soft sweeps with an effective population size of 10,000. The initial frequency of the selected allele was set to 1%.
Performance is demonstrated through the maximum F1-score, the harmonic mean of the precision and recall score. The x axis of the grid corresponds
to the strength of selection and the y axis corresponds to the time of sweep completion. The dashed, black line indicates the maximum F1-score when
predicted calls are randomly assigned.
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TMRCA features, inferred pairwise TMRCA features, and di-
versity features (fig. 5). The exact pairwise TMRCA features
refer to those extracted directly from the simulated coales-
cent trees, whereas the inferred pairwise TMRCA features are
those output by the method PSMC when run on simulated
data sequences (Li and Durbin 2011). Diversity features are �,
Watterson’s �, and Tajima’s D calculated over the simulated
sample. Performance for TSel with TMRCA features versus
diversity derived features is correlated, but TSel with exact or
inferred TMRCA features outperforms that with diversity fea-
tures in all but the cases with the weakest selection, where all
three groups of features perform poorly. For example, in
recent sweeps with an intermediate strength of selection

TSel with exact TMRCA, inferred TMRCA, and diversity fea-
tures obtains an F1-score of 1.00, 0.95, and 0.91, respectively.
Performance with inferred TMRCA features is lower than that
with exact pairwise TMRCA most probably due to inference
errors and reduced number of pairwise TMRCA values as we
use only 50 pairs rather than the full 4,950 pairs. Performance
of inferred TMRCA distributions will likely improve when all
pairwise TMRCA values are included and inference methods
improve. The slight difference in performance between in-
ferred TMRCA features and diversity features is most likely
a result of greater stochasticity in mutations compared with
local genealogies. Diversity features are also derived on larger
windows in order to include sufficient variation for
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FIG. 4. TSel performance on overdominance with an effective population size of 10,000. Selection began from one copy of the selected allele.
Performance is demonstrated through the maximum F1-score, the harmonic mean of the precision and recall score. The x axis of the grid corresponds
to the strength of selection and the y axis corresponds to the time of the selected allele reached its equilibrium frequency of 0.5. The dashed, black line
indicates the maximum F1-score when predicted calls are randomly assigned.
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FIG. 5. TSel performance using alternate feature sets, on complete hard sweeps with an effective population size of 10,000. Performance is shown for
TSel using features calculated from exact pairwise TMRCA distributions, PSMC-inferred pairwise TMRCA distributions, and genetic diversity.
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calculation, effectively blurring local effects. The results dem-
onstrate that inferred TMRCA is a distinct and more infor-
mative metric than measures of diversity for the inference of
natural selection.

TSel Performance When Including Selected Sites

An important assumption of the anomaly detection
method is that selected sites are relatively rare within
the set of data upon which we calculate the feature
means and covariance matrix. As real data contain loci
under selection, we tested the performance of TSel with

varying fractions of selected sites included in the initial
data set. Results are shown in figure 6. Although perfor-
mance, as measured by the maximum F1-score, declines
when we include more selected sites, the F1-score is still
0.89 even when 5% of the data are under strong and
recent selection of the exactly the same type, well above
the F1-score threshold for random performance of 0.67.
Performance may in fact be less susceptible to the inclu-
sion of loci undergoing selection in real data because the
strength of the selection on the majority of selected loci
will be weak and of different types. Therefore, the method
still has power to distinguish neutral and selected loci even
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when the data set contains a substantial proportion of
sites under strong selection.

Application to CG Diversity Panel

We applied TSel to the CG diversity panel data set to test our
method on real data (Drmanac et al. 2010). After extensive
filtering, we consolidated each PSMC 100-bp window into 10-
kb windows by taking the median TSel score. Analysis of the
top 1% of TSel hits among the consolidated 10-kb windows
with the program GREAT reveals five enriched biological
properties. The P values of enrichment with a false discovery
rate correction are given in parentheses. The five biological
properties include antigen processing and presentation of
peptide or polysaccharide antigen through major histocom-
patibility complex (MHC) class II (3.25e-7), mammary gland
specification (1.68e-3), eyelid development in camera-type
eye (8.79e-3), columnar/cuboidal epithelial cell differentiation
(2.56e-2), and mammary gland formation (3.54e-2). The top
1% of hits overlaps six regions from the Composite of Multiple
Signals (CMS) positive selection scan of the 1000 Genomes
Project data and three of the inferred regions for the balanc-
ing selection scan of Leffler et al. (Grossman et al. 2013; Leffler
et al. 2013). Two of the replicated regions, one for the positive
selection scan and the other for the balancing selection scan,

are shown in figures 7 and 8, respectively. The peak over-
lapping the CMS-inferred region lies directly over the HLA-
D genes in figure 7. In figure 8, even though the balancing
selection signal is far enough away from the VASH1 gene to
reduce the probability of being associated with that gene, this
fact does not mean that the signal itself is invalid, as it could
be highlighting a regulatory or otherwise unmarked func-
tional element of the genome.

