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ABSTRACT
In biological mass spectrometry, crude instrumental data need to be converted into
meaningful theoretical models. Several data processing and data evaluation steps are
required to come to the final results. These operations are often difficult to repro-
duce, because of too specific computing platforms. This effect, known as ‘workflow
decay’, can be diminished by using a standardized informatic infrastructure. Thus, we
compiled an integrated platform, which contains ready-to-use tools and workflows
for mass spectrometry data analysis. Apart from general unit operations, such as
peak picking and identification of proteins and metabolites, we put a strong empha-
sis on the statistical validation of results and Data Mining. MASSyPup64 includes
e.g., the OpenMS/TOPPAS framework, the Trans-Proteomic-Pipeline programs, the
ProteoWizard tools, X!Tandem, Comet and SpiderMass. The statistical computing
language R is installed with packages for MS data analyses, such as XCMS/metaXCMS
and MetabR. The R package Rattle provides a user-friendly access to multiple Data
Mining methods. Further, we added the non-conventional spreadsheet program
teapot for editing large data sets and a command line tool for transposing large
matrices. Individual programs, console commands and modules can be integrated
using the Workflow Management System (WMS) taverna. We explain the useful
combination of the tools by practical examples: (1) A workflow for protein identifi-
cation and validation, with subsequent Association Analysis of peptides, (2) Cluster
analysis and Data Mining in targeted Metabolomics, and (3) Raw data processing,
Data Mining and identification of metabolites in untargeted Metabolomics. Asso-
ciation Analyses reveal relationships between variables across different sample sets.
We present its application for finding co-occurring peptides, which can be used
for target proteomics, the discovery of alternative biomarkers and protein–protein
interactions. Data Mining derived models displayed a higher robustness and accuracy
for classifying sample groups in targeted Metabolomics than cluster analyses. Ran-
dom Forest models do not only provide predictive models, which can be deployed
for new data sets, but also the variable importance. We demonstrate that the later
is especially useful for tracking down significant signals and affected pathways in
untargeted Metabolomics. Thus, Random Forest modeling supports the unbiased
search for relevant biological features in Metabolomics. Our results clearly manifest
the importance of Data Mining methods to disclose non-obvious information in
biological mass spectrometry . The application of a Workflow Management System
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and the integration of all required programs and data in a consistent platform makes
the presented data analyses strategies reproducible for non-expert users. The simple
remastering process and the Open Source licenses of MASSyPup64 (http://www.
bioprocess.org/massypup/) enable the continuous improvement of the system.

Subjects Bioinformatics, Biophysics, Computational Biology, Mathematical Biology, Statistics
Keywords Bioinformatics, Computational mass spectrometry, Workflow decay, Metabolomics,
Workflow management systems, Data Mining, Proteomics, Model building, Association analyses,
Random forest trees

INTRODUCTION
Mass spectrometry provides qualitative and quantitative data about molecules. Since

complex mixtures can be analyzed with high sensitivity and selectivity, mass spectrometry

plays a central role in high-throughput biology (Jemal, 2000; Nilsson et al., 2010).

Sequencing technologies have revolutionized the so-called ‘-omics’ sciences on the level

of nucleic acids, genomics and transcriptomics (Sanger & Coulson, 1975; Wang, Gerstein &

Snyder, 2009). But the study of the actual state of proteins and metabolites, which reflect the

physiological condition of an organism, still relies mainly on mass spectrometry data.

In proteomics, a combination of biochemical and instrumental techniques is used to

obtain comprehensive, quantitative information about the expression, modification and

degradation of proteins at a certain physiological state (Wilkins et al., 1996; Anderson

& Anderson, 1998). Although gel electrophoresis, immuno-precipitation and other

separation strategies are used as first focusing steps, the identification of proteins usually

relies on mass spectrometry methods (Shevchenko et al., 2006).

Metabolomics refers to the inventory of metabolites of an organism or tissue. The

metabolome may be seen as an endpoint (Ernest et al., 2012), which derives from

biochemical processes that depend on genomic and environmental factors. Therefore,

the study of metabolic phenotypes allows both, the accurate classification of geno-

types (Montero-Vargas et al., 2013; McClure, Chavarria & Espinoza, 2015; Musah et al.,

2015) as well as an evaluation of the physiological state of an organism (Garćıa-Flores et al.,

2012; Garćıa-Flores et al., 2015).

General mass spectrometry data processing workflow
The data analysis of mass spectrometry experiments all follow the same logic, although the

composition of the samples, the analytical question and the data format and quality might

vary. A general workflow in biological mass spectrometry is given in Fig. 1 and consists of

the following steps:

Raw data import
First of all, the raw data need to be converted into a format which is readable for the fol-

lowing data analysis programs. This step is not trivial, since the different manufacturers of

mass spectrometers use a variety of proprietary data formats. Currently, the recommended

Winkler (2015), PeerJ, DOI 10.7717/peerj.1401 2/34

https://peerj.com
http://www.bioprocess.org/massypup/
http://www.bioprocess.org/massypup/
http://www.bioprocess.org/massypup/
http://www.bioprocess.org/massypup/
http://www.bioprocess.org/massypup/
http://dx.doi.org/10.7717/peerj.1401


Figure 1 Universal workflow of mass spectrometry data analyses. Raw data need to be processed to
extract informative features and to create statistically valid models.

standard by the Human Proteome Organization (HUPO) Proteomics Standards Initiative

working group for mass spectrometry standards (PSI-MS) is mzML (Martens et al., 2011).

Therefore, most MS data analysis programs are able to read and process this format.

The ProteoWizard tools (http://proteowizard.sourceforge.net) allow the conversion of

vendor-specific files to mzML archives (Chambers et al., 2012; Kessner et al., 2008). Since

format-specific libraries are required, it is recommend to execute the conversion to

mzML files directly on the control computer of the mass spectrometer. Alternatively, the

ProteoWizard software can be installed with the vendor-libraries on a Windows computer.

The ProteoWizard tools without licensed and Windows-specific libraries are available on

MASSyPup64 for further pre-processing of MS data files.

Spectra processing
Spectra are collected either in ‘profile’ mode or in ‘centroid’ mode. Profile spectra still

contain the shape of peaks and thus may provide additional information about the

measured compounds. However, the size of the data archives might be considerable,

especially for high resolution measurements. In contrast, centroid spectra only consist

of mass-to-charge (m/z) values and their intensity. In many cases, it is advised to convert

profile spectra to centroid spectra, to reduce computing effort.
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Typical operations of spectra processing include a baseline substraction, smoothing,

normalization, and peak picking. On MASSyPup64, various programs are available for

these tasks, such as: msconvert (Chambers et al., 2012), OpenMS/TOPPAS (Sturm et al.,

2008) and R/MALDIquant (Gibb & Strimmer, 2012).

