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Abstract

The comprehensive MS analysis of the peptidome, the intracellular and intercellular products of 

protein degradation, has the potential to provide novel insights on endogenous proteolytic 

processing and their utility in disease diagnosis and prognosis. Along with the advances in MS 

instrumentation and related platforms, a plethora of proteomics data analysis tools have been 

applied for direct use in peptidomics; however an evaluation of the currently available informatics 

pipelines for peptidomics data analysis has yet to be reported. In this study, we begin by 

evaluating the results of several popular MS/MS database search engines including MS-GF+, 

SEQUEST and MS-Align+ for peptidomics data analysis, followed by identification and label-free 

quantification using the well-established accurate mass and time (AMT) tag and newly developed 

informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our results 

demonstrate that MS-GF+ out-performed both SEQUEST and MS-Align+ in identifying 

peptidome peptides. Using a database established from MS-GF+ peptide identifications, both the 

AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing 

data for each individual data set than the MS/MS methods, while achieving robust label-free 

quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ 

also provided slightly higher peptidome coverage. Taken together, we propose an optimized 

informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT tag) 

approaches for identification and label-free quantification for high-throughput, comprehensive and 

quantitative peptidomics analysis.
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Introduction

Peptidomics is defined as the comprehensive characterization of “native” peptides in a 

biological sample [1]. Without digesting proteins into peptides using trypsin or other 
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proteases as applied in conventional bottom-up proteomics, peptidomics is able to preserve 

the endogenous information of the peptidome peptides from a biological sample, including 

post-translational modifications (PTMs) and proteolytic products revealing the natural 

proteases participated in the proteolytic processes [2]. In contrast to limited study of small 

neuropeptides [3-6], broad and large-scale studies have been increasingly conducted to 

characterize endogenous peptides in different biological samples, including cell lines [7, 8], 

body fluids [9, 10], as well as tissues [11], for biomarker screening or clinically-related 

studies.

The peptidome coverage and effectiveness for quantification provided by a peptidomics 

pipeline is dependent on each step of the pipeline, including peptide extraction and/or 

enrichment/fractionation, separation, LC-MS data acquisition, as well as the subsequent 

informatics analysis [12]. Despite many new advances in both sample preparation [13, 14] 

and instrumentation [15], very limited progress has been made toward improved data 

analysis for peptidomics studies. Many proteomics software tools have been applied directly 

to peptidomics studies, such as MS-GF+ [16], SEQUEST [17], Mascot [18], MS-Align+ 

[19], which has been reviewed recently [20]. However, to the best of our knowledge, there is 

no detailed study reported for comparing the performance of these proteomics software tools 

for peptide identification for peptidomics analysis.

Different stable isotope labeling strategies such as 18O-labeling [21] and other chemical 

labeling [8] have been applied for quantification of peptidomic changes. Although the 

labeling approaches can provide accurate quantification, they are typically associated with 

increased cost, sample losses and increased sample processing time. In contrast, label-free 

quantification, a simple yet effective method, can be highly reliable in well-controlled 

experiments [22]. In addition, there are also well-established methods, such as the accurate 

mass and time (AMT) tag approach [23], that provide both improved measurement 

throughput and reliable label-free quantification. More recently, we have developed a new 

software tool, informed quantification (IQ), which capitalizes on peptide LC elution and 

high-accuracy mass information, and is capable of accurate de-isotoping, peak matching as 

well as label-free quantification, independent of MS/MS data [11]. Such MS/MS-

independent proteomics analysis strategies have the potential of providing both increased 

coverage and reliable quantification in large-scale peptidomics studies.

