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Negotiating the information-rich sensory world often requires the
concurrent management of multiple tasks. Despite this require-
ment, humans are thought to be poor at multitasking because of
the processing limitations of frontoparietal and subcortical (FP-SC)
brain regions. Although training is known to improve multitasking
performance, it is unknown how the FP-SC system functionally
changes to support improvedmultitasking. To address this question,
we characterized the FP-SC changes that predict training outcomes
using an individual differences approach. Participants (n = 100) per-
formed single and multiple tasks in pre- and posttraining magnetic
resonance imaging (fMRI) sessions interspersed by either a multi-
tasking or an active-control training regimen. Multivoxel pattern
analyses (MVPA) revealed that training induced multitasking im-
provements were predicted by divergence in the FP-SC blood ox-
ygen level-dependent (BOLD) response patterns to the trained
tasks. Importantly, this finding was only observed for participants
who completed training on the component (single) tasks and their
combination (multitask) and not for the control group. Therefore,
the FP-SC system supports multitasking behavior by segregating
constituent task representations.

multitasking | cognitive training | frontoparietal–subcortical | MVPA |
executive function

It is thought that humans are poor at multitasking because
frontoparietal and subcortical (FP-SC) brain regions both serve

a broad range of mental functions (1, 2) and are limited in-
formation processors (3). Thus, performing multiple tasks con-
currently exceeds the capability of the system, and performance
impairments are incurred. Fortunately, these performance costs
can be largely overcome with training: training improves multi-
tasking ability (4) and typically leads to reduced activity in FP-SC
brain regions (5, 6).
One explanation for these effects is that training diverts task

performance away from the capacity limited FP-SC system (5, 6),
toward an unmediated sensory–motor association. According to
this account, referred to here as the “redistribution account,” the
FP-SC system contributes minimally to trained task performance.
Therefore, after training, any task representations in this system
should be dissociated from behavioral performance. A less
considered alternative is that training differentiates the FP-SC
response between trained tasks (7), thereby reducing intertask
competition between neurons that were initially recruited by
both tasks (2) and expanding the capacity for concurrent task
processing. According to this framework, referred to here as the
“divergence account,” the separation of task representations in
these regions should predict training benefits. Thus, the “re-
distribution” and “divergence” theories make distinct predictions
regarding the relationship between FP-SC task representations
and improved multitasking abilities.
We conducted a large-scale magnetic resonance imaging

(MRI) study to test these opposing accounts, capitalizing on an
underused information source: interindividual variability in the
blood oxygen level-dependent (BOLD) signal. A key characteristic

of multitasking is that large and meaningful individual differences
have been observed for both the behavioral response to training
(4) and the FP response to tasks typically used to study multi-
tasking (8). Thus, analysis of interindividual variability may reveal
hitherto unknown aspects of brain function that predict multi-
tasking improvements. To ensure sufficient statistical power for
the analysis of interindividual variability, sample sizes much larger
than those typically used for fMRI studies (∼N = 16–32) (9) are
required. To achieve 80% statistical power (10) to detect medium
sized correlations between behavior and the BOLD signal within
each group (r = 0.4), we recruited a total of 100 participants
(training group, n = 50; control group, n = 50).
Because each voxel potentially captures the activity of over a

million neurons (11), the spatial resolution obtained by averag-
ing BOLD activity across voxels is insufficient to assess task
representations within brain regions. To examine how training
alters task representations in FP-SC areas, we instead applied
multivoxel pattern analysis (MVPA). This method uses a classi-
fication algorithm to decode the degree to which patterns of
brain activity measured across voxel ensembles in a brain region
carry task specific information, given that each voxel contains a
nonuniform distribution of neural selectivity (12). Higher decoding
accuracies reflect increased levels of task-relevant information
being represented within a given brain area. Therefore, changes in
task decoding accuracies from pre- to posttraining can provide
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insights into task representation changes in the FP-SC system.
To preview the results, we observed that multitasking improve-
ments were predicted by decoding accuracy increases in the FP-SC
response to the constituent tasks. In support of the divergence
account, this demonstrates that enhanced multitasking behavior
is supported by the segregation of task-representations in the
FP-SC system.