Some MS programs, such as Comet (Eng et al., 2015; Eng, Jahan & Hoopmann, 2013),

X!Tandem (Craig & Beavis, 2004) and XCMS (Benton et al., 2008; Smith et al., 2006) do not

require a prior external spectra processing, but can use raw mzML data as input.

Feature analyses
The mass spectrometry signals need to be transformed into chemical information.

Therefore, ‘features’ have to be identified, which are e.g., defined by their m/z value and

retention time. Usually the features display certain variations between samples, due to

measurement tolerances. Those are corrected by an alignment of the feature maps, which

finally allows to compare the abundance of features in different samples.

Different strategies permit the quantification of features: Label-free quantification, the

evaluation of different ion transitions (fragments of a molecule in so-called Multiple-

Reaction-Monitoring, MRM) or the use of defined tags.

The identification of molecules is desirable for most bioanalytical projects. For the

identification of peptides and proteins, various search programs are available, which can

be used or separately or in combination (Shteynberg et al., 2013). Identifying metabolites

is still more challenging, although various databases, such as MassBank (http://www.

massbank.jp/, (Horai et al., 2010)) and METLIN (https://metlin.scripps.edu/, (Smith et al.,

2005)) as well as search algorithms have been published. The de-novo determination

of chemical formulas from MS data is difficult, even with data from high-resolution

instruments (Kind & Fiehn, 2006). Kind & Fiehn (2007) presented Seven Golden Rules

(7GR) for the heuristic filtering of possible chemical formulas. The 7GR software was

recently re-implemented for better usability and enriched with several functions. The

respective program SpiderMass enables the construction of a custom data base with

expected compounds for a certain biological context, which increases the probability of

correctly identified metabolites (Winkler, 2015).

Statistics and Data Mining
Biological systems often exhibit notable variances, also measurement errors and wrong

assignments of molecules are possible. Thus, usually biological and technical replicates are

analyzed and the results are subjected to statistical analyses. More recently, Data Mining

strategies are employed to unveil non-obvious information.

Different approaches for Statistics and Data Mining are presented below, as well as their

practical application to proteomics and metabolomics data sets.

Integration and interpretation
In a last step, the information obtained has to be interpreted within a biological context.

Changes of protein concentrations can indicate the involvement of physiological processes.

Metabolic information can lead to information about pathways which are affected in
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Figure 2 Building of descriptive and predictive models. Data can be transformed either into descriptive
models, which integrate all available data, or into predictive models. For generating predictive models,
only part of the data is used to train the model, another part to validate the model, and finally the model
can be tested with the resting data to estimate error rates.

certain conditions. Often, the identification of marker molecules is pursued, with the

purpose to employ them later, e.g., for the early detection of diseases.

Statistics and Data Mining
The American Statistical Association describes Statistics as “the science of learning from

data, and of measuring, controlling, and communicating uncertainty; and it thereby

provides the navigation essential for controlling the course of scientific and societal

advances” (http://www.amstat.org/, Davidian & Louis (2012)). Accepting this broad

definition, Data Mining (DM) is a sub-discipline of Statistics.

Data Mining enhances ‘classic’ Statistics methods with machine learning (‘artificial

intelligence’) algorithms and computer science. Data Mining supports the understanding

of complex systems, which contain wealth of data with interacting variables. An important

aspect of DM is the development of models, which represent the data in a structured

form and support the extraction of information and creation of knowledge (Williams,

1987; Williams, 1988; Williams, 2011).

Creation of models can be distinguished into descriptive and predictive (Fig. 2).
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Descriptive models
Descriptive models analyze relationships between variables or between individual samples.

Since these models search for structures in a given data set, they are developed using the

whole data set. Two important strategies are:

• Association Analysis⋆

• Cluster Analysis⋆

Predictive models
Predictive models search for rules, which connect input and output variables. Those

variables can be categorical (tissue type, color, disease/healthy) or numeric. If the target is

categorical, the final model performs a Classification. If the target is numeric, a Regression.

Important model builders are:

• Decision Tree Model⋆

• Random Forest Model⋆

• Support Vector Maschine (SVM) Model⋆

• Boost Model

• Linear Regression Model⋆

• Neuronal Network Model

For models marked with a ⋆, a practical example in proteomics and/or metabolomics

is given below. For more details about the knowledge representation of DM models, their

algorithms and examples we refer to Williams (2011).

Data Mining process and model development
Data Mining (DM) is mostly used in Economics, e.g., for managing risks of bank loans or

for detecting fraudulent activities. However, the activities for developing a model is similar

for any DM project. The Cross Industry Standard Process for Data Mining (CRISP-DM)

defines six phases (Shearer, 2000):

1. Business Understanding

2. Data Understanding

3. Data Preparation

4. Modeling

5. Evaluation

6. Deployment

Obviously, in case of an Omics project we would replace ‘Business Understanding’ by

‘Problem Understanding’ or ‘Biological System Understanding’. The ‘Data Preparation’ is

an important issue for analyzing mass spectrometry data. Depending on the number of

samples and data quality, it might be necessary to eliminate variables or samples from the

data set, to scale the data, to impute missing data points, etc. (Williams, 2011).
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There is an important difference in the development of descriptive and predictive

models. For descriptive models, the complete data set is used. For predictive models, the

data set is separated into a training, a validation and a testing dataset, e.g., in a proportion

70:15:15 (Fig. 2). The training data serve for developing the model, the validation data set

for monitoring the actual performance of the model, and the testing data for estimating the

final performance of the model.

Final models can be exchanged between different computing environments using the

XML based Predictive Model Markup Language (PMML) format (Grossman, Hornick &

Meyer, 2002).

State of the art for statistics and DM in biological mass spectrometry
For proteomics, bioinformatic pipelines are already well established. The different peptide/

protein search engines deliver distinct scores, which indicate the confidence of a identi-

fication hit, such as the Mascot score, the e-value or the XCorr (Kapp et al., 2005; Becker

& Bern, 2011). But independently of the employed MS/MS search program, a subsequent

statistical anaysis is necessary. The PeptideProphet and ProteinProphet algorithms allow

the statistical modeling of peptide and protein identification results (Nesvizhskii et al.,

2003; Keller et al., 2002). Using target-decoy database searches permit the estimation of

false discovery rates (Elias & Gygi, 2007). Commercial, as well as Open Source platforms,

integrate those individual programs to create complete proteomic workflows (Nelson et al.,

2011; Keller et al., 2005; Rauch et al., 2006; Deutsch et al., 2010; Deutsch et al., 2015). Finally,

the submission of results in standard formats to public databases makes the data available

to the community (Griss & Gerner, 2009; Barsnes et al., 2009; Vizcaı́no, Foster & Martens,

2010; Côté et al., 2012; Vizcaı́no et al., 2013; Mohammed et al., 2014; Reisinger et al., 2015;

Killcoyne, Deutsch & Boyle, 2012; Desiere et al., 2006).

In metabolomics, still more issues are awaiting resolution. E.g., the unequivocal

assignment of mass signals to the correct compounds and the estimation of the statistical

confidence of metabolite identifications is still challenging.

