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Numerous controlled experiments find that elevated ground-level
ozone concentrations ([O3]) damage crops and reduce yield. There have
been no estimates of the actual yield losses in the field in the United
States from [O3], even though such estimates would be valuable for
projections of future food production and for cost–benefit analyses of
reducing ground-level [O3]. Regression analysis of historical yield, cli-
mate, and [O3] data for the United States were used to determine the
loss of production due to O3 for maize (Zeamays) and soybean (Glycine
max) from 1980 to 2011, showing that over that period production of
rain-fed fields of soybean and maize were reduced by roughly 5% and
10%, respectively, costing approximately $9 billion annually. Maize,
thought to be inherently resistant to O3, was at least as sensitive as
soybean to O3 damage. Overcoming this yield loss with improved
emission controls or more tolerant germplasm could substantially in-
crease world food and feed supply at a time when a global yield jump
is urgently needed.
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The United States accounts for over one-third of global maize
production and almost one-third of soybean production. It is

also the largest exporter of both commodities (1). Numerous
controlled environment and field studies have shown that current
ozone concentrations ([O3]) are damaging to the yields of both
crops (synthesized by refs. 2 and 3), although soybean is reportedly
more sensitive than maize, based on manipulative dose–response
experiments (2). This has important implications for current crop
production considering that ground-level [O3] during the Northern
Hemisphere growing seasons frequently exceed 40 ppb (4), the
threshold concentration for a cumulative exposure index used in
Europe, as well as the concentration above which prolonged ex-
posure leads to significant crop yield loss (5, 6). Globally, [O3] is
projected to increase over this century if current high emissions
continue (7). Although crop loss from O3 has been estimated by
extrapolating from experimental data to field conditions (8), until
recently it has not been possible to quantitatively define crop loss
due to O3 pollution from actual yield data across the major US
growing region.
Ozone causes damage by entering leaf intercellular air spaces

via stomata, where it reacts with compounds in the exposed wet
cell-wall surfaces, causing the production of damaging radicals
and signaling that accelerates senescence (9, 10). It also causes
chain reactions, creating other reactive oxygen species, which can
cause further damage, and large doses of O3 can induce pro-
grammed cell death (11). Because the route of entry is through
the stomata, O3 damage is dependent on stomatal conductance,
which is itself dependent on environmental conditions such as
water availability. As such, O3 damage is strongly dependent on
environmental conditions and physiological plant properties that
affect stomatal conductance. This has led to the expectation that
O3 damage will be less for C4 species such as maize, given their

intrinsically lower stomatal conductance, as well as for plants
under drought stress, and in response to rising [CO2] (9, 12).
Estimating the loss of crop production from ground-level O3 is

valuable for understanding the potential benefits of reducing
[O3] and for projecting future food supply (13). Even though
manipulative experiments clearly indicate that elevated [O3] re-
duces soybean yields, and to a lesser extent maize yields (2), deriving
field-level estimates using data from experimental studies is prob-
lematic. The environmental conditions of controlled environment
studies represent only a small range of the conditions experienced
by crops in fields, and because of the interactions between the ef-
fects of [O3] and microclimate, extrapolating from controlled en-
vironment experiments to open-air field conditions is uncertain
(14). The few field studies that have been conducted were done at a
limited number of locations and with a limited number of geno-
types. Dose–response functions created from such studies do not
account for the interactions between environment and O3 damage
described above, potentially making extrapolation of losses to entire
growing regions unreliable. Multivariable models that include en-
vironmental variables as well as [O3] can account for these inter-
actions, providing better estimates of O3 damage.
As an alternative to manipulative experiments, studies have

used long-term datasets to examine the effects of temperature,
precipitation, and [CO2] on crop yield (15, 16). Ground-level
[O3] has been monitored widely in the United States for the past
30 y, and coupled with long-term county yield records, there is a
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new opportunity to determine the effect of [O3] on yields by
quantifying the covariance between [O3] and yield. Using historical
[O3] and yield records requires an accounting of variation in the
numerous other factors that affect yield (13, 16, 17). However, this
approach has the substantial advantage of allowing for estimation
of effects over most of the US growing region, given simultaneous
records of surface [O3]. Furthermore, because these estimates are
independent of experimental studies, they provide a separate test
and quantification of the damaging effects of O3 on crop yields.
In this study, we use [O3] data from the Environmental Protection

Agency (EPA) coupled with crop yield data from the National Ag-
riculture Statistics Service and climate data from the Climate Re-
search Unit to estimate production loss of maize and soybean in the
United States over the past 30 y by creating a statistical model that
accounts for climate, [O3] and improvements in agronomy, with the
objective of estimating production losses of these two crops due to
ground-level [O3]. Results show that from 1980 to 2011 O3 has
reduced maize yields by 10% and soybean by 5%. On a relative basis,
both crops are more sensitive to [O3] in extreme temperatures and
dry conditions, and maize is more sensitive to [O3] than soybean.

