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Abstract

Personalized neuromusculoskeletal (NMS) models can represent the neurological, physiological, 

and anatomical characteristics of an individual and can be used to estimate the forces generated 

inside the human body. Currently, publicly available software to calculate muscle forces are 

restricted to static and dynamic optimisation methods, or limited to isometric tasks only. We have 

created and made freely available for the research community the Calibrated EMG-Informed NMS 

Modelling Toolbox (CEINMS), an OpenSim plug-in that enables investigators to predict different 

neural control solutions for the same musculoskeletal geometry and measured movements. 

CEINMS comprises EMG-driven and EMG-informed algorithms that have been previously 

published and tested. It operates on dynamic skeletal models possessing any number of degrees of 

freedom and musculotendon units and can be calibrated to the individual to predict measured joint 

moments and EMG patterns. In this paper we describe the components of CEINMS and its 

integration with OpenSim. We then analyse how EMG-driven, EMG-assisted, and static 

optimisation neural control solutions affect the estimated joint moments, muscle forces, and 

muscle excitations, including muscle co-contraction.
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2. Introduction

Estimation of individual muscle forces and their contribution to joint moments is essential 

for understanding how humans solve the dynamics of movement. Different methods have 

been developed to estimate muscle forces (Erdemir et al., 2007). These methods include 

static and dynamic optimisation (Anderson and Pandy, 2001; Crowninshield et al., 1978), 

which involve the use of inverse dynamics to track external joint moments and/or joint 

kinematics and estimation of muscle activations and forces to satisfy pre-selected objective 

criteria. However, optimisation methods cannot account for variations in muscle activation 

patterns (Buchanan and Shreeve, 1996) between tasks (Buchanan and Lloyd, 1995; Tax et 

al., 1990) and individuals (Lloyd and Buchanan, 2001), even when joint angles and 

moments are the same. Furthermore, optimisation methods cannot predict the muscle co-

contraction evident in the electromyography (EMG) patterns of different tasks (Colby et al., 

2000; Lloyd and Buchanan, 2001; Neptune et al., 1999) and different patient populations 

(Bryant et al., 2008; Heiden et al., 2009; Schmitt and Rudolph, 2007).

An alternative to optimisation is to use EMG-driven neuromusculoskeletal (NMS) models, 

in which EMG signals and three-dimensional (3D) joint angles are used to calculate 

individual muscle forces (Buchanan et al., 2004; Lloyd and Besier, 2003; Lloyd and 

Buchanan, 1996). EMG-driven models overcome the limitations of static and dynamic 

optimisation; however, they are not without shortcomings (Chèze et al., 2012), such as 

limited muscles from which EMG data can be acquired and errors in EMG measurement and 

normalisation (De Luca, 1997; Sartori et al., 2014).

While optimisation methods are easily accessible (Delp et al., 2007), EMG-driven methods 

have been developed by different research groups (Amarantini and Martin, 2004; Buchanan 

et al., 2004; Langenderfer et al., 2005; Lloyd and Besier, 2003; Thelen et al., 1994) and they 

are not publicly available (Fregly et al., 2012b), or are limited to isometric tasks (Menegaldo 

et al., 2014). Also, software developed for research is often tuned to a particular project, data 

acquisition protocol, or laboratory, which makes it difficult to share. Furthermore, 

implementations of the same algorithm may be inconsistent among different software, with 

subsequent difficulties to compare results across research groups. Additionally, comparison 

between EMG-driven and static optimisation has not been possible. For example, 

comparison of the mechanical consequences of muscle co-contraction has not been possible, 

as it is unclear whether different muscle force outputs are due to the different neural control 

solution methods or musculoskeletal models.

We have created and released the Calibrated EMG-informed NMS Modelling Toolbox 

(CEINMS, simtk.org/home/ceinms), an OpenSim (Delp et al., 2007) plug-in which enables 

investigators to implement EMG-informed algorithms that have been previously published 

and validated (Lloyd and Besier, 2003; Sartori et al., 2014; Sartori et al., 2012a). While 

EMG-informed methods encapsulate all algorithms that use EMG as inputs, EMG-driven 

models specifically use EMG to derive muscle excitation patterns. CEINMS covers neural 

control solutions from EMG-driven (Lloyd and Besier, 2003), to hybrids between EMG-

driven (Sartori et al., 2014) and static optimisation, to full static optimisation (Lenaerts et al., 
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2008). Additionally, CEINMS can use a set of excitation primitives and weighting factors as 

inputs rather than estimating muscle excitations directly from EMG (Sartori et al., 2013). 

Finally, CEINMS can operate with OpenSim musculoskeletal models possessing any 

number of degrees of freedom (DOF) and musculotendon units (MTU) and can be calibrated 

to the individual to predict joint moments (Lloyd and Besier, 2003; Sartori et al., 2012a). In 

this paper we describe CEINMS and its structure and integration with OpenSim. We then 

provide examples of using CEINMS to explore how different neural control solutions affect 

predicted joint moments, muscle forces, muscle excitations, and muscle co-contraction using 

the same NMS model and motion data.

3. Methods

3.1. CEINMS overview

CEINMS is an open-source (Apache License, Version 2.0) software written in C++, which 

can be compiled and optimised on different operating systems and processor architectures. 