The R packages XCMS/XCMS2 (Smith et al., 2006; Benton et al., 2008) and metaX-

CMS (Tautenhahn et al., 2011; Patti, Tautenhahn & Siuzdak, 2012) permit the realization

of complete metabolic workflows and the comparison of various samples. Correct

application of included functions improve the detection, quantification and identification

of metabolites (METLIN database, (Benton, Want & Ebbels, 2010; Tautenhahn, Böttcher

& Neumann, 2008; Smith et al., 2005)). The XCMS collection is technically mature and

comprehensive, but for most casual users too complicated to handle. XCMS Online

(Tautenhahn et al., 2012) facilitates the use of XCMS by non-experts. However, the control

over data and the option to optimize the code for project-specific needs is limited in the

online version.

MZmine 2 is another, java-based, framework for mass spectrometry data workflows

with some statistical tools such as Principle Components Analysis (PCA) and Clustering

capabilities, which is especially user-friendly and extensible (Pluskal et al., 2010).
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Resuming, various bioinformatic solutions are already available for the processing and

statistical analysis of proteomics and metabolomics data. But the concept of Data Mining is

still not implemented in current biological mass spectrometry.

The traditional Omics approach is exploratory and starts from a biological question or

problem. Usually it is rather curiosity- than hypothesis-driven. An Omics study normally

ends with a statistically valid descriptive model, which is interpreted from a biological

point of view. Often, the results help to build theories or hypotheses, which are testable

afterwards.

In stark contrast, predictive models from Data Mining modeling can be immediately de-

ployed and support decision making. Especially clinical applications (biomarker studies)

and projects with limited sample availability (ecology, identification of microorganisms,

‘Biotyping’) could greatly benefit from the implementation of Data Mining strategies. Data

Mining algorithms are also capable to uncover rules or patterns in complex data structures,

without being biased by a (bio)scientist’s expectations.

Aim of this study
Data Mining strategies promise high potential for the analysis of biological mass

spectrometry data, but there is still scarce use of it in current MS based Omics studies. On

the other side, there is already a rich variety of excellent software for mass spectrometry

data processing software (http://www.ms-utils.org/), and also for statistics and Data

Mining available (Williams, 2011; Gibb & Strimmer, 2012; Luca Belmonte & Nicolini, 2013;

Williams, 2009).

Thus, we compiled a computational platform for the high-throughput data analysis

in proteomics and metabolomics, which facilitates the rapid set-up of workflows and

the subsequent Data Mining. MASSyPup64 (http://www.bioprocess.org/massypup) is a

64-bit live system, which can be run directly from external media. Open Source licenses

of the software and the remastering utility provided on Fatdog64 promote the further

development and the adjustment to the needs of a laboratory.

Based on real datasets from proteomics and targeted and untargeted metabolomics we

demonstrate the creation of efficient data processing workflows. Further, we stress out the

opportunity to discover non-obvious biological knowledge by Data Mining methods in

biological mass spectrometry.

METHODS
Operating system
The original MASSyPup distribution was built on a 32-bit platform and contains multiple

programs for analyzing mass spectrometry data Winkler (2014). The new MASSyPup64 is

much more focused on the high-throughput processing of ‘big data’ and the subsequent

Data Mining. MASSyPup64 is bootable on Windows (including with EFI ‘secure boot’)

and Linux PCs.
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As starting point, the 64-bit Linux distribution Fatdog64 was chosen (http://distro.

ibiblio.org/fatdog/web/). The system is preferably installed on DVD or USB media. Data

from all available local drives are accessible for analysis.

The mass spectrometry programs, special libraries and additional tools were compiled,

if necessary and installed in the directory branch of /usr/local. Most programs can be

started directly from a console window.

For Python (https://www.python.org/), versions 2 and 3 are installed. The default

Python 2 is called by python, version 3 by python3.

Fatdog64 contains already a remastering tool with Graphical User Interface. Since the

MASSyPup64 version already occupies several Gigabytes, it is recommendable to choose

the “small initrd” option.

The current release of MASSyPup64, as well as FNAs (Frequently Needed Answers) and

a list of currently installed software can be found on the project homepage (http://www.

bioprocess.org/massypup/). All components are Open Source software, which permits the

free distribution and modification of the system.

Workflow management systems
The ideal Workflow Management System (WMS) should be visual, modular and easy to

understand. The facile integration of external commands and the development of new

functions should be possible. Further, the WMS should allow to analyze data, which are

stored outside the running platform, i.e., without uploading the data to the WMS. The last

requirement is important, since mass spectrometry projects often exceed various Gigabytes

of data volume and thus copying or moving them is inconvenient.

After trying various options, two WMS were installed on MASSyPup64:

1. TOPPAS

2. Taverna

The Trans-Proteomic-Pipeline 4.8.0 was compiled and installed on MASSyPup64, but

without configuring the hosting server. Consequently, the TPP tools are available for being

employed in workflows, but the web-interface is not running. Below, a workflow emulating

the TPP for protein identification and validation is demonstrated.

Statistics and Data Mining
For statistical analyses, Data Mining and graphics, we compiled and installed an ‘R’

software environment (https://www.r-project.org/). A large scientific community is

contributing to this powerful programming language (The R Journal, http://journal.

r-project.org/).

Above mentioned XCMS/XCMS2/metaXCMS (Smith et al., 2006; Benton et al., 2008;

Tautenhahn et al., 2011; Patti, Tautenhahn & Siuzdak, 2012) packages were installed,

as well as MALDIquant/MALDIquantForeign for spectra processing (Gibb & Strimmer,

2012) and MSI.R for evaluating Mass Spectrometry Imaging (MSI) data (Gamboa-Becerra

et al., 2015).
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For the linear model analysis of metabolomic data, we included MetabR (http://metabr.

r-forge.r-project.org/), which provides a Graphical User Interface (GUI) and can be used

for both, statistical data evaluation and data preparation for Mining.

Rattle—the R Analytical Tool To Learn Easily—represents a sophisticated and free

environment for Data Mining (http://rattle.togaware.com/, Williams, 2011; Williams,

2009). The GUI facilitates the loading, visualization and exploration of data, especially for

beginners without profound R knowledge. Rattle also supports the export of models in

PMML standard format and was installed on MASSyPup64 with all suggested packages

(including database connectors, ggobi http://www.ggobi.org/, etc.).

Special tools for large data set editing and shaping
Standard spreadsheet software such as Excel, LibreOffice Calc or Gnumeric become very

sluggish, if it comes to the editing of large tables. With R, huge tables can be handled

and various of GNU programs (http://www.gnu.org/manual/blurbs.html), such as grep,

sed, wc, .. can be used to edit big data files. But the import and manipulation of data

is not always very practical with those tools. Therefore, some special programs for data

manipulation were included into the MASSyPup64 distribution.