Discussion
We have developed a powerful and flexible method that ex-
hibits higher performance than current natural selection in-
ference methods in a wide parameter space of simulated data.
Furthermore, in real data, we have replicated loci previously
found to be under both positive and balancing selection with
a single method. TSel is more general than previous methods
because the method detects any mode of natural selection
that leaves a detectable distortion in local genealogies, as
shown in our wide range of simulated selection scenarios.
TSel’s generality originates directly from its nontargeted
nature, and these scenarios could include not only the clas-
sical mechanisms of natural selection but also combinations
of selection modes or atypical presentations of known modes.
Furthermore, the method accounts for demography by
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comparing loci to the data itself without specifying an exter-
nal demographic model and retains performance even in the
face of complex demographic processes including bottle-
necks, recent growth, and admixture. Additionally, although
we applied TSel to a human data set, the method could be
applied to other species, and this aspect of the method is
advantageous for application in species for which little demo-
graphic history information is available. Finally, because the
inference of TMRCA requires whole-genome sequences, TSel
takes full advantage of the growing accumulation of sequence
data. These factors make TSel a powerful and flexible method
for application to many data sets.

Several challenges remain. TSel is based on a statistic that
ranks loci according to the Mahalanobis distance, but the
method does not give a threshold for determining significant
deviation from neutrality. By taking the top 1% of loci, we
hoped to examine the most extreme signatures of selection.
That said, we stress here that even though it is tempting to
define loci in discrete classes, natural selection in reality op-
erates along a continuum of strengths, times, and modes and
that the TSel score recapitulates this continuum. Another
remaining challenge is to describe the mode of selection
acting on each locus. A user could examine underlying feature
values of the locus along with allele frequencies in the region,
and subsequent investigation into any functional annotation
could also reveal the selective forces at work. Signal localiza-
tion is another issue. As TSel operates on a local genealogy,
the statistic is calculated on each nonrecombining region.

Regions with low recombination rates will have larger non-
recombining windows, making the TSel signal more difficult
to localize. Additionally, missing data and false positive or false
negative variant mapping have the greatest detrimental effect
on localization, but higher coverage sequence data will resolve
this problem in the future. Finally, although we have tested
TSel performance in simulated data over several demographic
scenarios, we have not tested TSel in the context of wide-
spread background selection. If strong background selection is
present, TSel will most likely be able to detect background
selection just like positive or balancing selection because of
distortions in the local genealogy. Performance may suffer on
particular modes of selection, especially sweeps, when con-
fronted with strong and prevalent background selection,
whereas other types of selection, such as overdominance,
may be easier to detect. And although we do not test the
performance explicitly in simulated scenarios, the fact that
TSel replicates loci previously inferred to be under both pos-
itive and balancing selection when run on the CG diversity
panel is encouraging for TSel’s performance when confronted
with realistic levels of background selection.

To further improve method performance, we can pursue
several avenues. It is worthy of note that TSel is not limited to
using features of pairwise TMRCA. Any method statistic,
along with features derived from diversity, cross-population
statistics, or functional annotation, is easily incorporated into
the method. Additional statistics would likely improve per-
formance or tailor TSel to detecting modes of selection of
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particular interest to the user. Future features of particular
interest are those derived from complete genealogical trees.
New methods are being developed to extend PSMC to incor-
porate multiple haplotypes that can not only increase the
accuracy of recent TMRCA inferences but can also recon-
struct local genealogies (Sheehan et al. 2013; Rasmussen
et al. 2014). With scalable methods to infer local genealogies
we will be able to employ features such as tree length and
height as well as tree imbalance to more accurately detect
systematic distortions caused by natural selection in genetic
data (Li and Wiehe 2013). Furthermore, using methods that
infer TMRCA over multiple lineages will include more recom-
bination events and allow for a more accurate inference of
recent coalescences. This operation will result in an inference
improvement in any downstream statistics. To address back-
ground selection, a potential solution is to use only neutral
regions to construct the TSel model, inferring neutral loci
through tools such as the Neutral Region Explorer (Arbiza
et al. 2012). More comprehensive statistics in addition to
using higher coverage sequence data and inferred neutral
regions have the potential to elucidate more loci under se-
lection and increase our understanding of the evolutionary
history of samples under study.