In this study, we applied both the AMT tag and the augmented IQ informatics pipelines for 

analyzing data sets from our recent peptidomics study on potential ischemia effects in 

ovarian cancer tumors [11], and evaluated their performance in greater detail. Both the AMT 

tag and IQ analyses use a database consisting of peptides identified from conventional 

database searching of the MS/MS data from each individual peptidomics data set from the 

entire study, and the study included evaluation of the performance of different search 

engines, including MS-GF+, SEQUEST and MS-Align+, for effectiveness in peptidomic 

peptide identification. The results showed that MS-GF+ could identify many more unique 

peptidome peptides than SEQUEST and MS-Align+. Both AMT tag and IQ approaches 

were shown to provide more unique peptide identification than the database searching 

methods, which greatly reduced missing data across the entire data sets. In addition to the 

good correlation that was observed between AMT tag and IQ quantification results, IQ also 
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provided slightly higher peptidome coverage and less missing data than AMT tag approach. 

Taken together, our results demonstrate that integration of MS-GF+ database research and 

IQ analysis for label-free quantification drastically improves peptidome coverage and 

reduces missing data, and represents an optimized informatics pipeline for large-scale, 

comprehensive and quantitative peptidomics analysis.

Experimental

Tumor samples, peptidomics sample preparation and LC-MS/MS analysis

The ovarian tumor samples, sample preparation methods and LC-MS/MS instrument 

analysis methods used for generating the peptidomics data sets have been described in 

details previously [11]. Briefly, tumor tissues collected from three patients with high-grade 

serous ovarian carcinoma (A, B and C) were rapidly dissected into four contiguous and 

adjacent specimens strips, and placed into cryovials and frozen in liquid nitrogen at 4 

different time points (0, 5, 30, and 60 min, at room temperature). The ovarian cancer tumor 

samples were further processed by cryopulverization and acid extraction (using 0.25% acetic 

acid and protease inhibitor cocktail) for peptidomic peptides, followed by LC-MS/MS 

analysis using nanoACQUITY UPLC® system (Waters Corporation, Milford, MA) coupled 

on-line to a LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA). A 110 cm × 75 μm i.d. (flow rate 200 nL/min) fused-silica capillary column packed 

with 3 μm Jupiter C18 bonded particles (Phenomenex, Torrance, CA) was used for analysis 

of the ovarian tumor samples. Mobile phases consisted of 0.1% formic acid in water (A) and 

0.1% formic acid acetonitrile (B) were operated with effective gradient profiles as follow 

(min:%B): 0:1, 6:8, 60:12, 225:35, 291:45, 300: 95. The LTQ Orbitrap Velos mass 

spectrometer was operated in the data-dependent mode acquiring high-resolution CID scans 

(R=15,000, 5 × 104 target ions) after each full MS scan (R=60,000, 1 × 106 target ions) for 

the top six most abundant ions within the mass range of 400 to 2000 m/z. An isolation 

window of 2 Th and a normalized collision energy of 35 were used for CID. The dynamic 

exclusion time was 60 s.

Mass spectrometry data analysis

The resulting MS data was first subject to DTARefinery [24] to correct overall mass 

measurement deviation before database searching. After that, the corrected spectrum was 

further searched against human protein sequences from UniProt (UniProt Knowledgebase 

release 2013_09) using MS-GF+ [16], with the following parameters: no enzyme digestion, 

precursor mass tolerance 50 ppm, methionine oxidation as variable modification, and target-

decoy strategy was adopted for false discovery rate (FDR) calculation. The database 

searching result was finally filtered by spectrum level FDR less than 1% and precursor mass 

error less than 10 ppm, and only these confidently identified peptides were kept for next step 

analysis.

After the initial database searching, the data sets were further analyzed using the PNNL-

developed AMT tag approach [25]. Confidently identified peptides from all the individual 

data sets were assembled into an AMT tag database containing both theoretical masses 

(calculated from the peptide sequence) and LC elution times of those peptides. LC-MS 
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features in each individual data set were then matched against the AMT tags in the database 

for peptide identification using VIPER [26] with a mass error tolerance of <10 ppm and a 

normalized elution time (NET) error tolerance of <2.5%. The AMT tag matching result was 

further filtered by uniqueness probability (UP) higher than 0.5 to reduce ambiguous match 

to multiple AMT tags, and finally by Statistical Tools for AMT tag Confidence (STAC) 

value filtering to ensure FDR less than 2.5% [27]. Integrated MS peak area was used to 

derive changes in abundance for the peptide identifications.