Spreadsheet program teapot
The non-traditional ‘Table Editor And Planner, Or: Teapot!’ was originally developed

by Michael Haardt and Jörg Walter and is currently hosted at SYNTAX-K http://www.

syntax-k.de/projekte/teapot/. For best performance and usability, Teapot was re-compiled

and statically linked with the FLTK GUI toolkit (http://www.fltk.org).

Large matrix transposing
Frequently, it is necessary to transpose a data matrix before loading it into another

program. This can be efficiently done with the command ‘transpose’ (version 2.0 by

Dr. Alex Sheppard, http://www.das-computer.co.uk). The C program was modified and

re-compiled to change the default maximum matrix size to 100,000 × 100,000.

RESULTS AND DISCUSSION
Operating system and installed programs
Based on the Linux platform Fatdog64 (http://distro.ibiblio.org/fatdog/web/), an analysis

framework and programming environment for mass spectrometry data was created.

Table 1 lists the programs currently installed on MASSyPup64 (standard software such

as editor, browser etc. are included as well, but not explicitly mentioned in the table). For

installation, the iso image has to be burned on a DVD or installed onto a USB stick (e.g.,

with Rufus from https://rufus.akeo.ie). Upgrading individual programs or libraries is not

necessary, because each release is a complete compilation of operating system and software.

User settings, programs and data may be stored on local devices and are kept for future

releases.

If additional programs are required, they can be installed and included into a new

MASSyPup64 version by using the Fatdog64 remastering tool.
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Table 1 Programs installed on MASSyPup64.

Development tools and libraries

devx Development tools for fatdog64-701, such as C/C++, FORTRAN compiler, header libraries

jdk Java Development Toolkit

java Version 1.7.0 65

Java(TM) SE Runtime Environment Build 1.7.0 65-b17

Java HotSpot(TM) 64-Bit Server VM Build 24.65-b04, mixed mode

Python Version 2 (python) and version 3 (python3)

Workflow management

taverna Java-based workflow management with additional functions (condition, iteration)

OpenMS/TOPPAS Framework for mass spectrometry data processing and GUI supported design of pipelines

Data conversion and trimming

ProteoWizard tools MS data conversion and tools, see /usr/local/massypup64/proteowizard-tools.txt; without
vendor libraries

transpose Transposing matrix data from commandline, source code in /usr/local/bin/transpose.c.
Currently
compiled for a default maximum matrix size of 10,000 × 10,000

teapot/fteapot Spreadsheet program supporting three dimensional data sets. The manual “teapot.pdf”
is located in /usr/local/doc

MS data processing suite

MZmine Java-based MS analysis program, focused on metabolomics

Proteomics search engines

Comet MS/MS protein search algorithm

OMSSA MS/MS protein search algorithm

X!Tandem MS/MS protein search algoritm

TPP 4.8 Trans-Proteomic-Pipeline

R statistics language

XCMS/metaXCMS Metabolomics

Metab.R Statistical analysis of metabolomics results

Rattle Data Mining

Compound identification

massXpert Analysis of polymer spectra

SpiderMass Target DB creation/ matching, Online searches and formula generation

Mass Spectrometry Imaging (MSI)

HelloPhidget Test tool for detection of connected Phidgets (prototyping of MSI)

OpenMZxy Control of Phidget imaging robot

MSI.R MSI analysis with R scripts

Data visualization

GGobi Interactive data visualization and exploration tool

Proteomics: identification of proteins, peptide-
prophet/proteinprophet validation, text mining and association
analysis
Data set and bioanalytical question
Peroxidases are related to the post-harvest insect resistance of maize kernels (Winkler

& Garćıa-Lara, 2010; Garćıa-Lara et al., 2007). Therefore, protein fractions of highly
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insect-resistance maize kernels with peroxidase activity were subjected to 1D or 2D gel

electrophoresis and subsequently analyzed with LC-MS/MS. The data set consists of

three samples: 2DM, a spot from 2D gel electrophoresis of maize kernels with peroxidase

activity; 1DM, a protein band from 1D gel electrophoresis of partially purified peroxidase,

and 1DR, a protein band with peroxidase activity from recombinant production of a

putative peroxidase, which was cloned from cDNA. Details about the project can be found

at López-Castillo et al. (2015).

The workflow should identify potential candidates of peroxidases and suggest peptides

for a targeted screening of peroxidases.

Taverna Workflow Design
The design of the proteomics workflow using taverna was inspired by the work of Bruin,

Deelder & Palmblad (2012), but several modifications were undertaken:

Peptide search. The search engine X!Tandem (Craig & Beavis, 2004) was replaced by

Comet (Eng et al., 2015; Eng, Jahan & Hoopmann, 2013), in order to simplify the

configuration by the user. All necessary parameters for the peptide identification are

defined in the comet.params file, which has to be located in the same directory as the

raw data files, which are expected in mzML format. A template for the comet.params file

can be created by invoking the command comet -p. The location of the protein (or DNA)

database is set with the database name option. For performing a concatenated decoy

search (Elias & Gygi, 2007),the parameter decoy search needs to be set to 1. The separate

generation of a decoy database is not required anymore.

PeptideProphet/ProteinProphet validation. The results of the Comet search are writ-

ten directly to pep.xml format and can be passed to the PeptideProphet script

(Keller et al., 2002). The processed pep.xml files are subsequently evaluated using

ProteinProphet (Nesvizhskii et al., 2003). Both validation programs are part of the

Trans-Proteomic-Pipeline (TPP) (Keller et al., 2005; Deutsch et al., 2010; Deutsch et al.,

2015) and integrated into the workflow by very simple tool modules, which facilitate the

modification of parameters by advanced users.

Creation of output in different formats. After the writing of the validated prot.xml files,

the results are exported into various formats for further evaluation: The spreadsheet

format xls (compatible with gnumeric and EXCEL), coma separated values (csv) text

files, html (for opening the results in an internet browser) and in mzid (mzIdentML),

a standard format for reporting proteomics results. The used tools were adopted from

the TPP, the OpenMS/TOPPAS framework and from the Linux system programs, which

underlines the flexibility of the taverna WMS.

Text extraction. In the last module, protein hits, which contain the defined search pattern

for proteins of interest, are written into a separate summary file in csv format. This simple

Text Mining step allows the rapid screening for relevant identification results.

An illustration of the complete workflow is given in Fig. 3.
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Figure 3 Proteomics workflow with validation of hits by PeptideProphet/ ProteinProphet and final
extraction of hits for proteins of potential interest.

For running the workflow (/usr/local/massypup64-taverna-workflows/m64-comet-val-

export.t2flow), only the data path ‘/usr/local/massypup64-examples/

Maize-Proteomics-PODs’ needs to be given (as a value), and a string for the protein(s) of

interest. In this example, “eroxidase” was defined as search string (omitting the initial letter

P/p to avoid possible case problems).

A version of the workflow without the extraction module is also stored in the workflow

examples directory. This workflow can be used for a batch-wise protein identification

similar to the Trans-Proteomic-Pipeline. The short workflow only requires the mzML

data/comet.params directory as input value.