Results
Hourly [O3] data from 2,700 sites across the United States
obtained from the EPA were used to calculate values of three
well-established cumulative indices of [O3]: AOT40, SUM06,
and W126 (18). Each of these is a cumulative metric that in-
creases with both duration and dose of O3 exposure. AOT40
is the sum of hourly [O3] that are greater than 40 ppb. SUM06 is
the sum of hourly concentrations that are greater than 60 ppb,
and W126 is the sum of hourly concentrations weighted by a
sigmoidal function, such that higher concentrations are given
more weight (details are given inMaterials and Methods). In each
metric, lower [O3] values are given less weight, which accounts
for the observation that doses of low [O3] over long periods are
less damaging to plants than short, high [O3] doses. All three
indices were correlated to yield and showed similar results from
which the same conclusions could be drawn (Fig. S1). However,
only results for W126 are reported in the main text because the
response of yield to W126 was the most linear for both maize and
soybean across the entire range of values (Fig. S1), potentially
making it the most sensitive index (18), especially at low [O3].
Precipitation over potential evapotranspiration (P/PET), which is

a measure of water availability, maximum temperature (Tmax), and,

in turn, each of AOT40, SUM06, and W126 were used in a linear
regression model to determine their effects on yield of soybean and
maize. The model was used to predict yield in two conditions:
(i) using historical, observed [O3] indices and (ii) a hypothetical
situation assuming no ground-level O3. The models for soybean and
maize accurately predicted historical yields (Fig. S2) and, as expec-
ted, predicted higher yields at zero W126 than yields predicted with
historical W126 (Fig. S3). The type III sums of squares indicated
that the effects of W126, W126*Tmax, and W126*Tmax

2 were
significant for both soybean and maize, and the W126*(P/PET)
and W126*(P/PET)2 terms were significant for soybean (Tables
1 and 2), suggesting that even after accounting for other environ-
mental effects, the effect of O3 still explained a significant proportion
of variation in the historical data, and that the response to [O3]
depended on growing season temperature and water status of the
crop. Results were similar when using AOT40 or SUM06 (Tables S1
and S2).
For each set of predictions (i.e., historical [O3] and a hypothetical

situation without O3), production was summed for all counties and
years, and the percentage difference between the two conditions
was used to estimate yield loss due to O3 exposure. Confidence
limits for this estimate were obtained using bootstrapping (see
Materials and Methods for description). Estimates of production loss
ranged from 4–6% for soybean and 8–11% for maize (Table 3), and
estimates were similar when using AOT40 or SUM06 (Table S3).
Historical yield loss due to O3 remained relatively constant for
soybean until the year 2000, when there was a trend toward less O3
damage (Fig. 1). For maize, historical yield loss due to O3 decreased
between 1980 and 2000, and like soybean, the trend toward less O3
damage became greater around year 2000 (Fig. 1).
To examine relative sensitivity of maize and soybean to [O3], a

local regression analysis (LOESS) was used. LOESS models fit
low-order polynomial regressions at each data point, using that
point’s nearest neighbors, and combine the results into a larger
model. Each individual regression uses only a subset of the total
dataset, and thus the analysis makes no global assumptions about
relationships between model parameters. This sacrifices the ability
to make general statements about parameters but allows for better
predictions under specific conditions and a more flexible response
to parameters, making it well-suited to compare the sensitivity of
these crops across the range of conditions seen in the historical
data. The parameters used in the LOESS yield model were P/PET,
Tmax, and W126.

