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Abstract

Reliably pinpointing which specific amino acid residues form the interface(s) between a protein 

and its binding partner(s) is critical for understanding the structural and physicochemical 

determinants of protein recognition and binding affinity, and has wide applications in modeling 

and validating protein interactions predicted by high-throughput methods, in engineering proteins, 

and in prioritizing drug targets. Here, we review the basic concepts, principles and recent advances 

in computational approaches to the analysis and prediction of protein-protein interfaces. We point 

out caveats for objectively evaluating interface predictors, and discuss various applications of 

data-driven interface predictors for improving energy model-driven protein-protein docking. 

Finally, we stress the importance of exploiting binding partner information in reliably predicting 

interfaces and highlight recent advances in this emerging direction.
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1. Introduction

Proteins are the principal catalytic agents, structural elements, signal transmitters, 

transporters and molecular machines in cells (Nelson, Lehninger, & Cox, 2008). But 

individual proteins do not function alone; they must interact with other molecules to carry 

out their cellular roles. Alterations in protein-protein interfaces often lead to disease, and 

hence protein interfaces have become one of the most popular new targets for rational drug 

design (Jubb, Blundell, & Ascher, 2015; Rask-Andersen, Almén, & Schiöth, 2011). In 

addition to practical applications in drug design, reliable identification of protein-protein 

interfaces is important for basic research on the mechanisms of macromolecular recognition.

Many biochemical and/or biophysical experimental methods have been used to identify and 

characterize protein-protein interfaces at the level of individual atoms or residues. Widely 

used techniques include: X-ray crystallography (Shi, 2014) and nuclear magnetic resonance 

(NMR) spectroscopy (Göbl, Madl, Simon, & Sattler, 2014), both of which are capable of 

determining interfaces at the atomic level; alanine scanning mutagenesis, which can 

determine interfaces at the residue level; various mass spectrometry-based approaches, such 

as chemical cross-linking and hydrogen/deuterium (H/D) exchange, which typically report 

the location of interfaces at lower resolution, but are capable of identifying individual 

interfacial residues (Hoofnagle, Resing, & Ahn, 2003; Kaveti & Engen, 2006); and various 

NMR-based approaches (van Ingen & Bonvin, 2014), such as chemical shift perturbations, 

cross-saturation, and H/D exchange, which determine interfaces at the residue or atomic 

level (for an recent summary, see (Rodrigues, Karaca, & Bonvin, 2015)).

These experiments are extremely valuable and have contributed greatly to our knowledge of 

protein recognition mechanisms. However, technical challenges, such as difficulties in 

expressing and purifying aggregation-prone protein samples, obtaining high quality crystals, 

as well as the protein size constraints (for NMR), make such experiments both labor-

intensive and time-consuming. Because high throughput experimental characterization of 

protein interfaces is not yet possible, reliable computational approaches to identify 

interfacial residues are especially valuable.

Based on the extent to which a method relies on experimental data, protein-protein interface 

prediction methods can be classified into two broad strategies: 1) data-driven or knowledge-

based methods, which heavily depend on the availability of experimental data to make 

predictions, either by using homologous data as templates or by extracting interaction 

patterns from data into statistical models; 2) protein-protein docking (see a review by 

(Vakser, 2014)), that typically use physics-based and/or geometric models to search for 

putative conformations with low interaction energy and high surface complementarity. The 

data-driven interface prediction methods include: 1) homology-based methods, which 

assume that interfaces are conserved among homologs and exploit experimentally 

determined interfaces of homologs as templates to infer those of query proteins (Jordan, EL-

Manzalawy, Dobbs, & Honavar, 2012; Shoemaker et al., 2009; Xue, Dobbs, & Honavar, 

2011); 2) machine learning based methods, which use a dataset of experimentally 

determined interfaces to train interface predictors and use the trained models to predict 

interfacial residues of query proteins (see reviews by (de Vries & Bonvin, 2008; Ezkurdia et 
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al., 2009; Zhou & Qin, 2007); and 3) co-evolution based statistical models, which operate 

under the assumption that interacting residues at the interface are likely to co-evolve and use 

a large multiple sequence alignment (MSA) to identify such residues (Halabi, Rivoire, 

Leibler, & Ranganathan, 2009; Hopf et al., 2014; Lunt et al., 2010) (also see (Marks, Hopf, 

& Sander, 2012) for a general review of co-evolution based methods for intra-protein 

contact predictions and their applications to protein structure prediction).

The different classes of interface prediction methods have different respective strengths and 

weaknesses, and can be combined in ways that exploit this. Data-driven methods are capable 

of integrating heterogeneous experimental data and are usually quite computationally 

efficient. But because most data-driven methods are based on statistical rules extracted from 

training datasets, they typically predict interfaces at the residue level and can suffer from 

high false positive rates. Ab initio docking programs can predict 3D structures of protein-

protein complexes at the atomic level, but usually are computationally demanding and don't 

consider relevant non-physicochemical information, such as residue conservation and 

correlated mutations, which can be extracted from the existing wealth of sequence data.

We note that the different strategies are not necessarily mutually exclusive. For example, 

machine learning algorithms are also widely used in homology based methods to integrate 

templates of varying quality. Also, statistical potentials derived from experimental interface 

data are often used in scoring functions of docking programs. Further, data-driven docking 

approaches such as HADDOCK (Dominguez, Boelens, & Bonvin, 2003) have been 

developed to make use of interface predictions, or any available experimental information 

on the target system to guide the docking process (Rodrigues & Bonvin, 2014). Increasingly, 

the state-of-the-art approaches leverage heterogeneous data sources and integrate multiple 

analysis and modeling strategies.

This review focuses on data-driven methods. Over the past two decades, the protein 

interface prediction field has advanced considerably and several reviews have been 

published along the way (de Vries & Bonvin, 2008; Ezkurdia et al., 2009; Zhou & Qin, 

2007). The most recent review by Esmaielbeiki et al. (Esmaielbeiki, Krawczyk, Knapp, 

Nebel, & Deane, 2015) summarized and classified the majority of existing methods on a 

broad scope, covering not only general protein-protein interface predictions, but also 

specific areas such as paratope prediction, epitope prediction, and antibody-specific epitope 

prediction. Our aim here is to provide an entry point for researchers and practitioners who 

are new to this field. Hence, we focus on introducing basic concepts, practical technical 

details (e.g., statistical comparison of multiple methods, handling unbalanced dataset, and 

useful resources) and the rationale behind representative methods. We stress the added value 

of considering binding partner information in interface analyses and prediction, and 

highlight a recent significant advance -- partner-specific prediction methods -- and their 

application to improve and guide computational docking. Most importantly, while none of 

the previous reviews has emphasized objective evaluations, we point out an important 

caveat, i.e., cross-validation over proteins vs. over sliding windows (or surface patches). 