Workflow results
Running the workflow delivers the expected output files, as well as sensitivity vs. error plots

for the individual samples (see Fig. 4). Table 2 corresponds to the exported hits of putative

peroxidades.

Considering a minimum of two unique peptides and a probability of at least 0.95 as

acceptance criteria, no peroxidase (POD) related protein was identified in the 2D spot, five

POD candidates in the purified fraction from the 1D gel, and two PODs from the 1D gel

after recombinant production of the putative POD B6T173 in Escherichia coli.

Thus, the workflow allows a rapid screening for proteins of interest. Indeed, further

biochemical experiments confirmed protein B6T173 as the responsible one for the POD

activity in the maize kernel.

Association analysis
Association Analysis investigates the probability of the co-occurrence of items. It is mainly

known from Market Basket studies and social networks. For instance, if a person buys a
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Figure 4 Plot of estimated sensitivity vs. error for sample 1DM, as delivered by the taverna work-
flow. Figure modified from original program output for improved readability.

telescope, most likely (s)he also might be interestd in a star map. Or if Henry knows Peter

and Paul, he probably knows Mary as well. Importantly, the Association Analysis does not

query the causality, but the likelihood of a relationship. Although the occurrence of an

association might be low—let’s say the mentioned group of Henry, Peter, Paul and Mary

represents a fraction of 0.0001% of a social network—the confidence might be high, e.g.,

0.9, and therefore be highly informative.

To search out co-occurring peptides, which could lead to possibly associated proteins

and suitable peptides for targeted proteomics, we carried out an Association Analysis with

Rattle. In total, more than 700 peptides with a probability above 0.9 were considered. A

minimal support of 0.6, a minimal confidence of 0.9 and a path of seven rules were chosen

as parameters. Fig. 5 represents the associations between seven peptides, which are related.

Table 3 lists the associated peptides together with their identifications. DSACSAG-

GLEYEVPSGRR, TDPSVDPAYAGHLK, VQVLTGDEGEIR are genuine peptides of

B6T173. The peptide TVSCADVLAFAAR is not present in the amio acid sequence of

B6T173, but the similar peptide TVSCADIVAFAAR. Since B6T173 was recombinately

produced in E. coli (sample 1DR), the identification of this peptide indicates an unexpected

phenomenon during the MS measurement. However, the respective transitions might be

useful for the quantification of the protein.

The appearance of chloroplast protein might be feasible for the maize derived samples,

but are unlikely to reflect reality in the bacterial preparation of B6T173. The glycine-rich

peptide can be found in many organisms and therefore does not contribute information.

Resuming, a set of 3+1 peptides was found, which are highly indicative for the protein

B6T173. Since the protein is related to post-harvest insect resistance, those peptide MS
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Table 2 Identified putative peroxidases, after PeptideProphet/ ProteinProphet validation.

Sample Accession Protein Prob. Coverage Unique peps Description

2DM B4FBY8 0.6181 5.9 1 Peroxidase

1DM B4FK72 1.0000 2.7 2 Peroxidase

1DM B6T173 1.0000 12.7 7 Peroxidase

1DM K7TID5 1.0000 39.5 24 Peroxidase

1DM K7TID0 0.9937 9.5 1 Peroxidase

1DM B4FY83 0.9890 3.7 2 Peroxidase

1DM B4FNL8 0.0000 0 Peroxidase

1DM B6SI04 0.0000 0 Peroxidase

1DM K7VNV5 0.0000 0 Peroxidase

1DR K7TID5 1.0000 17.7 7 Peroxidase

1DR B6T173 0.9995 7.1 2 Peroxidase

1DR B4FSW5 0.9990 2.9 1 Peroxidase

1DR B4FY83 0.9990 3.7 1 Peroxidase

1DR K7TMB4 0.9990 3.3 1 Peroxidase

1DR Q6JAH6 0.6603 7.1 1 Glutathione peroxidase

1DR K7V8K5 0.5743 3.0 1 Peroxidase

1DR B4FNI0 0.3475 5.4 1 Peroxidase

1DR A0A0B4J371 0.0000 0 Peroxidase

1DR B4FBC8 0.0000 0 Peroxidase

1DR B4G0X5 0.0000 0 Peroxidase

1DR B6TWB1 0.0000 0 Peroxidase

1DR C0PKS1 0.0000 0 Peroxidase

1DR Q9ZTS6 0.0000 0 Peroxidase K (Fragment)

Table 3 Association Analysis of peptides across three samples. ‘x’ stands for peptides present in the sample and ‘o’ for peptides missing in the
sample.

Peptide 2DM 1DM 1DR Acession Description

DSACSAGGLEYEVPSGRR o x x K7TID5 Peroxidase

TDPSVDPAYAGHLK o x x B6T173 Peroxidase

TVSCADVLAFAAR o x x B4FY83 Peroxidase

VQVLTGDEGEIR o x x K7TID5 Peroxidase

AFVHGDGDLFSR x x x B6SRJ2 Senescence-inducible chloroplast stay-green protein

LFLNLQKEMNSVMVTRK o x x A0A096PYN5 30S ribosomal protein S2, chloroplastic

GSGGGGGGGGGQGQSR x x x A0A096RDU5 Uncharacterized protein

transitions could serve for the screening of seeds. The PeptidePicker workflow delivers

theoretical peptides for targeted proteomics (Mohammed et al., 2014). However, if

experimental data are available, the Association Analysis includes all possible variables

which affect the peptide/ protein identification from sample extraction to final evaluation,

and thus should suggest more reliable candidates.
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Graph for 7 rules
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Figure 5 Associated peptides across the samples.

Ideally, an Association Analysis is carried out with numerous individual samples, which

allows to reduce the support limit and to bring to light non-obvious correlations between

variables or observations.

Apart from finding reliable peptides for protein quantification, Association Analyses can

be employed to discover alternative biomarkers, e.g., if the genuine biomarker is difficult to

detect, or to search for protein–protein interactions.

Targeted metabolomics: cluster analyses, linear model analysis
and model building using data mining
Data set and analytical question
We re-processed a data set which was described by Ernest et al. (2012). To study the

adipose tissue metabolism, three groups of chicken where analyzed, which underwent

different treatments: A control group (“Control”, sample 1–7) which were fed ad libitum,

chicken fasted for 5 h (“Fast”, sample 8–14) and a group treated with an insulin inhibitor

(“InsNeut”, sample 15–21). For more details about the biological experiments, we refer to

the original paper Ernest et al. (2012). From the targeted metabolomics data, a statistical

analysis yielding fold-changes and p-values should be carried out. Further, a classification

of the three groups, based to their metabolic profile, should be intended.

Statistical evaluation with MetabR
Using MetabR, the fold-differences and the Tukey’s Honest Significant Difference

(HSD) was calculated, applying a fixed linear model for the variables “Quantity” and
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Table 4 Statistical analysis of targeted metabolomics data with MetabR. Bold values are significant
with p-values <0.01 (Tukey HSD).

