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Type | IFNs have broad activity in tissue inflammation and malignant
progression that depends on the expression of IFN-stimulated genes
(ISGs). ISG15, one such ISG, can form covalent conjugates to many
cellular proteins, a process termed “protein ISGylation.” Although
type | IFNs are involved in multiple inflammatory disorders, the role
of protein I1SGylation during inflammation has not been evaluated.
Here we report that protein ISGylation exacerbates intestinal in-
flammation and colitis-associated colon cancer in mice. Mechanisti-
cally, we demonstrate that protein ISGylation negatively regulates
the ubiquitin—proteasome system, leading to increased production
of IFN-induced reactive oxygen species (ROS). The increased cellular
ROS then enhances LPS-induced activation of p38 MAP kinase and
the expression of inflammation-related cytokines in macrophages.
Thus our studies reveal a regulatory role for protein ISGylation in
colonic inflammation and its related malignant progression, indicat-
ing that targeting ubiquitin-activating enzyme E1 homolog has ther-
apeutic potential in treating inflammatory diseases.

ISGylation | ubiquitylation | cytokine | inflammation | cancer

hronic inflammation is a major pathologic basis for a number
of malignancies, such as esophageal, gastric, hepatic, and
colorectal cancer (CRC) (1). Specifically, ulcerative colitis (UC),
a form of human inflammatory bowel disease (IBD), is associ-
ated with an increased risk for the development of CRC. Ex-
tensive experimental and clinical studies strongly suggest that the
initiation and progression of human IBD involve complicated
interactions among genetic, environmental, and immune factors,
which result in aberrant immune responses in the intestinal
mucosa (2, 3). IFNs are crucial regulators of cell proliferation,
differentiation, survival, and death. They are categorized further
as type I (IFN-a, -B, -, or -7), type II (IFN-y), and type III (IFN-1)
based on their structure (4). Type I IFNs are associated with
multiple autoimmune and inflammatory disorders, including
IBD (5). Early studies demonstrated beneficial effects of type I
IFNs in regulating intestinal homeostasis in experimental colitis
models (6); however, most later studies failed to demonstrate a
beneficial therapeutic effect of type I IFNs in patients who have
IBD (7, 8). Interestingly, recent studies also uncovered a proin-
flammatory role for type I IFNs in an experimental colitis model
(9). In clinical practice, some patients who were treated with type I
IFN for hepatitis C infection or multiple sclerosis either experi-
enced an exacerbation of existing UC or developed UC (5, 10).
These studies in animal models and clinical observations indicate a
complicated role for type I IFNs during intestinal inflammation.
However, the role of specific IFN-stimulated genes (ISGs) in co-
lonic inflammation is poorly understood.
ISG15 is strongly up-regulated by type I IFN (11). As a ubig-
uitin-like modifier, ISG15 can form covalent conjugates to many
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cellular proteins, a process termed “protein ISGylation” (12, 13). A
series of distinct enzymes are involved in the process of protein
ISGylation, including ubiquitin-activating enzyme E1 homolog
(UBELL) (14, 15), a conjugating enzyme, ubiquitin carrier protein
L6 (UBCHS) (E2) (16, 17), protein ligases (E3) (18-21), and an
ISG15-specific protease USP18 (22, 23), as well as some viral
proteins (24). Interestingly, ISG15 and the majority of its modi-
fication enzymes are encoded by ISGs (25), indicating that protein
ISGylation is a tightly regulated process and plays important roles
in immune responses (26). Protein ISGylation is strongly en-
hanced upon pathogen infection and cellular stress related o IFN
induction (25). Several in vitro studies using cell lines and human
cancer samples have begun to reveal anti- and protumorigenic
roles of ISGylation (27-29). However, in vivo studies of protein
ISGylation in tumorigenesis are relatively rare and have become a
pressing need for understanding the role of ISG15 in malignant
progression. In this report we demonstrate, for the first time to our
knowledge, that protein ISGylation is linked to intestinal in-
flammation and colitis-associated CRC in mouse models.

