(1) If (i modulo 20 = 1) estimate π,y
0,k and θ: |
(a) Set z=0. Create vector v of size S. |
(b) Randomly select integer r in [n+1,m]. |
(c) If T
i,r=0, z=z+1, else store T
i,r in v. |
(d) Repeat steps (b) and (c) until v is full. |
(e) Sort v. Remove the 90 % lowest values. The new size of v is . |
(f) Estimate . |
(g) Estimate y
0 by the minimum of v. |
(h) Estimate k: see below. |
(i) Estimate . |
(2) If (i modulo 20 ≠ 1), use the latest estimated values of π,y
0,k and θ. |
(3) Sample M
i from the distribution of the maximum, whose CDF is . |