CEINMS use involves three steps: calibration, execution, and validation (Fig. 1). Execution 

inputs are MTU kinematics and external joint moments calculated with OpenSim (Fig. 1), 

and either muscle excitations or muscle excitation primitives and weightings extracted from 

experimental EMG data (Fig. 2), to estimate MTU forces and joint moments. Calibration 

refines the NMS model parameter values for a specific subject by including the execution 

step in an optimisation loop that minimises error between estimated and experimental joint 

moments (Fig. 3). Following calibration, execution (Fig. 4) estimates MTU forces and joint 

moments for trials that have not been used in calibration. Results are validated comparing 

CEINMS outputs to experimental data, such as joint moments (Lloyd and Besier, 2003; 

Sartori et al., 2012a) and joint contact forces (Gerus et al., 2013).

CEINMS comprises six components; (1) data preparation, (2) neural mapping, (3) neural 

solution, (4) activation dynamics, (5) musculotendon dynamics, and (6) calibration.

3.2 Data preparation

CEINMS requires three setup files, one each for: calibration, neural mapping, and execution. 

It also needs an initial set of model parameter values and experimental trials (Fig. 1). The 

calibration and execution setup files enable the user to select the neural control algorithm 

(described below) and tune the behaviour of CEINMS, while the subject’s scaled 

musculoskeletal model derived from OpenSim and the input trials are created from 

experimental data using a MATLAB pipeline.

The pre-processing block (Fig. 5) is a MATLAB toolbox (MOtoNMS, simtk.org/home/

motonms) that converts raw EMG data, marker trajectories, and ground reaction forces 

(GRF) from a C3D file to .trc and .mot files compatible with OpenSim. Experimental 

muscle excitations were calculated from raw EMG signals that were high-pass filtered 

(30Hz), full-wave-rectified, and low-pass filtered (6Hz) using a zero-lag fourth-order 

recursive Butterworth filter. Experimental muscle excitations were normalised using data 

from multiple maximum voluntary contraction trials. A similar low-pass filter was applied to 

marker trajectories and GRF using a cutoff frequency of 8 Hz.

Pizzolato et al. Page 3

J Biomech. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://simtk.org/home/motonms
http://simtk.org/home/motonms


It is also possible to extract muscle synergies and weighting factors (Fig. 3) from 

experimental muscle excitations using factorisation algorithms (Fig. 2) (d'Avella and Tresch, 

2002; Neptune et al., 2009; Sartori et al., 2013; Tresch et al., 2006).

CEINMS also requires as inputs MTU lengths, moment arms, and external joint moments. 

OpenSim muscle analysis and inverse dynamics tools are used to calculate these variables.

3.3. Neural mapping

Previous studies have mapped experimental muscle excitations to muscles from which EMG 

data were unavailable (Lloyd and Besier, 2003; Sartori et al., 2012a). For example, vastus 

intermedius excitation was calculated as average of vastus medialis and vastus lateralis 

excitations. Alternatively, as in Neptune et al. (2009) and Sartori et al. (2013), muscle 

excitation primitives and weightings can be used as input. CEINMS has a generalised 

method for creating muscle excitations by linearly combining any number of time varying 

input signals. This method can be used to create new muscle excitations from existing 

experimental excitations and/or derive muscle excitations from pre-calculated muscle 

synergies (Sec 3.2). The resulting muscle excitations are input to a neural control solution 

algorithm (Fig. 4).

3.4. Neural control solution algorithms

The neural control solution algorithm adjusts muscle-specific excitations to improve the 

tracking of experimental joint moments (Sartori et al., 2014) (Fig. 4). For each time frame, a 

simulated annealing algorithm (Corana et al., 1987) minimises an objective function, which 

can be customised to target specific DOF and MTUs. Therefore, using the same objective 

function (Eq. 1), one can access several neural control algorithms, grouped into three 

classes:

1. EMG-driven mode. No optimisation is performed (Lloyd and Besier, 2003; Sartori 

et al., 2012a).

2. EMG-assisted mode. Optimisation adjusts existing excitations determined from 

experimental EMG signals and synthetise excitations for muscles with no 

experimental EMGs available (Sartori et al., 2014).

3. Static optimisation mode. Without the use of experimental EMG data, an 

optimisation synthesises all muscle excitations.

Modes 2–3 minimise the objective function (Sartori et al., 2014):

(1)

where M̄
d and Md are experimental and estimated joint moment for the dth DOF, ē and e are 

experimental and estimated muscle excitations, MTUsynth is the list of MTUs with 

excitations to synthesise, MTUadj the list of MTUs with excitations to adjust, and α, β, γ are 

positive weighting factors (Sartori et al., 2014). Importantly, different modes can be 

executed on the same motion data and musculoskeletal geometry.
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3.5. Activation dynamics

Neural activation is derived from muscle excitations by modelling the muscle’s twitch 

response. This improves muscle force predictions (Buchanan et al., 2004; Lloyd and Besier, 

2003; Lloyd et al., 2008) and is represented by a critically-damped linear second-order 

differential system (Milner et al., 1973; Thelen et al., 1994) in a discrete form (Lloyd and 

Besier, 2003):

(2)

where e(t) is a muscle excitation at the time t, u(t) the neural activation, α the muscle gain, 

C1 and C2 recursive coefficients, and d the electromechanical delay. The relation between 

neural and muscle activation is non-linear, and CEINMS provides two different solutions. 