This caveat is a serious one and reoccurs even in the recent literature. Using a concrete 

example, we illustrate how the evaluation over sliding windows gives artificially high 
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performance. We conclude with a discussion of key challenges and promising future 

directions in the field.

2 Data-Driven Approaches for Protein Interface Prediction

In the past two decades, a broad range of computational methods for protein–protein 

interface prediction have been proposed in the literature. Some representative methods are 

summarized in Table 1 (also see reviews by (de Vries & Bonvin, 2008; Ezkurdia et al., 

2009; Zhou & Qin, 2007). These methods can be grouped into two major categories: 

homology-based approaches and template-free machine learning-based approaches.

2.1 Homology-based methods

Homology-based approaches infer biological properties of a query protein from its 

homologs based on the assumption that homologs share significant similarity in sequence, 

structure and functional sites. Whenever close homologs are available, homology-based 

(also called template-based) methods usually provide the most reliable results compared 

with other methods, and have been successfully applied in many areas, such as protein 

structure prediction (Martí-Renom et al., 2003), the prediction of protein interaction partners 

(Yu et al., 2004), and function annotation (Loewenstein, Raimondo, & Redfern, 2009).

The potential value of using homologs to infer interfacial residues was unclear for several 

years because several published studies disagreed as to whether or not interfacial residues 

are conserved among homologs (Caffrey, Somaroo, Hughes, Mintseris, & Huang, 2004; 

Grishin & Phillips, 1994; Reddy & Kaznessis, 2005). The relatively small (and different) 

datasets used in these studies contributed to this discrepancy. More important, however, is 

the finding that in contrast to proteins in stable complexes, which tend to have a single 

dominant interface, proteins in transient complexes tend to use different interfaces for 

binding different partners. By taking into account specific binding partner information, our 

group demonstrated that the locations of interfaces in transient complexes are highly 

conserved, even though the sequences (i.e., the identities of the amino acids) in these 

interfaces are not usually conserved (Xue et al., 2011). Based on this partner-specific 

interface conservation, we designed one of the first partner-specific interface predictors, PS-

HomPPI (Xue et al., 2011). Given a query protein and its specific binding partner, PS-

HomPPI searches the PDB (Protein Data Bank, www.rcsb.org) (Berman et al., 2000) for 

homologous interacting proteins and uses these selected homologs as templates for mapping 

experimentally determined interfacial residues onto the query protein sequences. For each 

predicted interfacial residue pair, PS-HomPPI also reports the average, minimum and 

maximum CA-CA (alpha carbon - alpha carbon) distances calculated from the templates. 

Two important steps guarantee the reliability of PS-HomPPI: i) PS-HomPPI automatically 

classifies the templates into one of three categories, Safe Zone, Twilight Zone and Dark 

Zone, based on the similarity of the templates to the query protein, and uses templates from 

the best available zone; ii) PS-HomPPI uses multiple templates to reduce the negative 

impact of occasionally choosing an incorrect (non-homologous) template.

Other published homology-based methods are non-partner-specific (NPS) methods, i.e., they 

do not consider the specific binding partner information when making predictions. 
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Representative methods include NPS-HomPPI (Xue et al., 2011), PredUS (Zhang et al., 

2011), PriSE (Jordan et al., 2012) and IBIS (Shoemaker et al., 2009). NPS homology-based 

methods search the PDB database for homologs of a query protein and map the union of the 

interfaces in homologs with all possible binding partners of the query protein. One 

exception is PriSE (Jordan et al., 2012), a local structural homology-based method, which 

searches the PDB database for similar surface patches instead of similar proteins.

2.2 Template-free machine learning methods

Although homology-based methods are reliable, they have an important limitation in that 

they rely on the availability of homologs with experimentally determined interfaces. When 

templates are not available or are of poor quality, machine learning-based methods offer a 

valuable alternative approach to predicting interfaces.

Existing machine learning predictors usually formulate the interface prediction problem as a 

binary classification problem. To classify a target residue as either an interfacial or non-

interfacial residue, a typical machine learning predictor uses features of the target residue 

and its neighboring residues to make predictions.

Sequence-based vs. structure-based methods—Based on the required input of the 

predictors, machine learning interface predictors can be further classified into structure-

based methods (requiring information derived from 3D protein structures or models of the 

component proteins as input) or sequence-based methods (requiring only protein sequences 

as input).

Most existing machine learning interface predictors are structure-based methods. For each 

target residue in a given protein structure, a set of neighboring residues (spatial neighbors) 

on the protein surface, i.e., a surface patch, can be calculated (Figure 1A). There are two 

common ways to define a surface patch: i) based on a fixed radius, in which the surface 

patch consists of the target residue and any surface residues within a fixed radius from the 

target residue; ii) based on a fixed number of neighboring residues, in which the surface 

patch consists of the target residue and its K nearest surface residues, where K is a preset 

constant number. Each surface patch is represented as a vector x using various structural, 

and often also sequence-derived, features. The class of each target residue in the surface 

patch is defined as 1 (interfacial) or 0 (non-interfacial).

Representative structure-based machine learning predictors include: SPPIDER (Porollo & 

Meller, 2007), PINUP (Liang, 2006), ProMate (Neuvirth, Raz, & Schreiber, 2004), and 

PIER (Kufareva, Budagyan, Raush, Totrov, & Abagyan, 2007) (for details see Table 1).

Structure-based methods offer several apparent advantages over sequence-based methods. 

For example, rather than making predictions for every residue in a protein, structure-based 

predictors need only to identify interfacial residues from among surface residues. However, 

structure-based prediction methods also have several disadvantages. First, their applicability 

is limited because they require knowledge of query protein structures, and the vast majority 

of proteins, especially those involved in transient binding interactions, do not have 

experimentally determined 3D structures. Transient interactions provide a mechanism for 
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the cell to quickly respond to environmental stimuli, and are essential in the regulation of 

many disease-related pathways (Nooren & Thornton, 2003; Ozbabacan, Engin, Gursoy, & 

Keskin, 2011). Thus, reliable identification of interfaces involved in transient interactions 

has important implications in drug design. Second, structure-based methods are complicated 

by conformational changes that often occur when proteins interact with their binding 

partners (Zhou & Qin, 2007). Structure-based methods rely on structural features extracted 

from the query structure in its unbound state (or, for benchmarking cases, from a bound 

complex that has been separated into constituent proteins). Structural features extracted from 

unbound proteins may not exist in bound complexes due to conformational changes induced 

by or required for binding. Third, structure-based methods cannot handle disordered 

proteins. Higher organisms have a large number of intrinsically disordered proteins/regions 

(IDPs/IDRs), which become structured only upon binding to their partners (Dunker, 

Obradovic, Romero, Garner, & Brown, 2000). Such disordered regions - for which 

experimental structure information is, by definition, lacking - participate in many important 

cellular recognition events, and are believed to contribute to the ability of hub proteins to 

interact with multiple partners in protein-protein interaction networks (Dunker & Obradovic, 

2001). Therefore, the development of sequence-based methods, which can reliably 

differentiate interfacial residues from non-interacting ones without requiring knowledge of 

protein structures, is of great interest.