Fast-control InsNeut-control InsNeut-fast

Fold p-value Fold p-value Fold p-value

ATP 1.27 0.38 1.06 0.93 0.83 0.59

Citraconate 1.08 0.25 1.05 0.56 0.97 0.81

Citrate 1.22 0.08 1.00 0.96 0.82 0.13

Dihexose 0.08 <0.01 0.59 0.93 7.22 <0.01

Inosine 0.74 0.33 0.91 0.58 1.24 0.89

Lactate 0.87 0.14 0.99 0.97 1.14 0.20

Pyruvate 1.20 0.19 0.97 0.95 0.81 0.11

2-Oxoglutarate 0.93 0.75 1.51 <0.01 1.63 <0.01

1-Methyladenosine 1.20 0.99 1.13 0.96 0.95 0.99

Glutamine 0.68 0.03 2.51 <0.01 3.71 <0.01

Guanosine 0.76 0.22 0.83 0.26 1.09 0.99

O-Acetyl-L-serine 0.59 0.30 2.13 0.11 3.62 <0.01

Glucosamine 1.36 0.22 2.98 <0.01 2.20 <0.01

Thiamine 0.54 0.14 0.89 1.00 1.66 0.14

“Internal Standard” (Table 4). The script also performs an Hierarchical Cluster Analysis

(HCA, Fig. 6).

For Dihexose, 2-Oxoglutarate, Glutamine, O-Acetyl-L-serine and Glucosamine

significant differences of the metabolite concentrations were stated. In the Hierarchical

Cluster Analysis (HCA), the fasting chicken and the chicken treated with insulin inhibitor

are separated (Fig. 6). The control chicken samples are found in both branches of the

dendrogram, which indicates that (a) the clustering method is not selective enough to

clearly separate the samples based on their metabolic identity or (b) that the metabolic

profiles of the control group is to divers to be classified correctly.

The results of the statistical analyses are in agreement with the original publication

by Ernest et al. (2012). However, to improve the classification of the three groups we probed

alternative approaches for Clustering and Model Building.

Clustering approaches and their limitatations
Clustering helps to identify similar groups in a data set. Estimating the adequate number

of clusters is not trivial and various algorithms have been described for this task. We

tested several of them, which are available within R (http://stackoverflow.com/questions/

15376075/cluster-analysis-in-r-determine-the-optimal-number-of-clusters/15376462#

15376462). The different plots can be reproduced with the cluster-chicken.R script

located in the /usr/local/massypup64-examples/Chicken-Data-Mining directory.

K-means clustering and sum of squared error (sse) plot. The K-Means Clustering method

of Hartigan & Wong (1979) is implemented in the R function kmeans and minimizes the

sum of squared errors between data points. Since three clusters are expected from the
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Figure 6 Hierarchical Cluster Analysis (HCA) of targeted metabolomics from chicken groups. Figure
modified from original program output for improved readability.

biological context, we performed a K-Means cluster analysis with a starting value of ‘3’. As

shown in Fig. 7A, no clear separation of the three chicken groups was achieved.

The corresponding SSE plot is lacking a local minimum (‘elbow’), which would indicate

the optimum number of clusters in the data set (Fig. 7B). The SSE plot indicates that

K-Means Clustering based on the minimization of the Sum-of-Square-Error is not suitable

for classifying the three chicken groups.

Silhouette plot and silhouette plot based clusters. Silhouettes help in the graphical evalua-

tion of clustering solutions and in the choice of an adequate number of clusters (Rousseeuw,

1987). The resulting graphs in Fig. 8 are also based on a K-Means Clustering and suggest

two clusters.
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Figure 7 (A) K-Means clustering of the normalized chicken data set, considering three clusters, (B)
SSE plot for estimating the cluster number.

Figure 8 (A) Silhouette plot and (B) Silhouette plot based clusters.

Caliński–Harabasz Index. The Caliński–Harabasz Index (Caliński & Harabasz, 1974)

demonstrated excellent recovery and consistent performance in a comparative study

of Milligan & Cooper (1985). Therefore, the cascadeKM function of the R package vegan

was used for a Caliński–Harabasz analysis.

The resulting graphs (Fig. 9) indicate indeed a minimum for three clusters. But the

number of objects in each group is not congruent with the individual chicken in each

group.

Affinity Propagation (AP) Clustering. Frey & Dueck (2007) proposed the Affinity Propaga-

tion (AP) Clustering algorithm, in which information is exchanged between data points

until an optimal solution is reached. The algorithm is computationally efficient and more
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Figure 9 Estimation of the number of clusters using the Caliński-Harabasz index.

accurate compared to other strategies. We applied the R function apcluster to the data

matrix and the transformed data matrix.

AP clustering yields four clusters for the chicken groups (Fig. 10A). The insulin inhibitor

treated chicken (objects 15–21) cluster together. However, there is also another sample

from the control group in the same branch. The clustering of the transformed data matrix

suggests correlations between three groups of metabolites (Fig. 10B), which could lead to

related metabolic pathways.

MClust Algorithm. The R package mclust tries different probability models and plots the

number of cluster elements versus the Bayesian Information Criterion (BIC) (Fraley &

Raftery, 2002).

The model labeled as ‘EVV’, which stands for ‘multivariate mixture model with

ellipsoidal, equal volume’ displays the highest BIC values (Fig. 11). However, no maximum

is reached for three cluster groups, which indicates that no tested model is suitable for a

correct clustering.
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Figure 10 (A) Affinity propagation (AP) clustering and (B) AP clustering with transformed data matrix.
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Figure 11 MClust analysis for testing different probability models.

Summary of clustering approaches. Table 5 summarizes the number of clusters, which

was estimated by different algorithms. The Caliński–Harabasz index guesses the correct

number of groups in the dataset, but no evaluated clustering method is specific enough to

accurately separate the three chicken groups. Therefore, we continued with a Data Mining

based model building.
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Table 5 Comparison of methods for estimating the number of clusters in the targeted metabolomics
dataset of three chicken groups.

Method No. of clusters

K-Means/SSE n.a.

Silhouette Plot 2

Caliński–Harabasz 3

Affinity Propagation clustering 4

MClust algorithm n.a.

Data Mining based model building
Conveniently, the normalized data from the statistical evaluation with MetabR can be

loaded directly into Rattle for Data Mining. For the supervised building of models, we

split the data in a ratio of 70:20:10 for Training, Validation and Testing. As target value,

the experimental group of the chicken with the categorical values “Control”, “Fast”

and “InsNeut” was set. Following, the results for different models are presented. The

performance of the models in the three stages of development is summarized in Table 6.

The models and supporting data are included in the MASSyPup64 examples; The Rattle

sessions are stored in files with the extension .rattle.