The first is that of Lloyd and Besier (2003),

(3)

where a(t) is the muscle activation, and A is the non-linear shape factor, constrained in the 

interval (−3, 0). The second model is described by Manal and Buchanan (2003) as a 

piecewise function:

(4a)

(4b)

For each muscle, αact, βact, m, c depend only on the shape factor A, constrained in the 

interval (0, 0.12].

3.6. Musculotendon dynamics

MTU kinematics and muscle activation are used as input for a Hill-type muscle model with 

a compliant tendon, which is implemented in CEINMS in accordance with (Buchanan et al., 

2004; Lloyd and Besier, 2003; Schutte, 1993). Musculotendon dynamics can be solved using 

three computational methods. The first integrates a set of ordinary differential equations 

(ODE) with a Runge-Kutta-Fehlberg algorithm. The second uses a Wijngaarden-Dekker-

Brent optimisation routine (Brent, 1973) to find the root of the equilibrium equation between 

the force produced by the muscle fibres and the tendon. The third considers the tendon as an 

element of infinite stiffness (Sartori et al., 2012b).

While the stiff tendon has been shown to produce large force errors for increasing ratios of 

optimal fibre length  and tendon slack length  (Millard et al., 2013), the integration of 

ODEs can be unsuccessful due to high system stiffness when a muscle is inactive and 

muscle damping is small or absent. Also, MTUs with short tendons may lead to stiff ODEs 

that are unstable for explicit integration solvers. The equilibrium model is more robust to 

variations in  and  and hence more suitable for the calibration step, where these two 

parameters are optimised.
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3.7. Calibration

CEINMS can be calibrated to experimental data collected from an individual subject (Lloyd 

and Besier, 2003; Sartori et al., 2012a). Initial muscle parameter values for the subject are 

tuned using simulated annealing (Corana et al., 1987), which minimises the error between 

experimental joint moments and those estimated by the EMG-driven mode of CEINMS (Fig. 

3). A number of trials, encompassing static and/or dynamic tasks (Lloyd and Besier, 2003; 

Sartori et al., 2012a), are used for calibration.

The calibration objective function fcal is defined as:

(5a)

(5b)

(5c)

(5d)

To reduce length and magnitude differences between trials, we normalise the sum of squared 

differences between predicted (Mt,d,r) and experimental  joint moments by trial 

variance and number of data points (Nrows) for each tth trial. The penalty function P(r, j) 

discourages the adoption of non-physiological solutions corresponding to values of l̃m 

outside its operative range (0.5, 1.5).

Following calibration, the optimised parameters are used to execute CEINMS using a novel 

set of trials as inputs and any of the neural control solution algorithms (Sec. 3.4).

3.8 Example Application

To demonstrate CEINMS’s different modes of operation, we collected gait data from five 

healthy subjects (30.6 ± 6.7 years; 77.8 ± 9.9 kg). The study was approved by Griffith 

University Human Research Ethics Committee and participants provided written informed 

consent. Ten walking trials (1.5 ± 0.23 m/s) were collected using a 10-camera motion-

capture system (Vicon, Oxford, UK) and two force plates (Kistler, Amherst, NY). Surface 

EMG (Zerowire, Aurion, Milan, IT) signals were acquired from 16 muscles from a single 

leg: gluteus maximus, gluteus medius, tensor fasciae latae, rectus femoris, sartorius, vastus 

lateralis, vastus medialis, adductor group, gracilis, medial and lateral hamstring, 

semimembranosus, gastrocnemius medialis, gastrocnemius lateralis, soleus, tibialis 

anterioris, and peroneus group.
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A generic OpenSim model (gait2392) was scaled to each subject. The hip joint centres were 

calculated using regression equations (Harrington et al., 2007), while markers on the femoral 

condyles and ankle malleoli were used to establish knee and ankle joint centres. This was 

followed by the anthropometric scaling of  and  parameters using method number 9 in 

(Winby et al., 2008), which were then used as input for the calibration step (Fig 3). Inverse 

kinematics, muscle analysis, and inverse dynamics tools in OpenSim were used to calculate 

3D joint angles, MTU lengths, moment arms, and external joint moments of each dynamic 

trial.