Materials and Methods

Features of Exact Pairwise TMRCA Distributions

We extracted the exact pairwise TMRCA values for each pair
of chromosomes from simulated coalescent trees output for
each nonrecombining locus. Simulations are described below.
For clarity, we refer to the pairwise TMRCA values extracted
directly from the simulated coalescent trees as the exact
pairwise TMRCA values to distinguish them from inferred
pairwise TMRCA values analyzed later in the study. From
the distribution of exact pairwise TMRCA values at each
nonrecombining locus, we calculated a variety of features,
including the average, maximum, median, variance, skewness,
kurtosis, a bimodality coefficient, fraction of pairs equal to the
maximum, and various quartile values. We also normalized
each replicate’s exact pairwise TMRCA distribution to be be-
tween 0 and 1 and calculated relevant features on these nor-
malized distributions as well. Because using irrelevant feature
may decrease performance, we calculated the Laplacian Score
on each of the features to select the most discriminative fea-
tures of the set (He et al. 2005). The Laplacian Score is an
unsupervised feature selection method that compares each
feature with the global similarity of all the samples to select
features that are most discriminative between clusters in the
data. The Laplacian Score greatly outperforms feature selec-
tion that uses only the variance as a ranking metric, another
method of unsupervised feature selection. We select the top
95% of the features to include in the classifier, and each
nonrecombining locus was then represented by a vector of
the extracted features.

Anomaly Detection Algorithm

In the TSel method, we applied a simple anomaly detection
algorithm to the features of exact pairwise TMRCA

distributions. This algorithm uses the Mahalanobis distance
in which the mean and covariance matrix are calculated on a
set of putatively neutral data samples (Bishop 2006). Before
calculating the Mahalanobis distance, we removed invariant
and correlated features, and selected the most discriminative
features using the Laplacian Score. Because the Mahalanobis
distance assumes normally distributed features, we then
transformed the features using a Box–Cox transformation
with the help of the R package geoR to ensure normality
(Ribeiro and Diggle 2001). Using the transformed features,
we calculated the mean and covariance for these features
over all neutral loci and then the Mahalanobis distance for
each sampled locus.

TSel is implemented as the R package tsel and can be
downloaded from the Clark lab website (http://blogs.cornell.
edu/clarklabblog/clark-lab/software/, last accessed June 27,
2015). More details on the package are available in the sup-
plementary material, Supplementary Material online.

Simulations

We generated simulated data using the program MSMS (ver-
sion 3.2rc Build:147), sampling 100 chromosomes for a locus
size of 10 Mb with a constant recombination rate of 1:0�
10�8 and a mutation rate of 1:1� 10�8 (Ewing and
Hermisson 2010; Roach et al. 2010). For computational rea-
sons, we restricted recombination such that recombination
events can occur only every 100 bp. This restriction did not
appear to affect simulation results as the mean nonrecombin-
ing window size was well above the 100 bp minimum. The
simulator also output coalescent trees for each nonrecombin-
ing window and diversity statistics �, Watterson’s �, and
Tajima’s D over 10-kb windows.

In order to demonstrate the method’s performance on
different modes of selection, we simulated loci undergoing
complete hard sweeps, partial hard sweeps, complete soft
sweeps, and overdominance. We also varied the time of equi-
librium and the strength of selection for each scenario. Hard
sweeps began from one copy of the selected allele and the
time of sweep completion was set to 0, 40, or 400 generations
in the past. We chose these generation times to correspond
to approximately 1,000 and 10,000 years in the past and the
present time so that the scenarios would mimic those for
which nSL and other positive selection inference method
were designed. We used an additive model for selection co-
efficients, and the selection strength for individuals homozy-
gous for the selected the allele was set to 0.1, 0.01, or 0.001. For
partial hard sweeps, we set the final frequency of the selected
allele to 75%, and for soft sweeps, we set the initial allele
frequency of the selected allele to 0.1%, 1%, or 10% of the
total effective population size to simulate selection from
standing variation.