Predicting protein interfaces from sequence alone is highly challenging and consequently 

sequence-based machine learning predictors are still underdeveloped. Given a protein 

sequence with L residues, a window of fixed width (typically 3-30 residues) is applied to the 

sequence, generating a total number of L overlapping windows, with each window centered 

on a target residue (Figure 1B). These sequence windows are used as input feature vectors, 

with sequences sometimes represented using physicochemical, statistical or predicted 

structural features, such as hydrophobicity or solvent accessibility. Representative sequence-

based machine learning predictors include Yan et al.'s two-stage classifier (Yan, Dobbs, & 

Honavar, 2004), Sikic et al.'s random forest predictor (Šikić, Tomić, & Vlahoviček, 2009), 

PSIVER (Murakami & Mizuguchi, 2010), and the sequence-based version of PAIRpred 

(Afsar Minhas, Geiss, & Ben-Hur, 2013).

Currently most structure-based machine learning interface predictors have higher accuracy 

than sequence-based machine learning methods. One reason for this, mentioned above, is 

that most interfacial residues are on the protein surface, so structure-based methods can 

trivially identify surface residues and ignore all internal residues. Second, many protein-

protein interfaces are highly segmented, comprising interfacial residues that are in close 

spatial proximity within the 3D structures, but far apart in the primary sequences of the 

proteins. The spatial positions of residues are key for macromolecular recognition. The 

absence of such information is therefore expected to reduce the performance of sequence-

based predictors relative to structure-based ones. Third, geometric complementarity 

information is also readily available from 3D structures.

Meta-predictors—When individual predictors complement each other, a meta method, 

which pools the output of the individual methods to make a consensus prediction, often 

provides better performance than any of the member predictors. Therefore, the most reliable 
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machine learning methods at present are meta-servers, such as meta-PPISP (Qin & Zhou, 

2007) and CPORT (de Vries & Bonvin, 2011).

3 Basic Concepts and Evaluation

Existing machine learning interface predictors differ mainly in the specific type of machine 

learning classifier used and in the choice of features used as input to the classifier.

3.1 Characteristics of protein interfaces

To reliably predict interfacial residues, one needs to identify the characteristics that 

distinguish the interface region from the rest of the protein sequences or 3D structures. Such 

characteristics (or features) are critical for the success of a predictor. Widely used features in 

the literature include:

• Amino acid types. The most straightforward feature is an amino acid's identity or 

type. For classifiers that can process only numerical features, each type of 

commonly occurring amino acid can be represented as a binary vector of size 20 by 

1. For example, alanine can be represented as [1,0,0,…,0].

• Physicochemical properties of amino acids. Commonly used physicochemical 

properties are hydrophobicity, charge and van der Waals volume. A database of 

numerical indices representing various physicochemical properties of amino acids 

and pairs of amino acids is provided in AAindex (Kawashima & Kanehisa, 2000).

• Interface propensity. The different physicochemical properties of amino acids 

result in differential interaction propensities. For example, in heterocomplexes, 

polar residues appear more frequently than do hydrophobic residues (Jones & 

Thornton, 1996) and aromatic amino acids tend to form stacking interactions. The 

higher its interface propensity, the more likely an amino acid is to appear in the 

interface as opposed to elsewhere on the protein surface. Such propensities are 

usually derived from an analysis of known structures in the PDB.

• Evolutionary information. Interfacial residues are important functional sites and 

tend to be conserved among homologs (Xue et al., 2011) or undergo correlated 

mutations (Hamer, Luo, Armitage, Reinert, & Deane, 2010). There are different 

ways to encode sequence conservation, and a widely used approach is to construct 

PSSMs (Position Specific Scoring Matrices) from multiple sequence alignments 

(MSAs). Each score in a PSSM is a log-likelihood ratio of an amino acid's 

appearance in a specific column of an MSA against a background distribution, 

representing the degree of conservation of the amino acid in that specific position; 

the higher the score, the higher the degree of conservation. Therefore, PSSMs 

capture important evolutionary information by exploiting the large number of 

available protein sequences, which are much easier to obtain than protein 

structures.

• Relative solvent accessibility. Most proteins recognize and interact with other 

proteins through their surface residues (i.e., residues with relatively high solvent 

accessible surface area) unless the interacting proteins undergo large 
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conformational changes upon binding. Therefore, knowledge of protein surface 

residues can greatly reduce the prediction search space and increase prediction 

accuracy. Given the 3D structure of a protein, whether a residue is on the surface or 

not can be determined by calculating its relative accessible surface area (RASA) as 

follows:

where ASA_residue_in_protein is the surface area, i.e., accessible surface area 

(ASA), of the residue in the protein structure, and ASA_free_residue is the ASA of 

this residue in a “free” state. Surface areas of “free” residues are often estimated 

assuming that the residue X is the central residue in a tripeptide, G-X-G, or A-X-A, 

where G is Glycine and A is Alanine. A residue is generally regarded as a surface 

residue if its RASA is larger than 5% (Miller, Janin, Lesk, & Chothia, 1987; 

Porollo & Meller, 2007). Solvent accessibility of a residue in a protein can be 

calculated using software, for example, STRIDE (Frishman & Argos, 1995; Heinig 

& Frishman, 2004).

When the protein structure is not available (which is the case for most proteins), 

one has to rely on bioinformatics methods to predict solvent accessibilities.

• Surface shape. The shape of a protein surface is also a useful indicator of 

interacting sites. One widely used measure for the concavity or convexity of the 

neighborhood of an atom in a protein is the CX value (Pintar, Carugo, & Pongor, 

2002). To calculate the CX value of an atom, a sphere is centered on the target 

atom, and CX = Vext / Vint, where Vint is the volume occupied by the protein, and 

Vext is the free volume in the sphere.

Because a single feature cannot reliably discriminate interfacial residues from the rest of the 

residues in a protein, most existing prediction methods use a combination of several 

features. The most valuable feature identified so far is the evolutionary information encoded 

in PSSMs (refer to (Yan & Wang, 2014) for details regarding the relative contributions of 

individual features in predicting DNA-binding sites in proteins).