The MS data sets were also analyzed using a recently in-house developed IQ approach [11], 

a derivative and improved approach, which provides better de-isotoping and peak selection. 

Briefly, in IQ the m/z values of the theoretical isotopic profile (derived based on the peptide 

sequences that were included in the AMT tag database) are used to guide the extraction of 

the observed isotopic profile from the summed mass spectra. Least-squares fitting of the 

theoretical isotopic profile on the observed profile is then performed [28], providing a 

measure of how well the observed isotopic profile matches the theoretical isotopic profile. 

This metric is called the “fit score” and is a key metric for resolving correct vs. incorrect 

features. A key step in IQ, as with the AMT tag approach, is the alignment of observed mass 

and LC elution times to database values in order to correct for variations in mass and elution 

time measurements taken across multiple datasets. Alignment of mass and the LC elution 

time makes it possible to narrow the mass tolerance used in generating extracted ion 

chromatograms (XICs) and the elution time window for selecting the correct 

chromatographic peak. Currently, VIPER is also used in a first-pass analysis to output mass 

and NET alignment information, which is then loaded into IQ and used for mass and NET 

correction during subsequent processing. Data processed by IQ approach was initially 

filtered by fit score (<0.1), NET tolerance (<2.5%) and mass accuracy (<10 ppm), and 

followed by manual validation to eliminate false positives [29] (development on computing 

FDR for IQ is currently in progress). If a chromatographic peak has been selected for a 

given peptide/charge state target, IQ then performs a final step of extracting the abundance 

information. Currently, this is comprised of summing a total of 5 mass spectra, centering 

around the apex scan of the elution profile. The abundance from different charge states is 

then added up for the specific peptide for quantification.

The peptide to protein mapping was performed using IDPicker3 [30]. All the quantification 

result from AMT tag and IQ analyses were imported into DanteR program [31] for 

processing and plotting: the data was first log10 transformed followed by median 

normalization, and used for further analysis; hierarchical clustering analysis was performed 

with Euclidean distance as distance metrics and average linkage for clustering; principal 

component analysis was performed with default parameters.

Results and Discussion

MS-GF+ outperforms SEQUEST and MS-Align+ in peptide identification for peptidomics 
analysis

Totally 6845 unique peptides were confidently identified using MS-GF+ after 1% FDR 

filtering. As shown in Figure 1A (white), the distribution of precursor monoisotopic mass 

ranged from 785 ~ 6000 Da with a median of 2059.3 Da. These peptides were further 
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mapped to 1136 non-redundant protein groups using IDPicker3 (Supplementary Table S1). 

In our previous study [11], both SEQUEST and MS-Align+ were used for database search 

for the same peptidomics data, resulting in 3977 and 2843 unique peptides after filtering 

(FDR <1%), respectively. MS-GF+ was able to identify many more unique peptides than 

SEQUEST and MS-Align+ (Figure 1B). Similar results were also obtained for the breast 

tumor peptidomics data in our previous study (data not shown). Furthermore, 91.05% of 

SEQUEST identified peptides (3621) were overlapped with MS-GF+ identifications, and the 

distribution of which was depicted in Figure 1A(Blue); similarly, 61.66% of MS-Align+ 

identified peptides (1753) were covered by MS-GF+, and the distribution of which is 

depicted in Figure 1A(Red). In agreement with previous report [19], SEQUEST appears to 

better identify peptides with relatively lower molecular weight, whereas MS-Align+ has a 

preference for peptides with higher molecular weight (Figure 1A). In comparison, peptide 

identifications from MS-GF+ covered a larger dynamic range of molecular weight 

distribution, almost as large as the combination of those from the other two methods. To 

confirm the quality of the MS-GF+ search results, we manually inspected the spectra with 

the worst scores for 50 peptides that were identified only by MS-GF+. The results suggest 

that the majority of the spectra are of acceptable quality to us for the peptide identification 

(Supplementary Figure 1). Taken together, our data suggested that MS-GF+ outperformed 

SEQUEST and MS-Align+ in terms of peptide identification for peptidomics analysis by 

providing significantly more unique peptide identifications and better molecular weight 

range coverage.