For overdominance, we parameterized selection by the
approximate time in the past at which equilibrium was
reached and set this value to 400, 4,000, and 40,000 genera-
tions in the past. We chose an older time frame for overdom-
inance than for positive selection as recent overdominance
tends to mimic positive selection, scenarios that we are
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already testing explicitly. Selection began from one copy of
the selected allele. We set the selection coefficient for those
individuals heterozygous for the selected allele to 0.1, 0.01, and
0.001 and homozygous individuals had a selection coefficient
of 0. To ensure the allele was not lost, we conditioned on the
presence of the allele in the forward simulations. Because
alternative balancing selection tests require information
from an outgroup relative to the tested sample, we simulated
the selection scenarios with an outgroup diverging 6.5 Ma to
approximate human and chimp divergence (Gronau et al.
2011).

To assess performance in different demographic scenarios,
we simulated data with a constant population size of 10,000
and data undergoing complex demographic scenarios includ-
ing a bottleneck with recent growth and two admixture sce-
narios, one recent and one ancient. In the complex
demographic scenario, we simulated a population bottleneck
5,000 generations in the past, reducing the population to half
its original size and then simulated recent rapid growth start-
ing 100 generations in the past. For the recent admixture
scenario, the two populations diverged 400 generations in
the past and reunited 10 generations from the present time
whereas, for the ancient admixture scenario, the two popu-
lation populations diverged at 6,000 generations from the
present time and reunited 100 generations in the past.

Time variant models and overdominance scenarios must
be parameterized by the initiation of selection in MSMS. To
parameterize these selection scenarios by the time at which
equilibrium was reached, we estimated the time between
selection initiation and equilibrium from the simulated data
and fed the input generation value plus the time to equilib-
rium to the simulator.

TSel Performance

To evaluate Tsel’s performance, we generated 1,000 simulated
replicates of each neutral scenario and 100 replicates of each
selection scenario. We extracted the exact pairwise TMRCA
features at the center of the simulated locus, the location of
the selected variant if present, for each replicate and ran the
TSel algorithm using the neutral data alone to select features,
transform features, and then calculate the mean and covari-
ance matrix. We then calculated the Mahalanobis distance on
both the neutral and the selected replicates and compared
performance using the maximum F1-score, the harmonic
mean of the classifier’s precision and recall (Sing et al. 2005).

The F1-score is an established metric for assessing method
performance. Using precision and recall concentrates on as-
sessing performance at lower false positive rates, which is
important to minimize for natural selection inference, espe-
cially for outlier approaches for which high false positive rates
are a principal source of error. With the sample sizes utilized
here, the F1-score for randomly assigned calls is approximately
0.67. This results because the recall, or true positive rate, will
be 1 at best when every point is called positive, and the pre-
cision, which is the number of true positives over the number
of total points called positive by the method, will be 0.5.
Therefore, the harmonic mean between a recall rate of 1

and a precision of 0.5 results in an F1-score of approximately
0.67. Because the F1-score is a single metric, we must choose a
particular point on the precision–recall curve, corresponding
to a particular threshold on the TSel score, and extract the
respective precision and recall rates at that point. We selected
the largest F1-score along the precision–recall curve, to rep-
resent overall performance.

For comparison, we also assessed the performance of other
methods on the simulated data. For hard and soft sweeps, the
positive selection scenarios, we compared TSel’s performance
to levels of IBD and to alternate methods iHS, SF, and nSL

(Nielsen et al. 2005; Voight et al. 2006; Albrechtsen et al. 2010;
Han and Abney 2013; Ferrer-Admetlla et al. 2014). We did not
use the CMS test because this test requires multiple cross-
population statistics and we wanted to compare TSel’s
performance with that of other methods that can detect
selection within a homogeneous sample (Grossman et al.
2010). Levels of IBD were calculated by drawing a threshold
100 generations in the past, roughly the limit of inference
power with current methods, and calling chromosomes
that coalesced more recently than this threshold IBD. We
then calculated the fraction of pairs at the selected locus
that were IBD. We calculated the iHS statistic using the R
package “rehh” and extracted the median absolute value of
the iHS score for a 100-kb window around the selected locus
as the consolidation appeared to improve performance
(Gautier and Vitalis 2012). SF and nSL were run using their
respective publications’ software packages.

To compare TSel’s performance on balancing selection, we
ran the HKA test (Hudson et al. 1987). The HKA test is a
standard test for balancing selection in genetic data. We ran
Jodie Hey’s implementation of the HKA test (available
at https://bio.cst.temple.edu/~hey/program_files/HKA/
HKA_Documentation.htm, last accessed June 27, 2015)
using a window size of 10 kb, two loci, and one sample
from the outgroup, following the original test procedure.
We then assessed the method’s performance and compared
power to TSel with F1-scores.