Results
Multitasking ability and concurrent functional brain activity were
assessed using a slow event-related design (Fig. 1). These mea-
surements were taken both before and after a multisession
training regimen (3,024 trials over 3 days) that focused either on
the single- and multitasking paradigm (training group) or visuo-
spatial skills (13) (visual search paradigm; control group; Fig. 1).
The use of an active control design alleviated extraneous factors
between groups (e.g., motivational differences) that have been
prominent confounds in previous studies examining how training
for multitasking influences brain function (7, 14). For the mea-
sure of multitasking ability, participants performed two simple
sensorimotor tasks in isolation and together (multitask condi-
tion). Participants used the first two fingers of one hand to press
a button that was paired with one of two shapes (shape task), and/or
the first two fingers of the other hand to press a button associ-
ated with one of two sounds (sound task). Multitasking costs
were quantified as the response time (RT) difference between
single-task and multitask trials (i.e., the cost incurred as a con-
sequence of performing both tasks concurrently). Improvements
in multitasking ability were quantified as the reduction of multi-
tasking costs between pre- and posttraining sessions.

Multitasking Behavior and Training-Induced Improvements. At pre-
training, both groups showed large multitasking RT costs [main
effect of single-task vs. multitask; F(1, 98) = 688.74, mean square
error (MSE) = 0.026, P < 0.001, η2p = 0.88; Fig. S1A]. Importantly,
these were reduced more for the training group than for the control

group at the posttraining session [session (pre vs. post) × condition
(single-task vs. multitask) × group (training vs. control) interaction;
F(1, 98) = 31.12, MSE = 0.01, P < 0.001, η2p = 0.24; Fig. S1B], even
though both groups showed large improvements in performing
their respective training tasks (Fig. S2). Therefore, training on
both the single- and multitasks was effective for improving
multitask performance for the training group (training also im-
proved single-task performance in this group, Fig. S2).
We sought to capture these training-induced multitasking

benefits as a single measure that could be correlated with functional
changes in the FP-SC system. Therefore, we summed multitasking
costs across the shape and sound tasks for both the pre- and post-
training sessions and took the difference between the two sessions
[(pretraining shape RT cost + pretraining sound RT cost) −
(posttraining shape RT cost + posttraining sound RT cost); Fig.
2A]. Positive values reflect greater multitasking improvements.

FP-SC Regions Influenced by Training. Next, we identified the FP-SC
regions of interest (ROIs) for which training-induced functional
changes would be characterized. To be included, a given region had
to meet the following criteria after adjustment for false discovery rate
(15) (q < 0.05); first, to find regions that support multiple mental
functions, we identified FP-SC areas that showed increased activity in
response to both the shape and the sound single-tasks relative to
baseline activity (conjunction analysis) for all 100 participants in the
pretraining session. This analysis implicated a wide range of frontal,
parietal, and subcortical regions (Table S1). The same analysis on
the posttraining data identified the same ROIs. The subtraction of
the summed single-task activity from multitask trial activity did not
identify any further ROIs when using the pretraining or posttraining
data. Therefore, our subsequent results are not dependent on either
the session or the contrast used to define them.
Second, we identified the FP-SC regions that displayed in-

creased activity in response to multitasking demands at the pre-
training session, by comparing extracted time course data between
the multitask condition and the average of the two single-task
conditions. To ensure the reliable detection of FP-SC regions that
are sensitive to multitasking demands, we performed this analysis
separately for the training and control groups (internal replica-
tion). All of the FP-SC regions identified by the first criterion
showed reliable sensitivity to multitasking demands (Fig. S3),
suggesting that regions coding various aspects of multitasking are
more widespread than has previously been hypothesized (3, 16).
Third, to isolate FP-SC regions influenced by training, we

tested for those areas that showed, within the training group,
reduced differences between single-tasks and multitasks at the
post- relative to the pretraining session (Fig. S4). Lastly, to rule
out any regions that showed pre- to posttraining changes not
specific to the influence of training on single- and multitasks, we
retained only those areas that showed larger changes for the
training group compared with the control group (Fig. S4, boxed
region). These four criteria isolated the superior medial frontal
cortex (SMFC), the left and right inferior parietal lobule (L/R
IPL), and the putamen (Fig. 2C). These areas have all been
previously implicated in multitasking and other tasks tapping
executive function (1, 3, 17).