3.2 Interface definitions

There are several ways to define an interface. It is important to use the same interface 

definition when comparing different prediction methods. Commonly used definitions in the 

literature include:

• Heavy atom distance: A residue is an interfacial residue if any heavy atom (non-

hydrogen atom) of the residue is within Dthr angstroms of any heavy atom of a 

residue in the interacting protein chain, where Dthr is the threshold diameter and 

usually ranges from 4-6 Å (Afsar Minhas et al., 2013; Xue et al., 2011). This is 

probably the most commonly used definition.
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• CA-CA distance: Two residues in different chains interact if their CA atoms are 

within Dthr Ångstroms. A reasonable value for Dthr is 8 Å.

• van der Waals surface distance: Two residues in different chains interact if their 

van der Waals surfaces are within Dthr Å. Dthr is usually set around 0.5 Å (Jordan 

et al., 2012).

• ΔASA (Delta Accessible Surface Area): A residue is an interfacial residue if the 

change in its ASA upon complexation (going from a monomeric state to a dimeric 

state) is larger than 1 Å2 (Jones & M, 1997).

i-RMSDs (interface root-mean-squared-deviation) and Fnat (fraction of native residue-

residue contacts) are also widely used to evaluate the models generated by docking 

programs as used in the international blind experiment – CAPRI (Critical Assessment of 

Predicted Interactions) (Lensink & Wodak, 2013). To calculate i-RMSDs, the backbone 

atoms of interface residues within 10Å from the partner molecules of the reference complex 

are superimposed upon their equivalents of a docked model and the corresponding RMSD is 

calculated. (Méndez, Leplae, De Maria, & Wodak, 2003).

Fnat is defined as the number of correctly predicted residue-residue contacts in a docked 

model divided by the total number of contacts in the target complex using a 5Å distance cut-

off (CAPRI definition).

3.3 Benchmark Datasets and Dealing with Unbalanced Data

The PDB (Protein Data Bank, www.rcsb.org) (Berman et al., 2000) is the largest database of 

high-resolution 3D structures, including both monomeric protein structures and structures of 

proteins in complexes with other molecules, including other proteins, DNAs, RNAs and 

cofactors or other small molecules. High quality protein-protein complexes (with a 

resolution less than 3 to 3.5 Å) can be extracted from the PDB to serve as training and 

testing datasets for interface predictors.

In globular proteins, the percentage of all residues that lie in the interface typically ranges 

from 10% to 18%, varying across different types of protein-protein interactions (Xue et al., 

2011). In addition to the complex nature of physicochemical recognition, the highly 

unbalanced nature of the data (i.e., the number of non-interfacial residues is much larger 

than the number of interfacial residues) imposes a further challenge on the design of reliable 

interface predictors. When trained with highly unbalanced data, machine learning classifiers 

tend to over-predict the over-represented class. To avoid skewed performance of a predictor 

on unbalanced data, a widely used practice is to under-sample the negative data (i.e., non-

interfacial residues) several times and to train an ensemble of classifiers using these sampled 

balanced datasets (i.e., equal number of interface instances and non-interface instances) 

(Ahmad & Mizuguchi, 2011). Another strategy is to set a larger penalty for misclassification 

of interfacial residues directly in the machine learning algorithm, for example, by adjusting 

the C parameter of an SVM. To objectively evaluate the performance of predictors, the 

testing dataset must be non-redundant, but should not be balanced, i.e., it should reflect the 

natural distribution of positive and negative examples. For constructing non-redundant 

datasets, a 30% sequence identity cutoff is commonly used.
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Although the protein-protein docking benchmark 4.0 (DB4) (Hwang, Vreven, Janin, & 

Weng, 2010) was originally designed to evaluate docking programs, it also can serve as a 

good benchmark test dataset for evaluating protein-protein interface predictors. The DB4 

dataset consists of 176 non-redundant protein-protein complexes and their corresponding 

component protein structures in the unbound state. The selected complexes represent three 

types of protein-protein interactions (enzyme-inhibitor, antigen-antibody, and others) and 

are grouped into 3 classes based on the degree of conformational changes upon binding 

(which is correlated with the expected “difficulty” for docking). The DB4 dataset is thus 

especially well suited for testing the robustness of structure-based interface predictors in 

dealing with conformational changes upon binding.

PIFACE -- a non-redundant database of protein-protein interface structures extracted from 

the PDB (Cukuroglu, Gursoy, Nussinov, & Keskin, 2014) also provides good source of 

training data for positive cases (i.e., interfaces).

3.4 Evaluation

3.4.1 Evaluation metrics—Predicting interfacial residues is usually formulated as a two-

class classification problem, where interfacial residues belong to the positive class and non-

interfacial residues to the negative class. To evaluate the performance of computational 

methods in predicting the interfacial residues of test proteins, several standard performance 

measures are used. These include: Sensitivity (Recall), Specificity (Precision), F1 measure, 

Matthew's correlation coefficient (MCC), and Accuracy (Baldi, Brunak, Chauvin, Andersen, 

& Nielsen, 2000), defined as follows:

where TP (True Positive) is defined as the number of interface residues that are correctly 

predicted to be interface residues; FP (False Positive) is the number of residues that are 

incorrectly predicted to be interface residues; TN (True Negative) is the number of residues 
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that are correctly predicted to be non-interface residues); and FN (False Negative) is the 

number of residues that are incorrectly predicted to be non-interface residues.

Sensitivity measures the proportion of actual interfacial residues that are correctly predicted 

as interfacial, while Specificity measures the proportion of predicted interfacial residues that 

are actual interfacial residues. (Note that in medical statistics literature a different definition 

of Specificity is often used, where Specificity is defined as the proportion of negative 

instances that are correctly identified as such, i.e., “Sensitivity” for the negative class (Baldi 

et al., 2000). F1 is the harmonic mean of sensitivity and specificity. We can also treat the 

binary prediction and the actual interface as two random variables taking only the values of 

1 and 0, where 1 indicates a predicted or actual interfacial residue, and 0 indicates a 

predicted or actual non-interfacial residue. Then we can use MCC to measure the correlation 

coefficient between the prediction and the actual interface random variables.

Note that when the data are highly unbalanced (as they usually are in the interface prediction 

problem), accuracy is not an appropriate performance evaluation measure. For example, 

when only 10% of the test residues are actual interfacial residues, a “dumb” predictor that 

simply predicts all residues as non-interfacial residues will obtain an accuracy of 90%.

