Table 4.
log Likelihood | # parameters | BIC | saBIC | |
---|---|---|---|---|
LCA C2 | −18259.270 | 62 | 37003.581 | 36806.592 |
LCA C3 | −17690.645 | 94 | 36116.675 | 35818.013 |
LCA C4 | −17365.716 | 126 | 35717.161 | 35316.827 |
F1C1 | −17376.632 | 41 | 35074.033 | 34943.766 |
F2C1 | −17164.978 | 45 | 34558.756 | 34415.780 |
F2C2 | −16945.583 | 78 | 34360.309 | 34112.483 |
F2C3 | −16845.291 | 113 | 34603.874 | 34244.845 |
F2C4 | −16784.063 | 148 | 34723.727 | 34253.494 |
F3C1 | −16947.075 | 46 | 34254.038 | 34107.885 |
F3C2 | −16816.382 | 81 | 34266.480 | 34009.122 |
F3C3 | −16822.285 | 119 | 34482.748 | 34104.655 |
F3C4 | −16818.046 | 157 | 34698.028 | 34199.199 |
Note: Models were fitted to a subsample of N=2,499 to separate model selection from the estimation of regressions on comorbid behaviors in order to avoid inflated type 1 error. LCA C# indicates results for latent class models with # latent classes. F#C# are factor mixture models where # indicates the number of factors within class and the number of classes (e.g., F2C3 is a 2-factor 3-class model). BIC stands for Bayesian Information Criterion, with smaller values indicating better model fit. SaBIC is a BIC with a different sample size adjustment.31