The Influence of Training on Task Representations in the FP-SC
System. To test between the redistribution and divergence ac-
counts, we examined whether training induced changes in
decoding accuracy, in the FP-SC ROIs for the two single-tasks,
could predict improved multitasking behavior. Because the re-
liability of a measure determines the degree to which variance is
available to correlate with other measures (18), we first de-
termined the reliability of the BOLD signal elicited by single-
tasks by correlating pre- and posttraining measures within the
control group while factoring out any variance that could be
attributed to head motion. All of the BOLD measures showed
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Fig. 1. Training protocol and tasks. Overview of the study protocols for the
training and control groups. Familiarization sessions took place on the Friday
afternoon preceding the week of participation. Pretraining and posttraining
MRI sessions (in green) were held on Mondays and Fridays at the same time
for each participant. Measurements of multitasking behavior and concurrent
brain activity were recorded using a slow event-related design. In the in-
tervening days, three training sessions lasting ∼45–60 min were completed.
Participants trained either on the multitasking paradigm (training group) or
on a visual-search task (control group).
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statistically significant reliability (Table S2). Therefore, the mea-
sures of BOLD activity were amenable to an individual differences
approach.
We quantified FP-SC task representation changes as the dif-

ference between post- and pretraining MVPA decoding accuracy,
averaged across the key ROIs (SMFC, L/R IPL, L/R putamen).
Positive values indicated increases in decoding accuracy, and
therefore an increase in the separation of task representations in
the FP-SC system. We then assessed whether increases in decod-
ing accuracy predicted multitasking improvements (redistribution

vs. divergence account) using a simultaneous multiple regression
analysis. To control for the influence of single-task performance,
we included mean RTs from the pre- and post-shape and -sound
single-tasks as regressors. Furthermore, we controlled for the po-
tentially confounding influence of head motion on decoding ac-
curacy (19) by including the pre- and posttraining mean translation
and rotation parameters as regressors in the model. Both models
significantly accounted for variation in multitasking improvements
(training: adjusted R2 = 0.32, P = 0.019; control, adjusted R2 =
0.28, P = 0.03). Crucial to the divergence hypothesis, that
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average decoding change was substituted into the multiple regression model. This was repeated over 1,000 iterations. (D) The adjusted R2 observed for the
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separation of task representations in the FP-SC system strongly
predicted multitasking improvements: a comparison of the beta
coefficients showed that increased decoding accuracies within the
FP-SC system predicted multitasking improvements to a greater
extent for the training group than for the control group (β = 0.53 vs.
β = 0.07, z = 2.86, P = 0.004; Fig. 2B).
If segregation of FP-SC task representations is important for

improving multitasking ability, then decoding accuracy increases
should predict variance in multitasking improvement above and
beyond that predicted by single-task RTs. Thus, we next tested
the predictive value of decoding accuracy changes in each group
using a hierarchal regression analysis, while also controlling for
variance accounted for by head-movements and single-task RTs.
This analysis showed that in the training group, decoding accu-
racy increases predicted 27.4% [change in adjusted R2 (ΔadjR2)]
of the variance in multitasking improvement, which was a sta-
tistically significant increase relative to that predicted by single-
task RTs and head movement measures [F(1, 32) = 14.25; P =
0.0007]. For the control group, decoding accuracy increases re-
duced the predicted multitasking variance by 1.73% (ΔadjR2), a
value that was not statistically different from that predicted by
single-task RTs and head movements [F(1, 32) = 0.2; P = 0.65].
Importantly, decoding accuracy increases predicted multitasking
improvements to a greater extent for the training group compared
with the control group. Both groups were directly compared in a
simultaneous multiple regression analysis that also included a
group interaction term. The slope coefficients were significantly
different between the two groups [t(80) = 2.19; P = 0.03],
showing directly that decoding accuracy increases were more
predictive of training-induced improvements for the training
group than for the control group. This strongly supports the di-
vergence account: separation of task representations in the FP-SC
system is a substantial predictor of improvements in multitasking
ability (also see Fig. S5 for a demonstration that decoding accuracy
increases uniquely predict multitasking improvements and not
improved task-switching ability induced by training).