An advantage of predictors trained using machine learning is that it is possible to trade off 

one performance measure against another by varying the prediction score cutoff. For 

example, in some situations, experimental scientists may wish to obtain only a small number 

of interfacial residues predicted with a high degree of confidence. In this case, it makes 

sense to choose a relatively high score cutoff, which will return predictions with high 

specificity but low sensitivity (i.e., some actual interfacial residues will be predicted as non-

interfacial). In contrast, choosing a low score cutoff can provide better coverage of actual 

interfacial residues, but at the risk of a higher false positive rate. Hence, reporting the 

performance of a predictor against all possible score cutoffs provides a much more complete 

and rigorous evaluation of its performance. Specificity vs. Sensitivity plots (also called 

Precision-Recall plots) or the ROC curve (true positive rate vs. false positive rate) show the 

trade-off between two performance measures, and allow experimentalists to choose a cutoff 

that fits their specific requirements for prediction accuracy. Such plots also provide a clear 

visualization of the comparative performance of different classifiers. For example, it is easy 

to tell whether two predictors have complementary prediction power, which is indicated by 

crossing curves for the two predictors. This allows users to combine the output from two 

complementary predictors into one combined score to gain a better performance.

3.4.2 Statistical comparison of two or more predictors—Cross-validation (CV) and 

leave-one-out are widely used in the field of machine learning to evaluate the performance 

of classifiers. N-fold cross-validation equally divides the dataset into N parts, trains the 

classifier on N – 1 parts and evaluates the trained classifier on the left-out part. The same 

procedure is repeated by leaving each of the N parts out as test data, and a total of N 

performance measures are obtained. When comparing two predictors, a pairwise t-test is 

often used to test the null hypothesis that the two predictors have the same mean 

performance (estimated using cross-validation), i.e., the differences between them are no 

greater than what would be expected at random. As Demšar (Demšar, 2006)) points out, 
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since these samples are usually related, a lot of care is needed in designing the statistical 

procedures and tests that avoid problems with biased estimations of variance. Dietterich 

(Dietterich, 1998) recommends 5×2cv t-test that overcomes the problem of underestimated 

variance and the consequently elevated Type I error of the more traditional paired t-test over 

folds of the usual k -fold cross validation.

Salzberg (Salzberg, 1997) points out that in comparing two predictors using cross-

validation, the common practice of using a paired t-test to test the null hypothesis that the 

two predictors have the same mean performance is problematic when the test sets are not 

independent. In such cases, Salzberg (Salzberg, 1997) recommends a simple way to compare 

the two predictors is to compare the percentage of times A got right that B got wrong with 

the percentage of times B got right that A got wrong, and throw out the ties. One can then 

use a simple binomial test for the comparison, with the Bonferroni adjustment for multiple 

tests. Note, however, that the binomial test is a relatively weak test that does not handle 

quantitative differences between predictors, or consider the frequency of agreement between 

two predictors. Nor can it be used to compare multiple predictors. Demšar (Demšar, 2006)) 

recommends a non-parametric pairwise statistical test, such as Wilcoxon signed-rank test for 

comparing two predictors; and analysis of variance (ANOVA) followed by Tukey test or the 

non-parametric Friedman test or the Nemenyi test in the case of multiple predictors (for 

more details, refer to the excellent review by Demšar (Demšar, 2006)).

3.4.3 Statistical comparison with random predictions—Any reasonable interface 

predictor should at least outperform random predictions. Random predictions can be 

formulated by the hypergeometric distribution: X∼HG (N, M, K), where X is the number of 

actual interfacial residues in the top K predictions, N is the total number of instances (i.e., 

total number of residues in query proteins), and M is the total number of actual interfacial 

residues.  is the probability that there are x actual 

interfacial residues in the top K randomly predicted interfacial residues.

3.5 An important caveat in evaluation

A critical mistake in performance evaluation, which still repeatedly appears in the recent 

published literature, should be noted by predictor developers and reviewers. This caveat 

regards the use of CV or leave-one-out procedures to evaluate protein interface predictions. 

Most, if not all, machine learning-based interface predictors use sliding windows or surface 

patches to generate the training and testing instances. Individual instances (i.e., sequence 

windows or surface patches of amino acids) obtained from the same protein have large 

overlaps with their neighboring instances; thus, they are not independent from each other. 

To objectively evaluate the performance of an interface predictor, one should perform CV or 

leave-one-out on the protein level (or protein complex level) instead of on the instance (i.e., 

a window or a surface patch of amino acids) level, because users naturally want to know the 

prediction accuracy on individual input protein(s) instead of a bag of mixed residues from 

multiple proteins. Using CV on the instance level can yield overly optimistic measures of 

performance. Walia et al. (Walia et al., 2012) systematically compared sequence-based and 

structure-based methods with different features and different machine learning classifiers on 
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different datasets, using leave-one-out over instances vs. leave-one-out over proteins. In all 

cases, evaluation using leave-one-out over instances gave a misleadingly higher estimate of 

the prediction performance compared with the estimates by leave-one-out over proteins 

(Table 2).

4. Partners Do Matter

Despite considerable efforts dedicated to the development of sophisticated data-driven 

protein-protein interface predictors, most have so far ignored the fact that many proteins use 

different interacting surfaces to interact with different binding partners (partner-specificity). 

As mentioned earlier, partner-specificity is especially important in transient interactions 

such as those that occur in signal transduction pathways (Xue et al., 2011). The high degree 

of partner-specificity in transient interactions makes them especially appealing as potential 

targets for selective therapeutic inhibitors (Rudolph, 2007). Available non-partner-specific 

(NPS) prediction methods (i.e., those that do not take into consideration a protein's binding 

partner) have lower reliability in predicting transient binding sites compared with their 

performance on obligate interfaces (de Vries & Bonvin, 2008; Panchenko, Kondrashov, & 

Bryant, 2004). Hence, reliable methods for predicting interfaces in transient protein-protein 

interactions are needed.