Results

Protein ISGylation Is Up-Regulated in Inflamed Mouse Large Intestine.
We first examined ISG15 expression and protein ISGylation in
uninflamed and inflamed mouse colons. ISG15 protein is expressed
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in proximal, middle, and distal parts of the colon. In WT mice, the
highest level of protein ISGylation was observed in the proximal colon
(Fig. S14). Expression of free ISG15 was detected in all three parts
of the colon. High levels of ISGylation and free ISG15 in the
proximal colon may be caused by active bacteria-related fermen-
tation events in this area. In protein ISGylation-deficient UbelL-
KO mice free ISG15 was increased. We next examined whether
protein ISGylation was modulated during the development of ex-
perimental colitis by exposing mice to dextran sodium sulfate
(DSS). As shown in Fig. 14, DSS-treated WT mice had much
stronger protein ISGylation in all three parts of the colon than did
untreated WT mice. No clear increase in intracellular free ISG15
was observed (Fig. 14). Furthermore, DSS administration did not
significantly alter serum levels of free ISG15 in either WT or
UbelL-KO mice (Fig. S1B). These results indicate that protein
ISGylation is enhanced in inflamed mouse colon. In line with our
findings in experimental colitis models, the expression of both the
ISG15 gene and the UBEIL gene UBA7 is significantly higher in

A Mock DSS B
170— = m WT & KO
72— ISG15 2
Conj. =
B: 43— >
8
ISG15 5 2
2 09
17— -1sG15 & i
10— @ 08 s
12 3 45 6 7 8 910
IB: B -actin
Day
C D
s W WTO KO
WTc —— E 4
Mock — E p<0.01
£ 70
Kor-.-—-&: g "
c 50
WTr-.— g
DSS — o
30
Mock DSS
E
KO

Mock DSS

Fig. 1. Protein ISGylation leads to more severe intestinal inflammation in
DSS-induced colitis. (A) Mice were mock-treated or treated with DSS for 5 d.
Then colon tissue lysates were prepared and immunoblotted for ISG15. p-Actin
was used as a loading control. (B) WT and Ube1L-KO Mice (~12 wk) were
treated with 2% (wt/vol) DSS in drinking water for 7 d and were monitored
and weighed on a daily basis. Data are presented as mean + SEM (n = 8 or 9)
and are a representative set of five independent experiments. **P < 0.01,
student’s t-test. (C and D) Examples of colons (C) and pooled colon-length data
(D) for WT and Ube1L-KO mice from two independent experiments (n = 8-10)
analyzing at least four or five mice per group. The measurement was conducted
10 d after the initial DSS treatment. P, student's t-test. (Scale bars, 10 mm.)
(E) Representative H&E staining in healthy (mock-treated) colons and colons fol-
lowing DSS treatment. Colon tissue was harvested 10 d after the initial DSS
treatment. (Scale bars, 200 nm.) Representative examples shown are from one
of two independent experiments analyzing four or five mice in each group.

14314 | www.pnas.org/cgi/doi/10.1073/pnas.1505690112

A AOM DSS water DSS water DSS water
v v v v v v v

Day 1 Day 8 Day 15 Day 29 Day 36 Day 50 Day 57 Day 71
B 0<0.01 C p<0.01
35
14 < ~ 2 l .
g 12 e L g 2
*
g 10 + - > 25 s I’
g - hd g 20 —
5 - 5 15 H
5 6 ° £
= < 2 10
4 . A
~ 5
2 M M
WT KO WT KO

Fig. 2. Protein ISGylation exacerbates CAC in mice. (A) Schematic of the
AOM/DSS protocol. WT and Ube1L-KO mice were subjected to an AOM-based
CAC induction protocol using three cycles of 2% (wt/vol) DSS in drinking water.
(B) Tumors numbers were counted at day 71 in the CAC induction regimen (n =
10-11). P, student’s t-test. (C) Average tumor load was determined by sum-
ming all tumor diameters for a given animal (n = 10 or 11). P, student's t-test.

inflamed colons from patients with UC than in uninflamed colons
from healthy persons (Fig. S1C).