Specificity of the FP-SC System. Finally, we wanted to ensure that
the relationship between decoding accuracy increases and mul-
titasking improvements were specific to the FP-SC system.
Therefore, the critical test was to determine whether decoding
accuracies from randomly selected ROIs could also predict
multitasking improvements. We randomly sampled five brain
regions previously identified as sensitive to multitasking (Fig. S3)
from the training group data and evaluated the extent to which
decoding accuracy increases predicted multitasking improve-
ments, while simultaneously controlling for head motion and
single-task RTs (see Fig. S6 for baseline decoding performance
for all brain regions). This was repeated over 1,000 iterations.
The predictive relationship between FP-SC decoding accuracy
increases and multitasking improvements (adjusted R2 = 0.32;
β = 0.53) was larger than any that was observed when regressing
decoding changes in randomly sampled regions against multi-
tasking improvements [mean adjusted R2 = 0.09 (95% CI, 0.01–
0.29); mean β = −0.11 (95% CI, −0.36 to −0.11); Fig. 2D].
Therefore, the predictive relationship between divergence in task
representations and multitasking improvement is specific to the
FP-SC system.

Discussion
We examined the neural mechanisms that underlie training in-
duced enhancements in multitasking performance. In accordance
with the divergence account (7), we found that the fractionation of
neural response patterns to single-tasks predicted multitasking
improvements, and that this relationship was specific to the FP-SC
system. This challenges the long held assumption that training
redistributes information away from brain systems that support
multiple mental functions (5, 6). Indeed, the present results

demonstrate that to meet the computational demands of multi-
tasking, the FP-SC system employs a “divide and conquer” strat-
egy, separating out representations of task-specific information.
These findings illustrate that a training-induced reduction in a

region’s averaged BOLD signal need not be interpreted as a
redistribution of information-flow away from that area, as has
been assumed previously not only for multitasking (17) but also
for memory and selective-attention (5, 6). Rather, we show here
that a divergence of response patterns to trained tasks occurs in
concert with reductions in FP-SC activity, suggesting that training
refines the neural code that contributes to task performance. More
specifically, response properties of individual FP-SC neurons may
adapt with training, so that the response profile across neurons
becomes more dissociable between trained tasks.
How exactly neural responses to constituent tasks adapt with

training remains to be characterized. It may be that training
reduces noise, thereby decreasing overlap in the neural response
for each task. Single-unit work in monkeys has previously shown
that fewer neurons respond to a repeated image in brain areas
showing topographic stimulus representations (20). It may be
that training causes a similar change to the neural response in
brain systems consisting of distributed task representations, such
as the FP-SC system. Alternately, training may specialize neu-
rons to fire for one task over the other, analogous to the expe-
rience driven selectivity of neurons for people or objects in the
medial temporal lobe (21), thereby driving spatially distinct task-
representations. Regardless of the exact mechanisms that drive
the underlying neural changes, the current data provide the first
demonstration that task-representations can become more dis-
tinct within the FP-SC system after training, a network that has
been largely characterized for its generality and contribution to
multiple mental operations (1).

Materials and Methods
Participants. Participants were recruited if they were aged 18 y or over, had
normal or corrected-to-normal vision, and reported no history of psychiatric
or neurological illness, injury or disorder, or the use of psychoactive medi-
cations. In total, 111 participants were recruited for the study. Of these
participants, six were excluded because of excessive head motion (>5 mm/° in
any translational direction or rotation), two because of a failure of the
sound presentation equipment in the pretraining session, one because of
responding incorrectly to the sound task across all six runs, one because of a
technical error in the first training session, and one dropped out midway
through participation. The remaining 100 participants were pseudorandomly
allocated to the training (n = 50) or the control group (n = 50). The two
groups were well matched for age (training group x = 24.3 y, SD 6.2; control
group x = 24.6, SD 5.5), years of education (training group x = 16.3 y, SD 2.4;
control group x = 16.8, SD 2.8), sex (training group, 15 males; control group,
11 males), and handedness (training group, three left handers; control
group, four left handers).