Only within the last 5 years has the importance of partner-specificity for reliably predicting 

interfaces been fully realized. The first partner-specific method for predicting interfaces 

between two protein domains was i-Patch (Hamer et al., 2010). I-Patch requires as input two 

MSAs for the two query domains, and each row of the two MSAs must be concatenated in 

such that interacting homologs are concatenated into a single one row (this requirement 

imposes a limitation on the application of this method). The term “partner-specific interface 

prediction” was first used by our group in a paper published in 2011 (Xue et al., 2011). In 

that study, we conducted a systematic analysis of partner-specific interface conservation and 

demonstrated, for the first time, that interface locations are, in fact, highly conserved in 

transient protein-protein interactions, despite previous reports to the contrary (Grishin & 

Phillips, 1994), as discussed earlier. We implemented the first partner-specific protein-

protein interface predictor, PS-HomPPI, and showed that it was more reliable than its non-

partner-specific counterpart, NPS-HomPPI. Subsequently, two machine learning-based 

partner-specific interface prediction approaches were published: PPiPP (Ahmad & 

Mizuguchi, 2011), which is an ensemble of NN (Neural Network) based methods, and 

PAIRpred (Afsar Minhas et al., 2013), which is a pairwise kernel based SVM (Support 

Vector Machines) method. PPiPP is a sequence-based method, which uses a binary encoding 

of amino acids and PSSMs as features. It uses an ensemble of 24 NNs trained on datasets 

generated from different window sizes and different samples of negative data; the average of 

the 24 NNs prediction scores is the final score (Ahmad & Mizuguchi, 2011). PAIRpred has 

both a sequence-based and a structure-based version (Afsar Minhas et al., 2013). To predict 

whether two residues interact with each other, both PPiPP and PAIRpred use features of the 

query residue pair and their neighboring residues as input. Both methods have been shown 

to outperform several state-of-the-art non-partner-specific (NPS) methods (Afsar Minhas et 

al., 2013; Ahmad & Mizuguchi, 2011) (Figure 2).
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Partner-specific interface prediction is an important advance in protein-protein interface 

prediction. By exploiting binding partner information, partner-specific interface predictors 

generally out-perform their non-partner-specific counterparts (Afsar Minhas et al., 2013; 

Ahmad & Mizuguchi, 2011; Xue et al., 2011). Improved partner-specific interface predictors 

will likely be the focus in designing the next generation of interface predictors.

5 Interface Prediction can Enhance Computational Docking

Another major and drastically different strategy for predicting protein-protein interfaces is 

protein-protein docking. Computational docking methods are valuable tools for predicting 

the 3D structures of protein complexes, from which the interfacial residues can be extracted. 

Docking approaches aim to generate structures with low interaction energies by sampling a 

very large number of possible interaction modes (the sampling step) and evaluating each 

conformation using energy functions (the scoring step) (Figure 3).

Despite recent advances displayed in the international community docking competition – 

CAPRI (Lensink & Wodak, 2013), docking still faces two major technical challenges that 

limit its reliability and hinder its large-scale application to complete proteomes. The first 

challenge is in the sampling step, especially in cases where conformational changes take 

place upon binding (Alexandre Bonvin, 2006; Zacharias, 2010). The flexibility of protein 

molecules generates a vast number of possible conformations that must be sampled and 

evaluated. The second challenge lies in the scoring step. Our understanding of the energetic 

aspects of protein interactions is still incomplete and current scoring functions have limited 

ability to single out native-like conformations from the vast number of possible docked 

conformations (Kastritis & Bonvin, 2010; Lensink & Wodak, 2013)

Docking and machine learning-based interface predictions both have strengths and 

weaknesses, and they complement each other. Docking, by nature, is a partner-specific 

method. Because docking is based on geometric and energetic models, in theory, it does not 

require a large amount of pre-existing data as a training set. Machine learning methods can 

seamlessly integrate heterogeneous sources of existing experimental data and extract 

interaction rules in order to make interface predictions. For example, machine learning 

methods can make use of evolution information extracted from MSAs, which provides 

critical complementary information to docking. In addition, machine learning predictors are 

typically much faster and require fewer computational resources than docking. To process 

one query, a machine learning predictor requires a few seconds to 1 hour, compared with 

minutes to several hours or days on a single processor for docking programs. Although 

machine learning predictors tend to predict at the residue level and can have a high false 

positive rate, they can be used to conduct a fast pre-screen to identify several potential 

binding patches that can be further tested and refined by high-resolution (i.e., at the atomic 

level) docking. Recently, binding patches predicted by machine learning have been shown to 

efficiently narrow down the search space for docking (see below).

Guided docking, in which experimentally determined interfacial contacts are used to 

constrain the docking search space, has been highly successful. The pioneering method, 

HADDOCK (High Ambiguity Driven protein–protein Docking) (de Vries, van Dijk, & 
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Bonvin, 2010b; Dominguez et al., 2003), can use experimentally determined interface data 

(e.g., from chemical shift perturbation or mutagenesis experiments) as distance restraints in 

its sampling process. It can generate near-native conformations for cases that undergo 

medium to large conformational changes upon binding (Karaca & Bonvin, 2011). The use of 

experimental restraints allows HADDOCK to concentrate its search around relevant regions 

of the interaction space and refine the solutions allowing for explicit flexibility.

The HADDOCK group has also explored the use of predicted interfacial residues as docking 

restraints, and obtained improved results compared with the ab initio version of HADDOCK 

and competitive results compared with a state-of-the-art ab initio docking method, ZDOCK 

(de Vries & Bonvin, 2011). These results are encouraging because interface prediction-

guided docking has the promise of effectively narrowing down the sampling space of 

docking, thus reducing the computational cost. Currently, interface prediction-guided 

docking defines a lower bound for data-driven docking. With future improvements, interface 

predictions should further enhance the reliability of the 3D protein complex models by 

computational docking.

Homology-based interface predictions have also been used to improve the scoring of docked 

models. Li and Kihara (Li & Kihara, 2012) concluded that (non-partner-specific) machine 

learning-based predicted interfaces cannot be used to reliably identify near-native 

conformations. Subsequently, however, our group demonstrated that DockRank, a method 

that uses partner-specific homology-based interface predictions, can significantly improve 

the scoring of docked poses (Xue, Jordan, Yasser, Dobbs, & Honavar, 2014). DockRank 

outperforms several energy-based scoring functions and three non-partner-specific machine 

learning and homology-based methods.

Conversely, docking can also facilitate interface predictions: In the context of the CAPRI 

experiment, it has been shown that generated docking decoys can assist interface predictions 

even when considering cases where no near-native solutions could be generated (de Vries et 

al., 2010a). Similar observations have been made by the ZDOCK group (Hwang, Vreven, & 

Weng, 2014).

6 Challenges and Future Directions

Protein interface prediction will continue to be a highly challenging and important research 

topic. Reliable identification of protein binding sites has wide applications in computational 

protein design and rational drug design. In the past 20 years, there has been significant 

progress in computational prediction of protein interfaces, but there is still much room for 

improving the reliability of interface predictors.

To further improve interface prediction, improved feature extraction methods and feature 

representations that can effectively capture the complexities of protein recognition in diverse 

types of interactions will be important. For example, we now know that transient and 

obligate interactions have different recognition patterns and should be treated separately. 