Decision Tree. Decision Tree models result in simple representations, which are easy to

understand and easy to put into practice. The Decision Tree model for classification was

built using the R package rpartwith 14 samples and yielded the following rule set:

n= 14

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 14 9 Control (0.3571429 0.3571429 0.2857143)

2) Dihexose >= 9.851921 9 4 Control

(0.5555556 0.0000000 0.4444444)

4) X2.Oxoglutarate < 14.84659 5 0 Control

(1.0000000 0.0000000 0.0000000) *

5) X2.Oxoglutarate >= 14.84659 4 0 InsNeut

(0.0000000 0.0000000 1.0000000) *

3) Dihexose< 9.851921 5 0 Fast

(0.0000000 1.0000000 0.0000000) *

Those rules can be used in their plain form or implemented into a simple computer

program. The graphical representation is given in Fig. 12.

Both, the equation form and the graphical Decision Tree models are straight-forward

to understand and deploy, e.g., for diagnostics applications. The evaluation of the model

using an Error Matrix (Table 6) returns one error (33%) for the validation and one error
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Table 6 Error Matrix for predictive models, which were developed for the classification of chicken groups, based on targeted metabolomics
data.

TRAINING VALIDATION TESTING

Decision Tree Error

Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.25

Control 5 0 0 0 0 1 1 0 0 0.0

Fast 0 5 0 0 0 0 1 1 0 0.5

InsNeut 0 0 4 0 0 2 0 0 1 0.0

Random Forest

Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.0

Control 5 0 0 1 0 0 1 0 0 0.0

Fast 0 5 0 0 0 0 0 2 0 0.0

InsNeut 0 0 4 0 0 2 0 0 1 0.0

Support Vector Machine

Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.0

Control 5 0 0 1 0 0 1 0 0 0.0

Fast 0 5 0 0 0 0 0 2 0 0.0

InsNeut 0 0 4 0 0 2 0 0 1 0.0

Linear Model

Predicted

Actual Control Fast InsNeut Control Fast InsNeut Control Fast InsNeut 0.25

Control 5 0 0 1 0 0 0 0 1 1.0

Fast 0 5 0 0 0 0 0 2 0 0.0

InsNeut 0 0 4 1 0 1 0 0 1 0.0

(25%) for the testing data. All samples of the training set were identified correctly, resulting

in an overall error rate of 9.5%.

For certain uses, such as models supporting medical decisions, a very low false-positive

or false-negative rate is needed. If needed, the model can be optimized towards a certain

direction, such as avoiding false-negatives (for details see Williams (2011)). Another option

is the building of more complex models like Random Forest Tree or Support Vector

Machine models.

Random forest tree model. For building a Random Forest Tree model, multiple Decision

Trees are created and combined into a single model (Williams, 1988; Williams, 1987).

Random Forest Models are characterized by robustness to noise, outliers and overfit-

ting (Williams, 2011). An important aspect is also the selection of variables: only a part

of the available variables—by default the square root of all variables—is used for each

individual Decision Tree. In this ‘bagging’ strategy the same variable may occur more

than once.
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Figure 12 Decision tree model for the classification of chicken samples.

For building the Random Forest Tree, we defined the construction of 5,000 trees and

three variables for each split. The ‘out-of-bag’ (OOB) error estimate is based on the

observations, which are not considered in the training set and was calculated as 14.29%.

Strikingly, the Random Forest Tree Model classified all samples without error in any

stage of development (Table 6).

Another result of the model building is highly informative: The Variable Importance

(Fig. 13).

Figure 13A refers to influence of the variables on the predictive accuracy of the Decision

Tree, the right plot expresses the impact on the Gini index (a measure of statistical

dispersion (Gini, 1912)) when splitting on a variable. The first eight variables are equal

in both measures, and indicate a high importance of the concentrations of Dihexose,

Glutamine, X2.Oxoglutarate and Glucosamine. Those metabolites also show significant

changes in the statistical analysis with MetabR (Table 4), but the Random Forest Tree

analysis now allows for the correct classification of the samples and suggests an order for

the importance of variables.

Support Vector Machine (SVM) and Linear Model. Several more model builders are

available in Rattle, such as Neuronal Networks and the Boost algorithm. Because of their

popularity in the community, we also tested the Support Vector Machine (SVM) and the

Linear Model for the chicken dataset. The results are collected in Table 6.
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Figure 13 Variable importance from the Random Forest Tree modeling for the classification of
chicken samples.

The SVM model performed equally well as the Random Forest Tree model, i.e., in no

stage of the development a sample was classified wrongly. In contrast, the Linear Model

presented one error during the validation and one error in the testing.

Comparison of Model Builders and Cluster Analyses
The Support Vector Machine (SVM) and the Random Forest Tree strategy generated

error-free models for the classification of the three chicken groups. This classification was

not possible with Cluster Analyses, which suggests the use of Data Mining models for data

sets with only subtle differences between experimental groups.

The Random Forest Tree model additionally delivers quantitative measures for the

variable importance, which facilitates the discovery of biologically relevant factors.

Untargeted metabolomics: discovery of important variables by
Data Mining and identification of putative metabolites
Data set and bioanalytical question
The data analysis for untargeted metabolomics experiments is highly complicated, since

unknown metabolic features need to be detected and aligned between samples. To gain
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Figure 14 TOPPAS pipeline for MS feature detection and alignment, with output of the consensus features in a text file.

biological knowledge, these features need to be identified and integrated into metabolic

pathways. Recently we reported the metabolic fingerprinting of the Arabidopsis thaliana

accessions (‘ecotypes’) Columbia (“Col-0”) and Wassilewskija (“Ws-3”), based on extracts

of leaves and inflorescence (Sotelo-Silveira et al., 2015). In this example, we re-process the

reduced datasets of the inflorescence samples and try to identify possibly distinct pathways

between the inflorescence samples of the two accessions.

Date pre-processing and TOPPAS pipeline for feature detection and
alignment
The original mzML data were processed with msconvert to reduce noise signals and to

reduce the size of the data files. Figure 14 represents the workflow for the data processing,

which was implemented in TOPPAS. First, the MS features are detected in all data files.

Following, the features of all samples are aligned and the results exported into a text file for

further statistical analyses. The complete pipeline and (.toppas) the mzML raw data files

are available in the example directory.

Statistical analyses and building of a random forest tree model
The 1,005 high-quality features, which were detected in all twelve samples, were

normalized with MetabR and loaded into Rattle (as described before in the targeted

metabolomics example). A Random Forest Tree model was built for the classifications

of the accessions with default parameters, calculating 5,000 trees. The classification was

correct (0% error rate) in all steps of the model development. This finding demonstrates

again the high robustness and selectivity of the Random Forest Modeling for metabolomics

data, which are usually characterized by many variables and few repetitions.