All participants received 10 AUD per hour for participation. Participants
were also able to earn bonus dollars across the three training sessions. Bonus
dollars were accrued for high accuracy and for beating RT deadlines (∼20
AUD per participant). The University of Queensland Human Research Ethics
Committee approved the study as being within the guidelines of the Na-
tional Statement on Ethical Conduct in Human Research, and all participants
gave informed, written consent.

Experimental Overview. Participants attended six experimental sessions: a
familiarization session, two MRI sessions and three behavioral training ses-
sions. Familiarization sessions were conducted the Friday before the week of
participation, where participants learned the stimulus-response mappings
and completed two short runs of the task. The MRI sessions were conducted
to obtain pretraining (Monday session) and posttraining (Friday session)
measures. These sessions were held at the same time of day for each par-
ticipant. Between the two MRI sessions, participants completed three be-
havioral training sessions, where they either trained upon the multitasking
paradigm (training group) or the control task (control group). Participants
typically completed one training session per day, although on occasion two
training sessions occurred on the same day to accommodate participants’
schedules (when this occurred, the two sessions were administered with a
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minimum of an hours break between them). Participants also completed an
online battery of questionnaires that formed part of a different study.

Behavioral Tasks. All tasks were programmed using Matlab R2010a (Math-
works) and the Psychophysics Toolbox v3.0.9 extension (22). The familiar-
ization and behavioral training sessions were conducted with a 21-inch, Sony
Trinitron CRT monitor and a Macintosh 2.5 GHz Mini computer.

Multitasking Paradigm. For each trial of the multitasking paradigm, partici-
pants performed either one (single-task condition) or two (multitask con-
dition) sensorimotor tasks. Both involved a two-alternative discrimination
(2-AD), mapping the two stimuli to two responses. For one task, participants
were presented with one of two white shapes that were distinguishable in
terms of their smooth or spikey texture, presented on a black screen and
subtending ∼6° of visual angle. The shapes were created using digital
sculpting software (Scluptris Alpha 6) and Photoshop CS6. Participants were
required to make the appropriate manual button press to the presented
shape, using either the first or index finger of either the left or right hand
(task/hand assignment was counterbalanced across participants). For the
other task, participants responded to one of two sounds using the first or
index finger of the hand that was not assigned to the shape task. Both
sounds were complex tones, selected from the set used by (16). The sounds
were selected to be easily discriminable from one another. Across both the
single-task and multitask trial types, stimuli were presented for 200 ms, and
on multitask trials, were presented simultaneously.

Familiarization Session. During the familiarization session, participants com-
pleted two runs of the experimental task. Task runs consistedof 18 trials, divided
equally between the three trial types (shape single-task, sound single-task, and
multitask trials). The order of trial-type presentation was pseudorandomized.
The first run had a short intertrial-interval (ITI) and the trial structure was as
follows; an alerting fixation dot, subtending 0.5° of visual angle was pre-
sented for 400 ms, followed by the stimulus/stimuli that was presented for
200 ms. Subsequently a smaller fixation dot, subtending 0.25° of visual an-
gle, was presented for 1,800 ms, during which participants were required to
respond. Participants were instructed to respond as accurately and quickly as
possible to all tasks. For the familiarization session only, performance
feedback was then presented until the participant hit the space bar to
continue the task. For example, if the participant had completed the shape
task correctly, they were presented with the message “You got the shape
task right.” If they performed the task incorrectly, the message “Oh no! You
got the shape task wrong” was displayed. On multitask trials, feedback was
presented for both tasks. If participants failed to achieve at least five of six
trials correct for each trial type, they repeated the run until this level of
accuracy was attained.