TSel Performance with Alternate Features

The anomaly detection method is not limited to using fea-
tures of exact pairwise TMRCA distributions, and other
groups of features may also perform well. For comparison,
we ran the method with features derived from diversity. We
output �, Watterson’s �, and Tajima’s D directly from MSMS
for the same simulation scenarios that we tested with the
exact pairwise TMRCA features but calculated over a 10-kb
window. Again, we extracted the selected locus from each
replicate and assessed performance with F1-scores.

We also analyzed performance with inferred pairwise
TMRCA values instead of exact pairwise TMRCA values
output by the simulator. We ran this check to ensure that
TSel maintains improved performance with current TMRCA
inference methods, and is therefore suitable for real data ap-
plications. We also compared performance with features de-
rived from diversity to ensure that inferred TMRCA is not
simply a proxy for diversity. We tested the features on
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complete hard sweep simulations, as described above, with an
effective population size of 10,000. Instead of inferring pair-
wise TMRCA on all pairs of chromosomes, we ran PSMC on
50 pairs of chromosomes from our sample of 100 to resemble
within individual PSMC runs on real data. We then ran PSMC
on the 50 chromosome pairs for each replicate and extracted
the same features from the inferred pairwise TMRCA distri-
butions as for the exact TMRCA distributions. After extracting
these features, we ran TSel and compared TSel’s performance
through F1-scores for exact pairwise TMRCA features,
inferred pairwise TMRCA features, and diversity features.

TSel Performance When Including Selected Sites

The anomaly detection method assumes that selected sites
are rare in the data upon which we calculate the mean and
covariance matrix. However, a portion of real data will be
under selection, and it is important to assess the performance
of the method when these data points are included. We used
complete hard sweep scenarios with an effective population
size of 10,000 in order to test the effect of including selected
sites. We included a range from 1% to 10% of data simulated
under the selected scenario, calculated the mean and covari-
ance on these data sets. We then calculated the F1-scores to
assess the effect on performance for each percentage of se-
lected data.

Application to CG Diversity Panel

To exemplify our algorithm on real data, we used the CG
diversity panel consisting of 46 individuals from 9 different
populations. CG generated the data with the CG Analysis
Pipeline version 2.0.0 (Drmanac et al. 2010). The 46 individuals
were sequenced to high coverage, approximately 80� average
genome-wide, making these samples ideal for inference of
pairwise TMRCA using the PSMC method.

Before running TSel on the CG diversity panel, we fil-
tered extensively to avoid confounding factors. Li and
Durbin (2011) note in their supplementary material,
Supplementary Material online, that false positive variants
increase the inferred TMRCA in all time intervals. False neg-
atives will change the scaling of the inferred values but may be
easily accounted for by appropriately scaling the neutral mu-
tation rate. To limit false positives due to sequencing or map-
ping errors, we marked variants as missing if the variants did
not pass the CG quality thresholds, were indels, were within
10 bp of indels, or had more than twice or less than half of the
average individual coverage depth. We also identified regions
that had abnormally high TSel scores, probably due to map-
ping errors, such as within large segmental duplications, and
excluded these regions from the analysis. Additional details on
filtering strategies are described in the supplementary
material, Supplementary Material online.

After masking variants and regions based on the above
criteria, we ran PSMC on the chromosome pairs within the
46 individuals genome-wide. We then calculated the TMRCA
distribution features listed above from the inferred pairwise
TMRCA values for each 100-bp window. After running TSel,
we consolidated the TSel scores for each 100 bp window into

10-kb windows by taking the median score. In order to avoid
spurious hits, we discarded 10-kb windows that had more
than 50% of the 100-bp windows missing and used the re-
maining 10-kb window values for subsequent analyses. This
consolidation procedure is not a requirement of the TSel
method itself but a procedure to balance background noise
and signal dilution due to either missing windows or variant
call errors present in real data. With higher coverage data and
fewer missing windows, smaller consolidating window could
be used.

We submitted the top 1% of 10-kb windows to the pro-
gram GREAT to examine gene ontology for the top TSel hits
(McLean et al. 2010). We also compared the overlap of our
top 1% regions to the results of the recent positive selection
scan on the 1000 Genomes Project data and a balancing
selection scan of human data to ensure that TSel replicates
regions previously inferred to be under positive or balancing
selection (Grossman et al. 2013; Leffler et al. 2013).

Supplementary Material
Supplementary material and figures S1–S19 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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