Protein ISGylation Leads to More Severe Colonic Inflammation in DSS-
Induced Colitis. We next compared the colonic inflammation in WT
and UbelL-KO littermates in an experimental colitis model.
Starting from day 8 of DSS administration in the drinking water,
WT mice exhibited significantly more weight loss than did UbelL-
KO (Fig. 1B) or ISG15-KO (Fig. S24) mice. At day 10, the average
body weight loss of these WT mice was ~12% compared with ~4%
in Ube1L-KO mice. The greater weight loss in WT mice correlated
with increased disease severity as measured by fecal consistency
and rectal bleeding in addition to weight loss (Fig. S2B). At day 10
after the initiation of DSS treatment, both groups of mice showed
colonic shortening (Fig. 1 C and D). However, this symptom was
more severe in WT mice (Fig. 1D). Furthermore, at day 10 after
DSS treatment, significantly higher levels of two major inflamma-
tory cytokines, TNF-a and IFN-y, were detected in the colon of
WT mice (Fig. S2 C and D). These data suggest that exaggerated
inflammation is associated with protein ISGylation. Histological
studies were conducted to examine the response in WT and
UbelL-KO mice. At day 10 after DSS treatment, sections from
colons of DSS-treated UbelL-KO mice revealed damage to the
epithelial barrier and part of the crypts structure and also the
presence of a limited amount of inflammatory cells (Fig. 1E and
Fig. S2E). In contrast, tissue sections from DSS-treated WT mice
exhibited extensive ulcerations characterized by epithelial cell
sloughing, increased inflammatory cell infiltrate, and loss of crypt
architecture (Fig. 1E and Fig. S2E). Collectively, our results
demonstrate that protein ISGylation enhances experimental colitis.

Protein ISGylation Exacerbates Colitis-Associated Cancer in Mice. We
further assessed whether protein ISGylation affected colitis-asso-
ciated cancer (CAC) in mice using a well-established CAC mouse
model (30).The mice were injected with the procarcinogen
azoxymethane (AOM) followed by three rounds of DSS exposure
to elicit colitis (Fig. 24). When these mice were killed at day 71,
tumors were observed in the large intestine of both WT and
UbelL-KO mice, but the UbelL-KO mice exhibited significantly
fewer tumors than did WT mice (Fig. 2B). No obvious differences
between two cohorts were observed in average tumor size (Fig.
S2F) or in the distribution of tumor size (Fig. S2G). Corre-
spondingly, the average tumor load, a sum of the diameters of all
tumors in a given mouse, was significantly lower in UbelL-KO
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mice (Fig. 2C). The distribution of tumor location is similar in
both cohorts (Fig. S2H): ~80% of tumors were in the distal colon,
and the rest were in the middle colon; no tumors were found in
the proximal colon. Taken together, these data indicate that pro-
tein ISGylation enhances colonic inflammation-associated tumor
development in this CAC mouse model.

Protein ISGylation Is Highly Associated with Macrophages in the Large
Intestine. Intestinal inflammation involves a complex interplay of
innate and adaptive immune mechanisms. Intestinal dendritic cells
and macrophages sense pathogen-associated molecular patterns
on microbes through pattern-recognition receptors and play im-
portant roles in the initiation of colonic inflammation (31). ISG15
and protein ISGylation have been found in multiple cell types
(25). However, no studies describing the distribution of ISG15 and
protein ISGylation in multiple cell lineages from the gastrointes-
tinal tract are available. Therefore we evaluated the expression of
UBA7 in human colorectal adenocarcinoma samples from The
Cancer Genome Atlas (TCGA) dataset against genes associated
with the presence of different cells types (32). Our results showed
that the expression of both UBA7 and ISGI5 is highly correlated
with genes associated with the presence of macrophages (CSFIR,
CD14, and CD68) (Fig. S3A4) and is less significantly correlated
with genes associated with the presence of CD4* and CD8" T cells
(Fig. S3B). No correlations with the presence of macrophages were
found for two other typical IFN-inducible genes, OASI and MX1,
(Fig. S44), suggesting that these observations are relatively specific
to UBA7 and ISGI15. We further studied UBA7 and ISG15 ex-
pression using tissue samples from nontreated or DSS-treated
mouse colon. ISG15 protein has been detected mainly in F4/80*
macrophages (Fig. S4B), and ISG15 mRNA is highly expressed in
CD11b* myeloid cells (Fig. S4C). In contrast, UbelL. mRNA ex-
pression is detected similarly across different cell types in the
mouse colon. In summary, these observations indicate regulation
of macrophage activity by protein ISGylation in the large intestine.