A total of 34 MTUs and 3 DOFs (hip and knee flexion-extension and ankle plantar-dorsi 

flexion (FE)) were analysed in CEINMS. The 16 channels of EMG data were mapped to 32 

MTUs (Sec. 3.3), as described by Sartori et al. (2012a). CEINMS was configured to use the 

equilibrium elastic tendon for musculotendon dynamics (Sec. 3.6) and equation 3 for 

activation dynamics (Sec. 3.5). For each subject, calibration was performed using four 

walking trials, which were not the walking trials used for CEINMS execution. During the 

calibration,  and  of each MTU were constrained within ±5% from their initial values, 

while activation dynamics parameters A, C1, and C2 were calibrated globally (Lloyd and 

Besier, 2003). The shape factor A was bounded between −3 and 0 and the coefficients C1 

and C2 between −1 and 1. MTUs were divided into 11 groups based on being posteriorly or 

anteriorly located on each lower limb segment. A strength coefficient bounded between 0.5 

and 2.5 was then assigned to each group (Sartori et al., 2012a). These coefficients were used 

to scale peak isometric force of the different muscle groups. After calibration, CEINMS was 

used to predict hip, knee, and ankle FE moments using the EMG-driven, EMG-assisted, and 

static optimisation modes. In the EMG-assisted mode, the weighting parameters α, β, and γ 

(equation 1) were calculated through an automatic procedure aimed at finding the lowest 

tracking errors for both muscle excitations and external joint moments (Sartori et al., 2014).

Root mean square error (RMSE) and coefficient of determination (R2) were used to compare 

prediction of external joint moments and muscle excitations between neural solutions.

To examine the effect of different neural control solutions on the muscle co-contraction, co-

contraction ratios (CCR) of FE moments (Mf and Me respectively) for hip, knee, and ankle 

were calculated as follows (Heiden et al., 2009):

(6)

This ratio provides an indication of relative final mechanical action of muscle co-contraction 

between flexors and extensors, where being close to 0 indicates a higher level of co-

contraction, and 1 or −1 no effective co-contraction but a moment directed to flexion or 

extension respectively.
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4. Results

The calibration procedure improved the estimation of hip, knee, and ankle FE moments for 

the EMG-driven mode (Fig. 6). The calibrated EMG-driven mode well predicted the knee 

and ankle FE moments (RMSE 0.18 Nm/kg and 0.24 Nm/kg respectively) but 

underestimated the hip flexion moment in the second half of stance phase due to a missing 

contribution from iliopsoas MTUs (Fig. 7). These muscles were accounted for in the EMG-

assisted and the static optimisation modes, which matched the experimental joint moments 

well for all three DOFs (Table 1).

When compared to the static optimisation mode, the EMG-assisted mode consistently 

estimated muscle excitations closer to the experimental excitations (Table 2), presenting 

both higher R2 and lower RMSE for each muscle.

When compared to the EMG-driven mode, EMG-assisted and static optimisation presented a 

co-contraction ratio closer to 0 for the loading phase of hip and knee and closer to 1 for the 

late stance of the hip (Fig. 8). Conversely, compared to static optimisation the EMG-assisted 

mode predicted co-contraction ratios closer to 0 during early, mid, and late stance for the 

hip, knee, and ankle (Fig. 8).

5. Discussion

We created and released CEINMS, an OpenSim toolbox to explore the effect of different 

neural control solution algorithms using consistent musculoskeletal geometry. Although 

software for EMG-driven modelling have been released in the past (Menegaldo et al., 2014), 

CEINMS is the first that can be configured to work with any number of MTUs and DOFs. 

CEINMS comprises a calibration procedure, includes state-of-the-art EMG-informed 

algorithms, and can be used with dynamic tasks.

In line with previous studies (Gerus et al., 2013; Lloyd and Besier, 2003; Sartori et al., 

2012a), calibration of CEINMS improved joint moment estimations for the knee and ankle 

(Fig. 6 and Table 1). While not employed in the current study, some muscle parameters can 

be measured using medical imaging. CEINMS allows the user to define the MTU and 

associated parameters included in the calibration, facilitating concurrent use of measured 

and calibrated parameters. The use of measured parameters and inclusion of additional 

criteria in the calibration function (equation 5), such as the minimisation of joint contact 

loads (Gerus et al., 2013), is expected to improve muscle force predictions.

Similar to the findings of Sartori and colleagues (Sartori et al., 2014; Sartori et al., 2012a) 

the calibrated EMG-driven mode poorly estimated the hip flexion moment (Fig. 7) due to 

the lack of experimental EMG data for the iliacus and psoas MTUs, which only contributed 

passively to the hip moment. Conversely, EMG-assisted mode predictions of joint moments 

were consistent with the experimental data (Tables 1 and 2).

It could be argued that our implementation of static optimisation does not perfectly track the 

external joint moments from inverse dynamics (Table 1). This observation is attributable to 

the inclusion of the activation dynamics (Se c. 3.5) in the optimisation loop, making muscle 
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activation depend on past values of neural excitation (equation 2), therefore limiting the 

MTU force solution space. However, our implementation enables the direct comparison of 

estimated and experimental muscle excitations (Table 2), which would not possible 

otherwise.

To describe CEINMS and its possible applications, we used consistent musculoskeletal 

geometry to perform an example study that compared effective mechanical co-contraction 

for EMG-informed and static optimisation modes. Even during walking in normal healthy 

individuals, the mechanical effect of co-contraction was clearly different between EMG-

informed methods and pure static optimisation (Fig. 8). While co-contraction ratios 

estimated by the EMG-driven mode cannot be considered reliable for the hip joint, EMG-

assisted and EMG-driven modes predicted similar co-contractions for knee and ankle. Also, 

the EMG-assisted mode consistently predicted higher co-contractions for the three DOFs 

when compared to static optimisation. Furthermore, we expect to observe greater differences 

in co-contraction during different tasks (e.g. running, sidestepping) or patient populations 

(e.g. osteoarthritis, anterior cruciate ligament reconstruction) that need to employ greater 

levels of joint stabilisation than during healthy walking (Bryant et al., 2008; Colby et al., 

2000; Heiden et al., 2009; Neptune et al., 1999; Schmitt and Rudolph, 2007). However, such 

evaluation goes beyond the scope of the paper and should be investigated in further studies.