The second run familiarized participants with the timing of the paradigm
to be used during the MRI sessions—a slow event-related design with a long
ITI. The alerting fixation was presented for 2,000 ms, followed by the 200 ms
stimulus presentation, 1,800 ms response period and feedback. Subsequently,
an ITI, during which the smaller fixation dot remained on screen, was pre-
sented for 12,000 ms.

MRI Sessions. Participants completed six long ITI runs in the scanner, with 18
trials per run (6 of each trial type, pseudorandomly ordered for each run), for
a total of 108 trials for the session. Trial presentation was identical to the long
ITI run presented at the familiarization session, except that feedback was not
presented at the end of each trial.

Training Sessions. All participants were informed that they were participating
in a study examining how training improves attention, with the intention
that both the training and control groups would expect their training reg-
imen to improve performance. The first training session began with an
overview of the goals of the training regimen; participants were informed
that they were required to decrease their RT, while maintaining a high level
of accuracy. The second and third sessions began with visual feedback in the
form of a line graph, plotting RT performance from the previous training
sessions.

For each session, participants completed 56 blocks of 18 trials, for a total of
1,008 trials, resulting in 3,024 training trials overall. To ensure that partici-
pants retained familiarity with the timings of the task as presented in the
scanner, between two and four of the blocks in each session used long
ITI timings.

The training group performed the multitasking paradigm, as described
above (see Familiarization Session), except that performance feedback was
not displayed after each trial. Over the course of training, participants from

this group performed 1,008 trials of each trial type (shape single-task, sound
single-task, multitask). Participants in the control group went through the
identical procedures to the training group, except that they completed
a visual search task instead of the multitasking paradigm. Participants
searched for a “T” target among 7, 11, or 15 rotated “L’s” (to either 90° or
270°). Participants indicated whether the target was oriented to 90° or 270°,
using the first two fingers of their left or right hand (depending upon
handedness). Over the course of the three training sessions, participants
completed 1,008 trials for each set size.

For both groups, performance feedback showedmean RT (collapsed across
the two single-tasks for the training group, and over the three set-sizes for
the control group) and accuracy for the previous eight blocks, total points
scored, and the RT target for the subsequent eight blocks. If participants met
their RT target for over 90% of trials, and achieved greater than 90% ac-
curacy, a new RT target was calculated by taking the 75th percentile of RTs
recorded over the previous eight blocks. Furthermore, two points were
awarded. If participants did not beat their RT target for over 90% trials but
did maintain greater than 90% accuracy, one point was awarded.

MRI Data Acquisition. Imageswere acquiredusing a 3T Siemens TrioMRI scanner
housed at the Centre for Advanced Imaging at The University of Queensland.
Participants lay supine in the scanner and viewed the visual display via rear
projection onto a mirror mounted on a 12-channel head coil. A T1-weighted
anatomic image was collected after the fourth experimental run of the
scanning session [repetition time (TR), 1.9 s; echo time (TE), 2.32 ms; flip angle
(FA), 9°; field of view (FOV), 192 × 230 × 256 mm; resolution, 1 mm3]. Func-
tional T2*-weighted images were acquired parallel to the anterior commissure–
posterior commissure plane using a gradient echo–echo planar imaging (GRE
EPI) sequence (TR, 2 s; TE, 35 ms; FA, 79 °; FOV, 192 × 192 mm; matrix, 64 ×
64; in-pane resolution, 3 × 3 mm). Each volume consisted of 29 slices
(thickness, 3 mm; interslice gap, 0.5 mm), providing whole brain coverage.
We synchronized the stimulus presentation with the acquisition of func-
tional volumes. Diffusion tensor imaging (DTI) was also conducted after all
T1 and T2* data had been acquired (TR, 9.5 s; TE, 116 ms; FOV, 300 × 300
mm; matrix, 128 × 128 mm; in-pane resolution, 2.3 × 2.3 × 2.5 mm; 60 slices;
thickness, 3 mm; interslice gap, 0.5 mm). DTI images were collected for
another study.