Protein ISGylation Enhances Cytokine Production Through the Reactive
Oxygen Species—p38 Axis in Macrophages. We next examined whether
protein ISGylation modulates inflammation-related cytokine pro-
duction in macrophages. In the absence of type I IFN priming, both
WT and UbelL-KO macrophages are able to respond to stimu-
lation by the bacterial toxin LPS. Similar levels of cytokine ex-
pression were observed in WT and Ubel1L-KO macrophages after
treatment with LPS (Fig. 34). When cells were primed with type I
IFN for 24 h, RNA analysis showed that WT macrophages, but
not UbelL-KO cells, had increased expression of multiple in-
flammation-related cytokines, including TNF-a, IL-10, IL-12, and
IL-23 (Fig. 34). In addition, after LPS stimulation, IFN-primed
WT macrophages secreted more TNF-a in the culture medium
than did Ube1L-KO cells (Fig. S54). These findings demonstrate
that the presence of protein ISGylation enhances the generation
of inflammatory-related cytokines in macrophages activated by
type I IFN.

We also performed experiments to define which molecular
pathways are involved in the production of protein ISGylation-
regulated cytokines in macrophages. In type I IFN-primed WT
and UbelL-KO cells, LPS induced a similar degradation of IkBo
(Fig. S5B). No difference in JNK phosphorylation was detected.
However, maximum phosphorylation of p38 (at 30 min after LPS
stimulation) was about twofold that seen in UbelL-KO cells (Fig.
S5 B and C). Together, these results show that protein ISGylation
regulates p38 phosphorylation in macrophages, likely mediating
the cellular expression of multiple cytokines. It is well documented
that cellular reactive oxygen species (ROS) strongly regulate
p38 activation in macrophages and affect the expression of in-
flammatory cytokines (33). In addition, type I IFN induces cellular
ROS in parallel with its activation of the ISG15 conjugation sys-
tem (34). Therefore we investigated whether protein ISGylation
affects the production of cellular ROS induced by type I IFN.
As shown in Fig. S5D, WT cells with an intact protein ISGylation
system had significantly sustained ROS production at 24 h
after IFN treatment, but UbelL-KO macrophages did not. Simi-
lar results were observed in IFN-stimulated mouse embryonic
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Fig. 3. Protein ISGylation enhances type | IFN-mediated cytokine production. (A) Protein ISGylation promoted cytokine production in the presence of type |

IFN treatment. Bone marrow-derived macrophages (BMDMs) from WT and Ube1L-KO mice were treated with type | IFN (500 U/mL) for 24 h and then with LPS
(100 ng/mL) for 2 h. The expression of several cytokines was measured by RT-quantitative PCR (QPCR). The mRNA levels in WT cells without any treatment
were set as 1, and the relative mRNA levels in other conditions were normalized accordingly. Results are shown as mean + SEM from three independent
experiments. P, student’s t-test. (B) TNF-a expression in BMDM s in the presence of different inhibitors. BMDMs from WT and Ube 1L-KO mice were primed with
type | IFN at time 0 and were treated with the chemical inhibitors MG132 (0.5 uM), NAC (20 mM), or SB203580 (40 uM), respectively, for 1 h beginning 23 h
after IFN treatment. Then the cells were stimulated by LPS (100 ng/mL) for another 2 h. Expression of TNF-a was measured by RT-qPCR. Data are shown as
mean + SD (n = 2 or 3). P, student’s t-test. (C) Immunofluorescence staining for FK1 (red), F4/80 (green), and p-p38 (red) in mouse colon tissue treated with
2% (wt/vol) DSS. Representative images from one of four or five mouse samples are shown. (Original magnification, 40x.)

Fan et al.

PNAS | November 17,2015 | vol. 112 | no.46 | 14315

IMMUNOLOGY AND
INFLAMMATION


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1505690112/-/DCSupplemental/pnas.201505690SI.pdf?targetid=nameddest=SF5

L T

/

1\

=y

fibroblasts (MEF) (Fig. S5 E and F). Together, these data support
the notion that protein ISGylation enhances inflammatory-
related cytokine expression through the ROS-p38 MAPK axis.