Future users of CEINMS may benefit from the following guidance. The quality of EMGs 

affects the EMG-informed solutions, therefore it is recommended following best-practice 

procedures for EMG collection, as per the SENIAM guidelines (Hermens et al., 2000). Since 

CEINMS uses amplitude-normalised EMG it is recommended normalizing to maximum 

EMGs recorded from a variety of maximum exertion isometric and dynamic tasks. Selecting 

which muscles to record EMG from depends on the application. It is suggested choosing 

muscles with the largest cross-sectional areas as these have the greatest mechanical effect on 

the joint contact forces and motion. Furthermore, when recording EMGs from a limited 

number of muscles, it is important to select at least one muscle from each neuro-anatomical 

group of interest to enable mapping of the other muscle excitations (Lloyd and Besier, 2003; 

Sartori et al., 2012a). Additionally, when using the EMG-assisted mode it is recommended 

to record EMG from the gracilis, sartorius, vastus medialis, gastrocnemius medialis, and 

peroneus group as Sartori et al. (2014) showed that these muscles were poorly predicted. 

Finally, selection of which EMG-informed mode to use depends on the application and 

EMG availability. The EMG-assisted mode potentially compensates for the inability to 

access deep muscles, as well as cross-talk and noisy EMGs, (Sartori et al., 2014), making it 

appropriate for hip joint investigations. Alternatively, the multiple-DOF EMG-driven mode 

(Sartori et al., 2012a) is adequate for investigating knee and ankle joints, where most EMGs 

are easily recorded. Finally, EMG-informed modes should be preferred over static 

optimisation, as EMG-informed methods will reflect an individual’s neural solution to 

generate movement, and better predict knee joint contact forces, particularly in the lateral 

tibiofemoral joint, measured using instrumented prostheses (Fregly et al., 2012a; Gerus et 

al., 2013; Walter et al., 2014; Winby et al., 2009).

When using CEINMS a number of factors must be considered. The neural mapping (Lloyd 

and Besier, 2003; Sartori et al., 2012a) is a simplification of muscle recruitment strategies 
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and may result in suboptimal model calibration and inaccurate force predictions. This is 

exemplified by larger discrepancies in measured and predicted excitations in the muscles 

surrounding the hip compared to the knee and ankle (Table 2). This may be caused by the 

iliacus and psoas excitations not being included in the calibration, resulting in the other hip 

muscles’ parameters being less-than ideally calibrated in their absence. Thus, the prediction 

of hip muscles excitations using EMG-assisted mode may have contained some errors. 

Possible solutions include multiple iteration between calibration and prediction of 

excitations (Walter et al., 2014) or the simultaneous calibration of muscle parameters and 

prediction of excitations, for all trails from an individual, using dynamic optimization. 

However, further research is required to develop these processes.

In line with previous research (Barrett et al., 2007; Gerus et al., 2013) we performed both 

model calibration and execution using the same task. Other investigations (Shao et al., 2011; 

Winby et al., 2013; Winby et al., 2009) used a range of additional tasks for calibration, 

which improved prediction of walking, while Lloyd and Besier (2003) also predicted tasks 

not included in the calibration. Nevertheless, a systematic investigation is needed on how to 

best calibrate in regard to types of trials, which muscles to record EMG from, neural 

mapping, and how to attain true maximum excitations in some populations. This is a large 

undertaking and beyond the scope of the current study and a much needed area of future 

research. Finally, we used CEINMS in combination with MOtoNMS, an easy-to-use self-

contained software package written in MATLAB. While MOtoNMS simplifies data pre-

processing, it is not essential for the use of CEINMS and researchers may perform data pre-

processing using freely available alternatives to MATLAB, such as Octave (www.gnu.org/

software/octave) and Scilab (www.scilab.org).

This study describes the new CEINMS toolbox and how it can be configured to obtain 

different neural control solutions for the same NMS model and motion data. While the 

current research only provides a little insight into how the different neural control solutions 

estimate MTU forces and muscle excitations, CEINMS enables investigators to further 

explore these differences with their own datasets. Although each EMG-informed algorithm 

has been described and validated previously (Barrett et al., 2007; Gerus et al., 2013; Lloyd 

and Besier, 2003; Manal and Buchanan, 2013; Sartori et al., 2014; Sartori et al., 2013; 

Sartori et al., 2012a; Shao et al., 2011; Winby et al., 2013; Winby et al., 2009), direct 

comparisons between all these different neural control solutions have not been possible 

before. The availability of CEINMS source code will enable the larger biomechanics 

community to explore, extend, and improve the methods of calibration and the neural 

control solutions currently implemented. It is our hope that CEINMS will facilitate and 

promote the comparison of different neural solutions deriving physiologically relevant data, 

such as MTU forces, joint contact forces, and muscle co-contraction, across different 

research groups and projects, allowing more comprehensive insight in biomechanics of 

health and pathology.