Also, even though most existing machine learning interface predictors are structure-based, 

typically the only structural information used to encode input feature vectors is statistical 

information about surface patches; information about the spatial arrangement of residues 
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and/or atoms has been largely ignored. Most importantly, the evidence is now clear that 

consideration of specific binding partners is essential for reliably predicting binding sites. 

Both the feature representation and the design of the classifiers must take into account the 

partner-specific nature of transient protein interactions.

The availability of high throughput data regarding protein-protein interaction partners also 

may provide valuable co-evolutionary information for predicting partner-specific protein-

protein interfaces. Recently, inverse-covariance-matrix based methods have brought 

breakthrough advances in protein structure prediction (reviewed in (Marks et al., 2012)). 

With unprecedented accuracy, this type of statistical model predicts amino acid contact pairs 

that are in close spatial proximity within a 3D structure by calculating the correlation 

between two columns, conditional on the rest of columns in an MSA; then the predicted 

contacts are used as distance restraints to fold proteins with impressive accuracy. Contacting 

pairs of amino acids in protein-protein interfaces are also expected to undergo correlated 

mutations (Hamer et al., 2010; Lunt et al., 2010). In fact, inverse-covariance-matrix based 

methods have already been successfully applied to predict interfaces of query protein pairs 

(Halabi et al., 2009; Hopf et al., 2014; Lunt et al., 2010). However, the applicability of this 

method to large-scale protein interface predictions is limited by the fact that it requires 

knowledge of whether two homologs of the query proteins interact with each other. With 

massive-throughput sequencing capabilities and high-throughput techniques for determining 

protein-protein interactions (such as yeast 2-hybrid assays and chip-based assays) or 

advances in computational prediction of protein-protein interaction partners (for example, 

(Kotlyar et al., 2015)), this limitation will eventually be addressed, making this solution 

applicable on a larger scale.

Finally, another promising future direction is developing effective ways to combine energy 

model-driven docking with data-driven interface prediction methods. The PDB has been 

accumulating a large number of atomic resolution structures of protein-protein complexes: 

104,570 as of Oct. 1st, 20151. This large amount of high-resolution structure data, together 

with the enormous number of protein sequences now available, provide rich training data for 

machine learning algorithms to learn statistical interaction patterns. Combining low-

resolution statistical interaction patterns learned from experimental data with high-resolution 

computational docking has the potential to dramatically improve interface predictions -- and 

reveal both structural and functional information about protein-protein interactions (Figure 

4).
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Figure 1. A surface patch and a sequence window
A) A surface patch defined by a target residue (blue) and its spatial neighboring residues 

(magenta) that fall within a virtual sphere of diameter, d, centered on the target residue. B) A 

sequence window centered on a target residue (purple).
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Figure 2. Partner-specific interface predictors outperform non-partner-specific predictors
(A) A comparison of the top 20 predicted interfacial residues for a complex of 

Acetylcholinesterase (blue ribbons) and Toxin F-VII Fasciculin-2 (red ribbons) (PDB ID: 

1MAH) by the partner-specific method, PPIPP (Ahmad & Mizuguchi, 2011), and the 

corresponding non-partner-specific version. By including partner information, PPIPP is able 

to predict interfacial residues (green) clustering around the interaction location specific to 

the binding partner whereas those predicted by the non-partner-specific method (red) are 

scattered over the surface of query protein. Figure credit: (Ahmad & Mizuguchi, 2011)(B) 

Prediction performance comparisons over a set of 123 non-redundant protein-protein 

complexes in Docking Benchmark 3.0 (Hwang, Pierce, Mintseris, Janin, & Weng, 2008). 

We compared two partner-specific predictors, PAIRpred (Afsar Minhas et al., 2013) and 

PPiPP (a sequence-based predictor) (Ahmad & Mizuguchi, 2011), with two non-partner-

specific machine learning predictors: PSIVER, a sequence-based predictor (Murakami & 

Mizuguchi, 2010) and SPPIDER, a structure-based predictor (Porollo & Meller, 2007). With 

partner information, PAIRpred and PPiPP outperform the two predictors that do not consider 

partner information when making predictions, improving Area Under Curves (AUCs) from 

0.63 (PSIVER) and 0.58 (SPPIDER) to 0.73 (PPiPP) and 0.89 (PAIRpred). AUC values are 

extracted from (Afsar Minhas et al., 2013; Ahmad & Mizuguchi, 2011).
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Figure 3. Protein-protein docking and its two major challenges
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Figure 4. Machine learning toward improved 3D protein interaction prediction
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Table 1
Representative data-driven protein-protein interface prediction methods

TYPE METHOD INPUT WEB SERVER DESCRIPTION

Homology-based

PS-HomPPI* (Xue et 
al., 2011)

sequence http://ailab1.ist.psu.edu/PSHOMPPIv1.2/

Given a query 
protein and its 
specific binding 
partner protein, 
PS-HomPPI 
infers interfacial 
residues from the 
interfacial 
residues of 
homologous 
interacting 
proteins. Based 
on interface 
conservation 
thresholds 
derived from a 
systematic 
interface 
conservation 
analysis, PS-
HomPPI 
classifies the 
templates into 
Safe, Twilight or 
Dark Zone, and 
uses multiple 
templates from 
the best available 
zone to infer 
interfaces for 
query proteins.

NPS-HomPPI (Xue 
et al., 2011) sequence http://ailab1.ist.psu.edu/NPSHOMPPI/

NPS-HomPPI is 
the non-partner-
specific version 
of PS-HomPPI. 
Without 
knowledge of the 
specific binding 
partner protein, 
it predicts 
residues that are 
likely to interact 
with other 
proteins.

PredUS (Zhang et 
al., 2011) structure https://bhapp.c2b2.columbia.edu/PredUs/

PredUS is a 
structural 
homology-based 
method. Given a 
query protein 
structure, 
PredUS uses a 
structural 
alignment 
method to 
identify 
structural 
neighbors, maps 
the interface of 
the structural 
neighbors onto 
the query 
protein, 
calculates the 
frequency of 
mapped contacts 
for each query 
residue and uses 
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TYPE METHOD INPUT WEB SERVER DESCRIPTION

a logistic 
function to 
normalize 
contact 
frequencies and 
generate the final 
residue-based 
interfacial score.

IBIS (Shoemaker et 
al., 2009) structure http://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi

Given a query 
protein structure, 
IBIS searches for 
structural 
homologs with 
experimentally 
determined 
interfaces, then 
clusters the 
interfaces in the 
homologs, and 
rank the 
clustered 
interfaces. If a 
query protein 
does not have 
structures, IBIS 
uses BLAST to 
identify the most 
closely related 
structure and 
uses it as the 
starting 
structure. IBIS 
reports interfaces 
not only for 
protein-protein 
interactions, but 
also protein-
peptide, protein-
DNA, protein-
RNA and 
protein-chemical 
interactions.