Protein ISGylation Regulates the Ubiquitin Proteasome System to
Increase Cellular ROS. We further examined the mechanism by
which protein ISGylation contributes to enhanced ROS production.
ISGylation is a protein-modification process similar to ubig-
uitylation and is likely to interfere with ubiquitin modification.
Furthermore, both severe and moderate proteasome inhibition
contribute to ROS production (35).Therefore, we questioned
whether the effect of protein ISGylation on ROS production was
the result of its modulation of the ubiquitin proteasome system
(UPS) in macrophages. Accumulation of ubiquitylated proteins
often results in the increased formation of cellular ubiquitin-
containing inclusions, which are also called “aggresome-like in-
duced structures” (ALISs). Besides activating protein ISGylation,
type I IFNs are known to promote the formation of ALISs (34). If
protein ISGylation decreases the UPS-mediated protein degra-
dation, we can expect to detect fewer cellular ubiquitin-containing
inclusions in UbelL-KO cells than in WT cells upon IFN
stimulation. In agreement with our hypothesis, higher numbers
of inclusions were observed in IFN-treated WT cells than in
IFN-treated UbelL-KO cells (Fig. S6 A-C). Accordingly, poly-
ubiquitylated proteins have a slower turnover rate in WT
macrophages than in UbelL-KO macrophages, although the
presence of protein ISGylation decreased the total cellular
level of polyubiquitylated proteins slightly (Fig. S6D). These
data indicate that type I IFN-induced protein ISGylation im-
pairs the cleanup of cellular ubiquitylated proteins, possibly
leading to the formation of cellular inclusions.

Additional biochemical analysis using purified ubiquitylated
proteins demonstrated a direct conjugation of ISG15 to ubig-
uitylated proteins in macrophages (Fig. S6E). Because of diffi-
culties in obtaining large amount of polyubiquitylated proteins
from macrophages, we used MEFs to characterize further the
ISGylation of cellular ubiquitylated proteins by in vitro analysis. In
MEFs, ISGylation does not affect cellular protein ubiquitylation
significantly (Fig. S74); however a higher amount of ubiquitylated
protein was isolated from UbelL-KO cells than from WT cells
with an equal amount of the ubiquitin chain-binding protein
HR23A (Fig. S7B). Therefore the ubiquitin chains formed in the
presence of protein ISGylation have impaired binding affinity to
HR23A. Because HR23A has a higher binding affinity with longer
ubiquitin chains (36), our findings indirectly suggest that the
presence of protein ISGylation may interfere with the formation
of longer ubiquitin chains. Moreover, in agreement with our
findings in macrophages, the ubiquitylated proteins with protein
ISGylation have significantly reduced turnover against 26s pro-
teasomes (Fig. S7 C and D). These data indicate that protein
ISGylation reduces the efficiency of UPS-mediated processing of
ubiquitylated proteins through direct conjugation of these proteins
and by interfering with the formation of ubiquitin chains.

To establish further the relationship between ISGylation-regu-
lated UPS function with cytokine expression in macrophages, we
examined the effects of specific inhibitors of ROS production,
proteasomal degradation, and p38 activation on TNF-o expression
in WT and UbelL-KO macrophages. Our results showed that a
mild proteasome inhibition enhances TNF-o expression in UbelL-
KO macrophages but not in WT macrophages, whereas both ROS
inhibition and p38 inactivation diminish the differences in TNF-a
expression between WT and UbelL-KO macrophages (Fig. 3B).
In addition, strong signals for polyubiquitylated proteins were lo-
cated in F4/80" macrophages, and p38 activation was found
mainly in F4/80* macrophages using samples from colons of DSS-
treated mice (Fig. 3C). Moreover, higher p38 activation was de-
tected in colons from DSS-treated WT mice than in similarly
treated colons from UbelL-KO mice (Fig. S7 E and F).
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Collectively, these data indicate that protein ISGylation regulates
cytokine expression through the UPS-ROS—p38 axis and that
protein ISGylation-regulated macrophage activity contributes to
colonic inflammation in vivo.

Protein ISGylation Is Correlated with Patient Survival in Human Colorectal
Cancer Patients. Using the CAC model, we demonstrated that protein
ISGylation leads to more tumor development in mice, suggesting
that protein ISGylation may be involved in human CAC. CAC is a
subtype of human CRC. There are similarities between CAC and
other types of CRC without any signs of overt IBD. Both CAC and
CRC are influenced by intestinal microflora and display robust in-
flammatory infiltration and increased expression of proinflammatory
cytokines (37). Therefore, we examined the possible involvement of
protein ISGylation in human CRC using currently available gene-
expression microarray data.