Acknowledgements

The authors would like to thank Dr Nicole Grigg for her assistance with data collection and manuscript preparation, 
A/Prof Jonas Rubenson for his contribution to the implementation of the elastic tendon model, and Dr Alice 
Mantoan for the development of MOtoNMS. This work was funded by the Australian National Health and Medical 

Pizzolato et al. Page 10

J Biomech. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.gnu.org/software/octave
http://www.gnu.org/software/octave
http://www.scilab.org


Research Council (628850), Royal Society of NZ Marsden Fund (12-UOA-1221), the US National Institutes of 
Health grant R01EB009351, EU-F7 grant BioMot (project no. 611695), and PhD scholarship from Griffith 
University and Menzies Health Institute Queensland.

References

Amarantini D, Martin L. A method to combine numerical optimization and EMG data for the 
estimation of joint moments under dynamic conditions. Journal of biomechanics. 2004; 37:1393–
1404. [PubMed: 15275847] 

Anderson FC, Pandy MG. Dynamic optimization of human walking. Journal of biomechanical 
engineering. 2001; 123:381–390. [PubMed: 11601721] 

Barrett RS, Besier TF, Lloyd DG. Individual muscle contributions to the swing phase of gait: and 
EMG based forward dynamics model. Simulation Modelling Practice and Theory. 2007; 15:1146–
1155.

Brent RP. Some Efficient Algorithms for Solving Systems of Nonlinear Equations. Siam J Numer 
Anal. 1973; 10:327–344.

Bryant AL, Kelly J, Hohmann E. Neuromuscular adaptations and correlates of knee functionality 
following ACL reconstruction. Journal of Orthopaedic Research. 2008; 26:126–135. [PubMed: 
17676614] 

Buchanan TS, Lloyd DG. Muscle-Activity Is Different for Humans Performing Static Tasks Which 
Require Force Control and Position Control. Neurosci Lett. 1995; 194:61–64. [PubMed: 7478214] 

Buchanan TS, Lloyd DG, Manal K, Besier TF. Neuromusculoskeletal modeling: estimation of muscle 
forces and joint moments and movements from measurements of neural command. Journal of 
applied biomechanics. 2004; 20:367–395. [PubMed: 16467928] 

Buchanan TS, Shreeve DA. An evaluation of optimization techniques for the prediction of muscle 
activation patterns during isometric tasks. Journal of biomechanical engineering. 1996; 118:565–
574. [PubMed: 8950661] 

Chèze L, Moissenet F, Dumas R. State of the art and current limits of musculoskeletal models for 
clinical applications. Movement & Sport Sciences - Science & Motricité. 2012

Colby S, Francisco A, Yu B, Kirkendall D, Finch M, Garrett W. Electromyographic and kinematic 
analysis of cutting maneuvers - Implications for anterior cruciate ligament injury. Am J Sport 
Med. 2000; 28:234–240.

Corana A, Marchesi M, Martini C, Ridella S. Minimizing Multimodal Functions of Continuous-
Variables with the Simulated Annealing Algorithm. Acm T Math Software. 1987; 13:262–280.

Crowninshield RD, Johnston RC, Andrews JG, Brand RA. A biomechanical investigation of the 
human hip. Journal of biomechanics. 1978; 11:75–85. [PubMed: 659458] 

d'Avella A, Tresch MC. Modularity in the motor system: decomposition of muscle patterns as 
combinations of time-varying synergies. Adv Neur In. 2002; 14:141–148.

De Luca CJ. The use of surface electromyography in biomechanics. Journal of applied biomechanics. 
1997; 13:135–163.

Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG. OpenSim: 
open-source software to create and analyze dynamic simulations of movement. IEEE Trans 
Biomed Eng. 2007; 54:1940–1950. [PubMed: 18018689] 

Erdemir A, McLean S, Herzog W, van den Bogert AJ. Model-based estimation of muscle forces 
exerted during movements. Clin Biomech (Bristol, Avon). 2007; 22:131–154.

Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG, D'Lima DD. Grand challenge 
competition to predict in vivo knee loads. Journal of Orthopaedic Research. 2012a; 30:503–513. 
[PubMed: 22161745] 

Fregly BJ, Boninger ML, Reinkensmeyer DJ. Personalized neuromusculoskeletal modeling to improve 
treatment of mobility impairments: a perspective from European research sites. Journal of 
neuroengineering and rehabilitation. 2012b; 9:18. [PubMed: 22463378] 

Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D'Lima DD, Lloyd DG. 
Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. 
Journal of biomechanics. 2013; 46:2778–2786. [PubMed: 24074941] 

Pizzolato et al. Page 11

J Biomech. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Harrington ME, Zavatsky AB, Lawson SE, Yuan Z, Theologis TN. Prediction of the hip joint centre in 
adults, children, and patients with cerebral palsy based on magnetic resonance imaging. Journal of 
biomechanics. 2007; 40:595–602. [PubMed: 16584737] 

Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee 
osteoarthritis patient gait. Clin Biomech. 2009; 24:833–841.

Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG 
sensors and sensor placement procedures. Journal of Electromyography and Kinesiology. 2000; 
10:361–374. [PubMed: 11018445] 

Langenderfer J, LaScalza S, Mell A, Carpenter JE, Kuhn JE, Hughes RE. An EMG-driven model of 
the upper extremity and estimation of long head biceps force. Computers in biology and medicine. 
2005; 35:25–39. [PubMed: 15567350] 

Lenaerts G, De Groote F, Demeulenaere B, Mulier M, Van der Perre G, Spaepen A, Jonkers I. Subject-
specific hip geometry affects predicted hip joint contact forces during gait. Journal of 
biomechanics. 2008; 41:1243–1252. [PubMed: 18346745] 

Lloyd DG, Besier TF. An EMG-driven musculoskeletal model to estimate muscle forces and knee 
joint moments in vivo. Journal of biomechanics. 2003; 36:765–776. [PubMed: 12742444] 

Lloyd, DG.; Besier, TF.; Winby, CR.; Buchanan, TS. Neuromusculoskeletal modelling and simulation 
of tissue load in the lower extremities. In: Hong, Y.; Bartlett, R., editors. Routledge Handbook of 
Biomechanics and Human Movement Science. Oxford, UK: Taylor & Francis Books Ltd; 2008. p. 
3-17.

Lloyd DG, Buchanan TS. A model of load sharing between muscles and soft tissues at the human knee 
during static tasks. Journal of biomechanical engineering. 1996; 118:367–376. [PubMed: 
8872259] 

Lloyd DG, Buchanan TS. Strategies of muscular support of varus and valgus isometric loads at the 
human knee. Journal of biomechanics. 2001; 34:1257–1267. [PubMed: 11522305] 

Manal K, Buchanan TS. A one-parameter neural activation to muscle activation model: estimating 
isometric joint moments from electromyograms. Journal of biomechanics. 2003; 36:1197–1202. 
[PubMed: 12831746] 

Manal K, Buchanan TS. An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict in 
Vivo Joint Contact Forces During Normal and Novel Gait Patterns. J Biomech Eng-T Asme. 2013; 
135

Menegaldo LL, de Oliveira LF, Minato KK. EMGD-FE: an open source graphical user interface for 
estimating isometric muscle forces in the lower limb using an EMG-driven model. Biomed Eng 
Online. 2014; 13:37. [PubMed: 24708668] 

Millard M, Uchida T, Seth A, Delp SL. Flexing computational muscle: modeling and simulation of 
musculotendon dynamics. Journal of biomechanical engineering. 2013; 135:021005. [PubMed: 
23445050] 

Milner HS, Stein RB, Yemm R. Changes in Firing Rate of Human Motor Units during Linearly 
Changing Voluntary Contractions. J Physiol-London. 1973; 230:371–390. [PubMed: 4708898] 

Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: A simulation study. Journal of 
biomechanics. 2009; 42:1282–1287. [PubMed: 19394023] 

Neptune RR, Wright IC, Van den Bogert AJ. Muscle coordination and function during cutting 
movements. Med Sci Sport Exer. 1999; 31:294–302.

Sartori M, Farina D, Lloyd DG. Hybrid neuromusculoskeletal modeling to best track joint moments 
using a balance between muscle excitations derived from electromyograms and optimization. 
Journal of biomechanics. 2014; 47:3613–3621. [PubMed: 25458151] 

Sartori M, Gizzi L, Lloyd DG, Farina D. A musculoskeletal model of human locomotion driven by a 
low dimensional set of impulsive excitation primitives. Frontiers in computational neuroscience. 
2013; 7:79. [PubMed: 23805099] 

Sartori M, Reggiani M, Farina D, Lloyd DG. EMG-driven forward-dynamic estimation of muscle 
force and joint moment about multiple degrees of freedom in the human lower extremity. PloS 
one. 2012a; 7:e52618. [PubMed: 23300725] 

Sartori M, Reggiani M, Pagello E, Lloyd DG. Modeling the human knee for assistive technologies. 
IEEE transactions on bio-medical engineering. 2012b; 59:2642–2649. [PubMed: 22911539] 

Pizzolato et al. Page 12

J Biomech. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schmitt LC, Rudolph KS. Influences on knee movement strategies during walking in persons with 
medial knee osteoarthritis. Arthritis Rheum. 2007; 57:1018–1026. [PubMed: 17665469] 

Schutte, LM. Ph.D. Thesis. Stanford University; 1993. Using musculoskeletal models to explore 
strategies for improving performance in electrical stimulation-induced leg cycle ergometry. 