PriSE (Jordan et al., 
2012) structure http://ailab1.ist.psu.edu/prise/index.py

PriSE is a local 
structural 
homology-based 
method. For 
each target 
residue in a 
query protein 
structure, PriSE 
calculates a 
surface patch 
consisting of this 
target residue 
and its spatial 
neighbors. The 
surface patch is 
represented by 
the atomic 
composition and 
accessible 
surface area of 
the member 
residues. Then 
PriSE searches 
the pre-
calculated 
surface patch 
database for 
similar surface 
patches with 
experimentally 
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determined 
interface 
information, and 
weights these 
surface patches 
according to 
their similarity 
with the query 
surface patch. 
PriSE predicts 
whether a target 
residue in the 
center of a query 
surface patch is 
interfacial or not 
based on the 
weighted contact 
counts of similar 
patches.

Machine Learning

SPPIDER (Porollo & 
Meller, 2007) structure http://sppider.cchmc.org/

SPPIDER uses 
the difference 
between 
predicted RSA 
(relative solvent 
accessibility) 
and actual RSA 
(in an unbound 
structure) of a 
residue as a 
feature 
(fingerprint) to 
predict 
interfaces. 
SPPIDER is a 
consensus 
method that 
combines the 
output of 10 
NNs (Neural 
Networks) using 
the majority 
voting.

PINUP (Liang, 2006) structure http://sysbio.unl.edu/services/PINUP/

PINUP uses a 
scoring function 
that is a linear 
combination of a 
side-chain 
energy, interface 
propensity, and 
residue 
conservation 
scores.

ProMate (Neuvirth et 
al., 2004) structure http://bioinfo41.weizmann.ac.il/promate/promate.html

ProMate uses 
multiple features 
calculated for 
each surface 
patch. An 
interface 
propensity is 
calculated for 
each feature. The 
combined score 
is the product of 
propensity 
scores from 
different 
properties, which 
is further 
smoothed by 
considering 
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structural 
neighbors.

PIER (Kufareva et 
al., 2007) structure http://abagyan.ucsd.edu/PIER/

PIER predicts 
each surface 
patch as 
interfacial or not, 
using PLS 
(partial least 
squares) 
regression on the 
solvent 
accessibility 
values of 12 
significantly 
over- and under-
represented 
atomic groups at 
the interface.

cons-PPISP (Chen & 
Zhou, 2005) structure http://pipe.scs.fsu.edu/ppisp.html

cons-PPISP is a 
consensus neural 
network method 
for predicting 
protein-protein 
interaction sites. 
Features used 
include: 
position-specific 
scoring matrix, 
solvent 
accessibilities, 
and spatial 
neighbors of 
each residue.

meta-PPISP (Qin & 
Zhou, 2007) structure-based meta-server http://pipe.scs.fsu.edu/meta-ppisp.html

meta-PPISP is 
built on three 
individual web 
servers: cons-
PPISP, PINUP, 
and ProMate. A 
linear regression 
method, using 
raw scores of the 
three severs as 
input, was 
trained on a set 
of 35 non-
homologous 
proteins.

CPORT (de Vries & 
Bonvin, 2011) structure-based meta-server http://haddock.science.uu.nl/services/CPORT/

CPORT is built 
on six individual 
web servers: 
WHISCY, PIER, 
ProMate, cons-
PPISP, 
SPPIDER, and 
PINUP. The 
weights of a 
linear 
combination of 
the quantiles of 
the raw scores 
from the six 
servers was 
optimized on a 
set of 
complexes.

pairPred* (Afsar 
Minhas et al., 2013)

Sequence or structure python code available at http://combi.cs.colostate.edu/
supplements/pairpred/

pairPred uses 
multiple 
pairwise kernel 
SVMs to predict 
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interacting 
residue pairs. 
Structural 
features used 
include: relative 
accessible 
surface area 
(rASA), residue 
depth, half 
sphere amino 
acid 
composition, 
protrusion index. 
Sequence 
features used 
include: PSSM 
and predicted 
rASA.

PPiPP* (Ahmad & 
Mizuguchi, 2011)

sequence http://tardis.nibio.go.jp/netasa/ppipp/

PPiPP trains 24 
neural network 
predictors, and 
returns the 
average score of 
the 24 predictors 
as the final 
score. It uses a 
binary encoding 
of 20 types of 
amino acids plus 
PSSMs as 
features.

PSIVER (Murakami 
& Mizuguchi, 2010) sequence http://tardis.nibio.go.jp/PSIVER/

PSIVER 
(Protein-protein 
interaction SItes 
prediction 
seVER) predicts 
protein-protein 
interaction sites 
using a PSSM 
and predicted 
accessibility as 
input for a Naive 
Bayes classifier.

WHISCY (de Vries, 
van Dijk, & Bonvin, 
2006)

Structure and a multiple 
sequence alignment (MSA) http://nmr.chem.uu.nl/Software/whiscy/

WHISCY 
calculates a 
conservation 
score for each 
position of a 
MSA by 
summing up the 
scores in an 
adjusted Dayhoff 
matrix. It adjusts 
each 
conservation 
score using the 
interface 
propensity of the 
residue and 
smooth scores by 
considering 
surface 
neighbors to 
obtain the final 
prediction score.

Yan et al. (Yan et al., 
2004) sequence N/A

A two-stage 
classifier in 
which the first 
stage is a SVM 
interface 
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TYPE METHOD INPUT WEB SERVER DESCRIPTION

predictor, and 
the second is a 
Naïve Bayes 
classifier trained 
on the predicted 
class labels from 
the SVM.

Correlated mutation i-Patch* (Hamer et 
al., 2010)

1.Concatenated MSAs for 
the assumed interacting 
protein pairs; and 2. 
structures of the individual 
l query proteins

Webserver: http://portal.stats.ox.ac.uk/userdata/
proteins/i-Patch/home.pl
Source code: http://www.stats.ox.ac.uk/research/
proteins/resources#ipatch

In i-Patch, the 
interface 
propensities of 
all residues in 
the i-th column 
of a MSA are 
summed up as 
one score, and 
then the 
weighted 
average score 
from structural 
neighbors is used 
as the final 
propensity for 
column i. The 
MSAs are 
concatenated 
based on 
knowledge about 
which pairs of 
proteins interact, 
and are used to 
calculate the 
correlated 
mutation scores 
for pairwise 
positions. A 
logistic model is 
trained on a 
combination of 
the propensities 
and the 
correlated 
mutation scores.

*
partner-specific methods
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