Important variables and identification of putative metabolites and
pathways
The m/z values of features were matched with an Arabidopsis meta-database using

SpiderMass (Winkler, 2015). Putatively identified metabolites were sorted by their Variable

Importance (accuracy criterion), manually revised and assigned with their pathway or

function (Table 7).
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Table 7 Putative identifications for important variables for the classification of Arabidopsis, based on untargeted metabolomics profiles.

m/z Variable
importance

Ionization mode Name Function/pathway Mass error
[mDa]

463.105 2.65 [M+H]+ 7-Methylthioheptyl glucosinolate Glucosinolate biosynthesis 4.6

249.149 2.45 [M+H]+ Abscisic acid aldehyde Abscisic acid biosynthesis 0.1

249.149 2.45 [M+Na]+ Methyl Dihydrojasmonate Aroma compound 2.5

227.070 2.45 [M+Na]+ Tryptophan Amino acid −9.3

202.090 2.00 [M+Na]+ L-Phenylalanine Amino acid 5.8

647.159 2.00 [M+Na]+ Isorhamnetin-3-O-rutinoside Flavonoid glycoside 0.8

245.099 2.00 [M+H]+ Biotin Vitamin 4.0

631.162 2.00 [M+Na]+ Diosmin Flavonoid glycoside −1.3

387.025 2.00 [M+Na]+ Xanthosine 5’-phosphate Purine metabolism −6.0

329.068 2.00 [M+Na]+ Leucocyanidin Flavonoid 4.8

221.031 2.00 [M+H]+ Imidazole acetol phosphate Amino acid biosynthesis −0.9

633.141 1.73 [M+Na]+ Rutin Flavonoid glycoside −2.0

223.169 1.73 [M+Na]+ Lauric acid Fatty acid 2.4

595.160 1.73 [M+H]+ Flavonoide glycoside (isobars) Flavonoid glycoside −5.4

579.163 1.73 [M+H]+ Flavonoide glycoside (isobars) Flavonoid glycoside −7.7

263.090 1.73 [M+H]+ 2-(6’-Methylthio)hexylmalic acid Glucosinolate biosynthesis −6.2

271.132 1.73 [M+Na]+ Abscisic acid aldehyde Abscisic acid biosynthesis 1.3

195.065 1.73 [M+H]+ Ferulic acid Cell wall formation −0.4

251.021 1.73 [M+Na]+ Mevalonate 5-phosphate Terpene biosynthesis −7.9

403.064 1.73 [M+Na]+ O-Acetylserine Amino acid biosynthesis −6.1

331.158 1.73 [M+H]+ Gibberellin A5 Plant hormone 4.0

457.044 1.73 [M+Na]+ 5-Methylthiopentylglucosinolate Glucosinolate biosynthesis −7.1

317.175 1.73 [M+H]+ Gibberellin A9 Plant hormone 0.1

333.209 1.73 [M+H]+ Gibberellin A12 Plant hormone 2.6

333.209 1.73 [M+Na]+ 6,9-Octadecadienedioic acid Fatty acid 5.0

479.099 1.73 [M+H]+ Hyryl Coenzyme (Riboflavin, FMN, FAD) 5.1

479.099 1.73 [M+Na]+ Flavin mononucleotide (FMN) Coenzyme 5.1

625.174 1.41 [M+H]+ Narcisin Flavonoid glycoside −1.8

245.042 1.41 [M+H]+ 1,3,7-Trihydroxyxanthone Xanthones −2.7

611.157 1.41 [M+H]+ Rutin Flavonoid glycoside −3.9

601.147 1.41 [M+Na]+ Flavonoide glycoside (isobars) Flavonoid glycoside −5.5

369.123 1.41 [M+Na]+ Gibberellin (isobars) Plant hormone −8.2

349.058 1.41 [M+H]+ Inosinic acid Ribonucleotid biosynthesis 3.6

328.941 1.41 [M+Na]+ D-Ribulose 1,5-bisphosphate Phothosynthesis −4.9

365.128 1.41 [M+Na]+ Abietin Terpene 7.5

369.124 1.41 [M+Na]+ Gibberellin (isobars) Plant hormone −7.3

311.187 1.41 [M+H]+ Botrydial Terpene 1.3

385.014 1.41 [M+Na]+ Xanthosine 5’-monophosphate Purine metabolism −2.3

433.118 1.41 [M+H]+ Apigenin glucoside Flavonoid glycoside 4.7

349.057 1.41 [M+H]+ Inosinic acid Ribonucleotid biosynthesis 2.5

221.042 1.41 [M+H]+ Imidazole acetol phosphate Amino acid biosynthesis 9.6
(continued on next page)
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Table 7 (continued)
m/z Variable

importance
Ionization mode Name Function/pathway Mass error

[mDa]

221.042 1.41 [M+H]+ 2-(3’-Methylthio)propylmalic acid Glucosinolate biosynthesis −7.0

221.042 1.41 [M+Na]+ Syringic Acid Aminobenzoate degradation −0.2

625.170 1.41 [M+H]+ Narcisin Flavonoid glycoside −6.1

349.200 1.41 [M+H]+ Gibberellin (isobars) Plant hormone −0.8

363.039 1.41 [M+H]+ Xanthosine 5’-monophosphate Purine metabolism 4.4

211.057 1.41 [M+H]+ 5-Hydroxyferulic acid Phenylpropanoid biosynthesis −3.0

The results of affected metabolic pathways are congruent with the previously reported

statistical analyses (Sotelo-Silveira et al., 2015). But taking into account the Variable

Importance for the classification of the inflorescence profiles according to their accession,

now allows a statistically supported ranking of putatively involved pathways. The

biosynthesis of (thio)glucosinolate appears to be the most significant variable, followed

by the biosynthesis of abscisic acid biosynthesis, an aroma compound, and amino acids.

Most of the compounds down the list are related to plant hormones, flavonoid glycosides

and cofactors.

Thus, the Data Mining method is not only a tool for the reliable classification of sample

groups, but also supports the discovery and ordering of biologically relevant variables.

CONCLUSIONS
The presented examples from proteomics and metabolomics demonstrate the high

potential of integrating Workflow Management Systems with Data Mining tools and

helper programs into a single data analysis platform. The ready-to-use combination of

software packages and the availability of data on the live system facilitates the repetition of

the experiments and prevents workflow decay.

Data Mining strategies enhance the knowledge generation from biological mass

spectrometry data. Predictive models can be readily deployed for future decision making,

e.g., in clinical diagnostics. The Graphical User Interfaces (GUIs) of MetabR and Rattle

enable the easy application of advanced Statistics and Data Mining for biological mass

spectrometry data.

Association Analyses reveal relations between variables and can be used to search for

interactions, which are present in low frequency, but with high confidentiality, e.g., in the

search for co-occurring peptides or related proteins.

The Random Forest Tree models demonstrate high robustness and accuracy for

the classification between experimental groups from metabolomics data. The variable

importance supports the discovery and ranking of significant metabolites and pathways.

Data Mining paves the way for a deeper understanding of biological phenomena by a

more profound analysis of mass spectrometry data. MASSyPup64 provides a stable and

evolving platform for this challenging task.
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