MRI Data Analysis. Image analysis was performed using Brain Voyager QX 2.6
(Brain Innovation) and custom Matlab scripts (Mathworks). Data pre-
processing included 3D motion correction, slice scan time correction, and
linear trend removal. All functional data were aligned to the first localizer
run, and anatomical T1-weighted data were transformed into standardized
Talairach space (23).

Univariate MRI Analysis. A group (n = 100) statistical parametric map (SMP)
analysis was conducted for the pretraining session data. Regressors were
defined for the shape single-task, sound single-task, and the multitask trials.
Brain regions that were significantly activated by both the shape single- and
sound single-tasks (i.e., conjointly activated by the shape single open con-
trast and the sound single open contrast) were identified as FP-SC regions
supporting multiple mental functions.

ROIs were defined using the pretraining SPMs. Cubic ROIs were defined
around the peak voxel of activated foci up to a size of 10 mm3 (37 voxels).
A total of 25 ROIs were defined. We collapsed data across the left and right
ROIs for medial structures (putamen and thalamus), reducing the final ROI
count to 23. Following this procedure, time courses for each participant
were extracted from the isolated ROIs and percent signal change was cal-
culated relative to the two time points preceding stimulus onset for each
trial. Peak activation values of a time course were defined as the maximum
percent signal change occurring between 4–8 s relative to stimulus onset and
were used as the dependent variable for standard parametric approaches
(i.e., ANOVA and t tests). For these analyses, a FDR correction (15) of q < 0.05
was again applied to control for multiple comparisons. Because examination
of the individual time courses indicated that not all participants showed
activation in all of the ROIs, individuals who scored <0.2% signal change for
any given ROI were excluded from analyses involving that ROI (but their
data were retained for any ROIs where >0.2% signal change was observed).

Multivoxel Pattern Classification Analysis. ROIs were centered on the Talairach
coordinates for those regions that were deemed as sensitive to multitasking
demands. The total number of ROIs included in the analysis was selected by
iteratively comparing the coordinates of all ROIs to determine the maximum
number that could be retained without spatial overlap (see Fig. S6 for the
included FP-SC ROIs). Where overlap occurred, regions that had previously
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been demonstrated to play a role in multitask processing were selected. This
resulted in a total of 20 ROIs. As is typical for decoding analyses, spherical
ROIs were defined at two sizes of 11 mm per side for 1,331 mm3 and 15 mm
per side for 3,375 mm3 (24). However, for the insula and putamen regions,
only the 11-mm ROIs were defined as otherwise these areas overlapped with
voxels of other regions. For the areas where both the 11-mm and the 15-mm
ROI could be defined, results were consistent across both sizes (only the
results from the larger ROI analysis are presented).

MVPAwas implemented using customMatlab (Mathworks) software and a
linear support vector machine binary algorithm (25). For each voxel in a given
ROI, we extracted the average peak percent signal change for each trial (4–8 s
poststimulus onset). Before each MVPA, data for each voxel in an ROI were
z-transformed and mean-centered by subtracting the condition mean for the
entire ROI from the response in each individual voxel. This controlled for overall
differences in signal amplitude between conditions. We trained a series of bi-
nary classifiers to discriminate between patterns of activity associated with the
shape and sound single-tasks, using the leave-one-out cross validation method.
In each fold, one run was used to test the classifiers generalization perfor-
mance, and the remaining five runs were used to train the classifier. Decoding
accuracy for each ROI was averaged across each cross-validation loop.

Reliability Analysis. We assessed the reliability of BOLD measures by corre-
lating observations between the pretraining and posttraining sessions for the
control group (Table S2). This demonstrated that task-evoked BOLD activity
was reliable within participants; the range of reliability scaled from r = 0.34–
0.82. We also determined the reliability of the pre- and posttraining
decoding accuracies (while factoring out any variance that could be attrib-
uted to head motion), and the reliability of the behavioral multitasking
costs. Mean decoding accuracy for the key multitasking regions showed
good reliability (r = 0.59, n = 50, P < 0.0001), as did the measure of multi-
tasking costs (r = 0.62, n = 50, P < 0.001).
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