Shao Q, MacLeod TD, Manal K, Buchanan TS. Estimation of ligament loading and anterior tibial 
translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial 
slope using EMG-driven approach. Annals of biomedical engineering. 2011; 39:110–121. 
[PubMed: 20683675] 

Tax AAM, Vandergon JJD, Gielen CCAM, Kleyne M. Differences in Central Control of M-Biceps-
Brachii in Movement Tasks and Force Tasks. Exp Brain Res. 1990; 79:138–142. [PubMed: 
2311690] 

Thelen DG, Schultz AB, Fassois SD, Ashtonmiller JA. Identification of Dynamic Myoelectric Signal-
to-Force Models during Isometric Lumbar Muscle Contractions. Journal of biomechanics. 1994; 
27:907–919. [PubMed: 8063841] 

Tresch MC, Cheung VCK, d'Avella A. Matrix factorization algorithms for the identification of muscle 
synergies: Evaluation on simulated and experimental data sets. Journal of neurophysiology. 2006; 
95:2199–2212. [PubMed: 16394079] 

Walter JP, Kinney AL, Banks SA, D'Lima DD, Besier TF, Lloyd DG, Fregly BJ. Muscle synergies 
may improve optimization prediction of knee contact forces during walking. Journal of 
biomechanical engineering. 2014; 136:021031. [PubMed: 24402438] 

Winby CR, Gerus P, Kirk TB, Lloyd DG. Correlation between EMG-based coactivation measures and 
medial and lateral compartment loads of the knee during gait. Clinical biomechanics (Bristol, 
Avon). 2013

Winby CR, Lloyd DG, Besier TF, Kirk TB. Muscle and external load contribution to knee joint contact 
loads during normal gait. Journal of biomechanics. 2009; 42:2294–2300. [PubMed: 19647257] 

Winby CR, Lloyd DG, Kirk TB. Evaluation of different analytical methods for subject-specific scaling 
of musculotendon parameters. Journal of biomechanics. 2008; 41:1682–1688. [PubMed: 
18456272] 

Pizzolato et al. Page 13

J Biomech. Author manuscript; available in PMC 2016 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The muscle parameters in the uncalibrated subject are used as the initial conditions for 

CEINMS calibration. The calibration setup defines the parameters to calibrate and their 

relative boundaries, while the association between experimental muscle excitations (or 

excitation primitives and weightings) and MTUs is defined by the neural mapping. The 

output of the calibration is the set of calibrated parameters (calibrated subject) that is used as 

input for the execution of CEINMS to predict MTU forces, joint moments, and adjusted 

muscle excitations of trials not used for the calibration. The execution setup defines the 

neural algorithm to be used for the CEINMS execution.
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Figure 2. 
Excitation primitives and weighting factors from factorisation of experimental excitations 

can be used as input for CEINMS. CEINMS neural mapping is integrated in the software 

and can be configured to linearly combine excitation primitives and weightings.
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Figure 3. 
The calibration refines the subject’s neuromuscular parameters to reduce the error between 

experimental joint moments and joint moments predicted by the CEINMS EMG-driven 

open-loop mode.
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Figure 4. 
In CEINMS execution the adjusted muscle excitations in conjunction with MTU lengths and 

moment arms from OpenSim are used as inputs to estimate MTU forces and joint moments 

from a single experimental trial. For each timeframe the neural control solution algorithm 

uses the mapped excitations, the error between mapped and adjusted excitations, and the 

joint moments tracking error to minimise a weighted objective function. The weighting 

factor values and the choice of muscle excitations to adjust determine the final muscle 

excitations produced by the neural control solution algorithm (i.e. EMG-driven, EMG-

assisted or static optimisation).
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Figure 5. 
CEINMS data preparation pipeline in MATLAB. Experimental data, including marker 

trajectories, ground reaction forces, and EMG signals, are first conditioned in the pre-

processing block which performs filtering, rotation of coordinate systems, calculation of hip, 

knee, and ankle joint centres, calculation and normalisation of experimental excitations from 

EMG signals, and file conversions in OpenSim format. OpenSim APIs are then used to first 

scale a generic OpenSim model, then inverse kinematics, muscle analysis, and inverse 

dynamics tools are used to calculate MTU lengths, moment arms, and joint moments. The 

muscle parameters in the scaled OpenSim model are anthropometrically scaled to maintain 

the same operation range of the generic model (Winby et al 2008), which are then used as 

the initial conditions for the calibration process in CEINMS. Synergies and weighting 

factors can be also used in place of experimental muscle excitations as input for CEINMS.
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Figure 6. 
External joint moments from OpenSim inverse dynamics (green), calibrated EMG-driven 

(black), and uncalibrated EMG-driven (blue). The curves represent the ensemble average 

(shaded area 1 SD) of 30 walking trials from 5 different individuals. These results were from 

trials different to those used to calibrate CEINMS.
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Figure 7. 
Comparisons between experimental joint moments from OpenSim inverse dynamics (solid 

green) and joint moments predicted by EMG-driven (solid black), EMG-assisted (dash-

point), and static optimisation (dashed) modes for hip, knee and ankle flexion extension 

during stance phase.
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Figure 8. 
Effective mechanical co-contraction ratios between flexion and extension muscle moments 

at the hip, knee, and ankle of 30 walking trials from 5 different individuals. Zero represents 

maximum co-contraction, and 1 or −1 minimum co-contraction. On the left data is presented 

as mean time series for EMG-driven (solid), EMG-assisted (dash-point), and static 

optimisation (dashed) modes. On the right mean (1 SD) on co-contraction ratios of the 

muscle moments for each stage of stance, for EMG-driven (white), EMG-assisted 

(crosshatch), and static optimisation (grey). Loading first 15% of stance, early stance from 

15% to 40%of stance, mid stance from 40% to 60% of stance, late stance from 60% to 100% 

of stance.
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