AMT tag and IQ provide significantly higher peptidome coverage and fewer missing data 
than MS-GF+

Due to the low stoichiometry of peptidome as well as under-sampling nature of typical data-

dependent acquisition of MS/MS data, very low consistency is usually observed in MS/MS 

based peptide identification from run to run, leading to poor peptidome coverage and 

significant amount of missing data in label-free quantification [32]. Indeed, although there 

were a total of 6845 unique peptides identified by MS-GF+ from all 12 datasets, on average 

only approximately 2500 unique peptides were detected for each data set (Blue in Figure 
2A; also see Table 1). Furthermore, only about 500 peptides were consistently identified 

and quantifiable across all 12 samples, whereas more than 2000 peptides were only detected 

from one sample (Figure 2B, Blue). This led to much smaller peptidome coverage and a 

much larger number of missing data in the individual sample analysis, both well known and 

significant issues for label-free quantification.

In order to improve data quality in both identification and quantification for each individual 

analysis, we next utilized both the AMT tag and IQ approaches for analysis of the same 12 

data sets, taking advantage of a LC-MS database created using the MS-GF+ peptide 

identifications. Both approaches are expected to obtain more comprehensive quantification 

results due to the LC elution time alignment, and hence effective LC-MS peak matching. As 

depicted in Figure 2A, the average numbers of unique peptides identified from individual 

dataset via AMT tag and IQ approaches were much larger than that from MS-GF+: 4630 and 

5000, respectively, as opposed to 2500. Moreover, the number of unique peptides detected 

across all 12 datasets via AMT tag (2112) and IQ (2182) approaches, was significantly 
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increased compared to MS-GF+ (421), and peptides only detected in one sample greatly 

decreased (243 for AMT tag and 133 for IQ), significantly reducing missing data (Figure 
2Band Table 2). The peptide identifications resulted from MS-GF+, AMT tag and IQ 

analysis for each individual peptidomic dataset are provided in Supplementary Tables 2-4.

When the performance of the two MS/MS-independent LC-MS analysis approaches were 

compared, IQ provided slightly more unique peptide identifications (2.34% ~ 14.69%, 

average 8.02%), and thus less missing data than did the AMT tag approach. This is likely 

because IQ employs all isotopic peaks whereas the AMT tag approach uses individually 

deisotoped spectra, resulting in improved sensitivity, better distinguished overlapping 

features, and better reproducibility. Taken together, our results demonstrate that benefiting 

from significantly reduced undersampling, the direct LC-MS analysis pipelines including the 

AMT tag and IQ approaches provide significantly higher peptidome coverage and more 

importantly, less missing data across the entire peptidomics data sets comparing to even the 

best performing MS/MS-dependent analysis approaches such as MS-GF+.

Both the AMT tag and IQ approaches provide more robust label-free quantification for 
peptidomics

The AMT tag approach is a well-established approach for label-free quantification [23, 33]; 

it is interesting to compare its performance in quantification with that of the relatively newer 

IQ approach. Altogether, there were 1503 unique peptides overlapped between IQ and AMT 

tag analyses with no missing data across all 12 samples. Pearson correlation was first 

calculated for all 1503 unique peptides to assess the consistency between the quantification 

results of AMT tag and IQ analyses. As shown in Figure 3A, 91.62% of peptides displayed 

a correlation coefficient no less than 0.8, whereas only 50 peptides (3.32%) had a correlation 

lower than 0.5. Pearson correlations between the AMT tag and IQ quantification results for 

each sample were also calculated. With no Pearson correlation coefficient less than 0.93, the 

quantification results from both AMT tag and IQ analyses were well-correlated (Table 3). 

As an example, the AMT tag and IQ quantification results of one sample (A_0) shown in 

Figure 3B displayed excellent consistency, with most of the data points aligned along the 

diagonal line with an overall correlation of 0.94.