We first compared UBA7 and ISGI15 expression in healthy
persons and CRC patients based on data from ONCOMINE. In
a dataset with an adequate number of patients (38), no signifi-
cant differences in UBA7 and ISG15 expression were observed in
CRC tumor biopsies from the healthy and patient groups (Fig.
S8 A and B, Left). However, a recent study suggested that the
expression of ISG15 was uprated significantly in a group of pa-
tients with rectal adenocarcinoma as compared with a healthy
group (Fig. S8B, Right) (39). Expression of UBA7 varied widely
among individuals in the group of patients with CRC (Fig. S84).
These data suggest that UBA7 per se is not an initiating onco-
gene in human CRC. To address whether UBEIL has any reg-
ulatory function in human CRC, we used two recently published
datasets (40, 41) to compare clinical outcomes in groups of CRC
patients with low or high UBA7 expression. Results from the two
datasets revealed that higher expression levels of the UBEIL
gene UBA?7 correlated significantly with worse survival (Fig. 4 A
and B). As with UBA7, higher expression levels of ISGI5 ex-
pression are correlated with worse outcomes in these patients
(Fig. S8C). In contrast, two other typical IFN-inducible genes
(MX1 and OASI) did not show such a correlation with clinical
outcome (Fig. S8 D and E). These analyses encourage the future
study of protein ISGylation in human CRC.

Discussion

Genome-wide association studies and candidate gene studies
have identified multiple susceptibility loci in IBD, including the
gene locus 3p21 (42). There are six candidate genes in this
identified locus, including MSTI and UBA7 (42). MSTI pre-
viously has been suggested to be the main gene related to the
susceptibility loci in IBD (43). Here we report, for the first time
to our knowledge, that the UBA7 gene, via its protein product,
ISG15-activating enzyme UBEIL, is also related to colonic in-
flammation and the development of CAC. These data suggest a
proinflammatory function of protein ISGylation in the large in-
testine. Because of the complicated involvement of type I IFN
signaling in colonic inflammation, it is reasonable to speculate that
certain type I IFN-regulated events are detrimental in IBD but
some other types of I IFN-regulated events may be beneficial.
So far, little is known about the role of specific ISGs in colonic
inflammation. Therefore, our studies provide insights into how
protein ISGylation, a specific IFN-induced cellular event, affects
disease progression in mouse models.

In vitro cell line-based studies have revealed contrary roles for
protein ISGylation in tumorigenesis (27-29). However, these con-
clusions depend largely on cell-autonomous events, such as cell
proliferation, cell death, and cell evasion. Nearly all tumors in
cancer patients contain immune cells, including macrophages,
dendritic cells, and lymphocytes. All these cells produce cytokines
and other factors that control inflammatory responses and malig-
nant progression (44). In inflammation-associated cancer, immune
cells play a more important role in tumor development at sites of
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Fig. 4. Protein ISGylation is correlated with patient
survival in patients with CRC. (A and B) Kaplan—Meier
curves of patients with CRC from two independent
datasets (A: GSE37892, n = 130; B: GSE39582, n =519)
showing the correlation between relapse-free sur-
vival of individuals with UBE1L gene expression
I (Affymetrix ID 203281_at UBA7). The cutoff value
for defining higher/lower expression was 359 for
GSE37892 (A) and 311 for GSE39582 (B), at the lower
quartile of the expression (maximum value 1,000)
in each dataset. (C) Schematic overview of protein
ISGylation in regulating the convergence of IFN- and
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chronic inflammation. We observed that macrophages with protein
ISGylation exhibit higher expression of multiple inflammatory cy-
tokines, suggesting that UBEI1L indirectly stimulates the malignant
transition of intestinal epithelial cells by enhancing the production
of inflammatory cytokines in lamina propria immune cells. In the
current report we focused on macrophages largely because of
the high association of protein ISGylation with macrophages in the
large intestine. Furthermore, protein ISGylation in epithelia-
derived tumor cells may have different roles in cancer development
in other contexts; for example, Desai et al. (45) have reported that
protein ISGylation promotes motility in human breast cancer cells.

Our earlier studies used two lung cancer mouse models,
K-ras"*? and p53-deficient mice, to address the role of protein
ISGylation in cancer development by breeding these mice with
UbelL-KO mice (46, 47). However, neither tumor-promoting
nor -suppressing effects of protein ISGylation were observed.
The initiation of lung tumors was observed as early as 2 wk after
birth in the K-ras™*? lung mouse model, suggesting that K-ras™*2
is extremely tumor promoting. In a p53-deficient mouse cancer
model, an alteration of tumor spectrum by protein ISGylation
was observed. Using a CAC model, we demonstrated that pro-
tein ISGylation significantly exacerbates tumor formation. These
results suggest that protein ISGylation may contribute to the
regulation of the cellular environment that affects tumor devel-
opment but does not play an initiating role in tumongenems at
least not in the murine p53-deficient and K-ras™*? cancer mod-
els. Additional work with other mouse cancer models should
provide more insights into the role of protein ISGylation in the
development of specific types of cancer.

One major question regarding the role of protein ISGylation is
how the modification of a small fraction of any individual target
protein can have a significant effect on the overall activity of that
protein. Here we did not focus on the functions of any individual
ISGI15 target protein; rather, we characterized the negative effect
of protein ISGylation on UPS activity in macrophages. We dem-
onstrated that regulation of UPS by protein ISGylation contrib-
utes to IFN-induced ALIS formation in macrophages. More
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Intestinal inflammation «g— — — -

Malignant progression

testinal inflammation. Protein ISGylation conveys a
general inhibitory effect on cellular UPS, resulting in
an increase in IFN-induced ROS production. The en-
hanced cellular ROS further facilitates LPS-induced
p38 activation and production of inflammatory cyto-
kines in macrophages. These effects together con-
tribute to intestinal inflammation and malignant
progression in vivo.

importantly, we showed that the direct modification of ubiquity-
lated proteins by ISG15 impaired proteasome processing of
ubiquitylated proteins. Therefore, this pool of ubiquitylated pro-
teins with additional ISG15 incorporation may be a good source of
initiators for the formation of IFN-induced cellular inclusions.
Because nucleation limits the rate of aggregate formation, and the
presence of a small number of seeds dramatically promotes the
process of protein aggregation (48), a few aggregates formed by
these ISG15/ubiquitin-containing proteins may affect cellular
protein aggregation significantly. In agreement with this notion,
ISG15/ubiquitin double-positive inclusions have been observed
in brain sections obtained from patients with ataxia telangiec-
tasia (49).

To our knowledge, this is the first report of UBA7 and protein
ISGylation in colitis and CAC. A proposed model of how protein
ISGylation contributes to exacerbated intestinal inflammation
is illustrated in Fig. 4C. Protein ISGylation may interfere with
the UPS function in multiple arms, such as the competition of
E1/E2/E3s for ubiquitylation (50) and the competition of ubig-
uitylation sites on substrates (51). One particular effect may be
through ISGylation of ubiquitylated proteins, which disrupts the
formation of long ubiquitin chains (52). All these different arms
in combination convey a general inhibitory effect on cellular
UPS function that can lead to the enhanced production of IFN-
induced cellular ROS. Such IFN-induced ROS augments LPS-
induced p38 activation, increasing the production of inflammatory
cytokines in macrophages. Therefore, our data suggest crosstalk
between type I IFN-triggered protein ISGylation and LPS-
induced p38 activation in colonic macrophages and the contri-
bution of such synergized events to colonic inflammation and
malignant progression. Importantly, we observed an interesting
correlation of UBEIL expression with clinical outcomes in hu-
man CRC. Thus, the enhanced inflammation in the presence of
an active ISG15 conjugation system also may affect human CRC.
Future studies focused on protein ISGylation in human IBD or
CRC may pave the way for the potential application of inhibitors
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of the ISG15-activating enzyme UBEIL in the therapeutic
treatment of these human diseases.

Materials and Methods

Animals. All experimental protocols were approved by the Institutional Animal
Care and Use Committee of the University of California, San Diego (UCSD). All
mice were housed and bred at the vivarium of the Moores Cancer Center
at UCSD.

DSS-Induced Intestinal Inflammation and CAC Induction. DSS (MP Biomedicals,
molecular weight = ~40,000) was added to drinking water (2%, wt/vol) for 7 d;
regular water was given thereafter. Colons were removed quickly at the in-
dicated time points. Gender-matched littermates (age ~12 wk) were monitored
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for weight loss, rectal bleeding, and stool consistency. For details, see S/
Materials and Methods.

Further Details. Additional information about the experimental methods
maybe found in S/ Materials and Methods. Table S1 lists the sequences of
primers used in this study.
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