The IQ and AMT tag label-free quantitation results also produced very similar hierarchical 

clustering analysis (HCA) and principle component analysis (PCA) plots (Supplementary 
Figure 2). Consistent with previously reported results [11], in both IQ and AMT tag 

analyses of the same peptidomics data sets the HCA heatmaps and PCA plots showed that 

the peptidomic profiles from the four time points of the same patient sample were clustered 

together. This indicated that potential changes in the peptidomes due to post-excision delay 

(up to one hour) were much smaller than that from patient heterogeneity, and that both IQ 

and AMT tag informatics pipelines provide robust quantitation for peptidomics analysis.

Conclusions

We describe an improved LC-MS based informatics workflow for comprehensive and 

quantitative peptidomics analysis, which consists of MS-GF+ for initial database searching 

and IQ (or AMT tag) approach for improved identification and more robust label-free 
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quantification. MS-GF+ provides significantly more peptide identifications spanning a 

broader molecular weight range than the frequently used SEQUEST and MS-Align+ 

MS/MS search engines for identifying peptidome peptides. Owing to the direct LC-MS 

analysis strategy employed, both the AMT tag and IQ approaches significantly alleviate the 

under-sampling issue and provide much better peptidome coverage and much less missing 

data for each sample in comparison to even the best MS/MS-based analysis methods such as 

MS-GF+. In addition to the excellent correlation with the quantification results provided by 

the AMT tag approach, the IQ approach showed further improvement of peptidome 

coverage and reduced missing data across the entire data sets, likely due to better peak 

picking and retention time alignment. We believe that the powerful combination of MS-GF+ 

and IQ (or AMT tag) approach represent an optimal peptidomics informatics pipeline and 

expect broad application of this pipeline for large-scale and highly effective and robust 

peptidomics analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of the peptidome peptide identification results from MS-GF+, SEQUEST and 

MS-Align+. (A) Distribution of precursor monoisotopic mass for MS-GF+ (white), 

SEQUEST (blue) and MS-Align+ (red). (B) Venn diagram showing the overlap of the 

identifications resulted from MS-GF+ (red), SEQUEST (yellow) and MS-Align+ (blue) 

analyses.
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Figure 2. 
Comparison of identification and quantification results from MS-GF+, AMT tag and IQ 

analyses. (A) Comparison of number of identified unique peptides in each sample for MS-

GF+ (blue), AMT (red) and IQ (green). (B) Distribution of quantification frequency among 

all samples for MS-GF+ (blue), AMT tag (red) and IQ (green).
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Figure 3. 
Comparison of the label-free quantification results from AMT tag and IQ analyses. (A) 

Distribution of the Pearson correlation values for peptides common in all samples quantified 

by AMT tag and IQ approaches. (B) Scatter plot showing the correlation of all peptides 

quantified by AMT tag and IQ approaches from sample A_0.
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Table 1

Number of unique peptidome peptides identified by different informatics approaches in each tumor sample.

Tumor samples MS-GF+ AMT tag IQ

A_0 2440 4370 5012

A_5 2248 4315 4729

A_30 2489 4963 5351

A_60 2748 4919 5336

B_0 2309 4544 4759

B_5 2247 4590 4791

B_30 2332 4523 4878

B_60 2344 4707 4817

C_0 2741 4496 4966

C_5 2590 4802 5176

C_30 2549 4579 5100

C_60 2341 4757 5075
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Table 2

The distribution of quantification frequency (number of unique peptide identifications common across the 

different samples) for the three different informatics approaches.

Quantification
Frequency MS-GF+ AMT tag IQ

12 421 2112 2182

11 267 693 911

10 256 503 576

9 235 463 505

8 279 482 482

7 272 403 449

6 338 340 362

5 418 309 341

4 574 388 346

3 670 290 241

2 1039 237 182

1 2076 243 133

Total 6845 6463 6710
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Table 3

Pearson correlation of the AMT tag and IQ label-free quantification results for each tumor sample.

Sample Correlation

A_0 0.94

A_5 0.95

A_30 0.94

A_60 0.94

B_0 0.94

B_5 0.95

B_30 0.94

B_60 0.95

B_0 0.94

B_5 0.94

B_30 0.93

B_60 0.94

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2016 December 01.