Table 1. Type III sums of squares for rain-fed soybean yield

Model parameter
Degrees of
freedom Sums of squares F value P value†

Intercept 1 42,427,808 377.0 0.002
Year 1 97,894,399 869.8 0.002
County 253 51,990,756 1.8 0.002
Tmax 1 6,534,829 58.1 0.002
P/PET 1 160,418 1.4 0.226
Tmax

2 1 6,465,343 57.4 0.002
P/PET2 1 1,086,772 9.7 0.01
W126 1 2,028,804 18.0 0.002
Year*county 253 52,677,918 1.9 0.002
Tmax*P/PET 1 3,579 0.0 0.832
Tmax*P/PET

2 1 512,755 4.6 0.032
P/PET*Tmax

2 1 20,533 0.2 0.652
W126*P/PET 1 2,834,395 25.2 0.002
W126*Tmax 1 2,534,975 22.5 0.002
W126*P/PET2 1 2,019,730 17.9 0.002
W126*Tmax

2 1 2,688,000 23.9 0.002
Residuals 6,210 698,922,185

†P values were determined by comparing the F value in the table to a null
F distribution that was generated by a double bootstrap procedure that
accounted for spatial correlation. Thus, the P value in the table is different
from that of a standard F test.

Table 2. Type III sums of squares for rain-fed maize yield

Model parameter
Degrees of
freedom Sums of squares F value P value†

Intercept 1 567,895,174 600.4 0.002
Year 1 1,720,503,651 1,818.9 0.002
County 283 888,816,636 3.3 0.002
Tmax 1 54,345,824 57.5 0.002
P/PET 1 380,084 0.4 0.546
Tmax

2 1 63,688,564 67.3 0.002
P/PET2 1 5,869,113 6.2 0.016
W126 1 44,226,186 46.8 0.002
Year*county 283 900,103,436 3.4 0.002
Tmax*P/PET 1 1,638,230 1.7 0.21
Tmax*P/PET

2 1 1,192,597 1.3 0.258
P/PET*Tmax

2 1 2,259,738 2.4 0.12
W126*P/PET 1 1,943,883 2.1 0.134
W126*Tmax 1 51,755,969 54.7 0.002
W126*P/PET2 1 1,068,479 1.1 0.234
W126*Tmax

2 1 54,124,209 57.2 0.002
Residuals 6,932 6,556,987,586

†P values were determined by comparing the F value in the table to a null
F distribution that was generated by a double bootstrap procedure that
accounted for spatial correlation. Thus, the P value in the table is different
from that of a standard F test.
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Without the ability to make general conclusions about parame-
ters, a LOESS model can only predict yield using values of P/PET,
Tmax, and W126 within the ranges used to parameterize the model.
Because O3 is always present at ground level, this means it is not
possible with this dataset to use LOESS to predict yield in the ab-
sence of O3. However, there are times and places with very low
[O3]. The lowest W126 value in the dataset was 0.04 ppm h, com-
pared with the mean W126, which was 18 ppm h. Thus, to examine
the effect of O3 the LOESS model was used to predict yields of
maize and soybean using a W126 index value of 20 ppm h (which is
near the historical mean of 18 ppm h; Table 4) and a value of 1 ppm h
(which is small but somewhat larger than the historical minimum
of 0.04 ppm h). A W126 value of 0.04 ppm h was not used because
the LOESS model uses only nearest neighbors for a given data
point, and because 0.04 ppm h is the lowest W126 value, the only
nearest neighbors are larger values of W126, giving low power and
large confidence limits. By using aW126 value of 1 ppm h, there are
nearest neighbors of W126 both smaller and larger than 1 ppm h,
giving more power and smaller confidence limits. Moreover, even
with complete removal of anthropogenic sources, ground-level [O3]
will never be completely removed, due to natural sources of O3.
Therefore, although the estimate is not for an O3-free environment,
it allows for a useful comparison between the mean [O3] condition
and a low O3 condition. Results also showed that maize was more
sensitive to [O3] across the entire range of Tmax in optimal and very
wet conditions, but the crops had similar sensitivities to [O3] in dry
conditions, where both crops were most sensitive to [O3] (Fig. 2).

Discussion
Using an approach independent from experimental studies,
based on historical records of yield, climate, and ground-level
[O3], we present three major findings. First, ground-level O3
significantly decreased annual yields of rain-fed soybean and
maize in the United States for the period 1980–2011 and regulation
of O3 emissions may have contributed to these losses. Second, the
historical relationships suggest that maize yields were more sensi-
tive to [O3] than soybean yields. Third, O3 caused substantial
damage even in drought conditions, contrary to the expectation
that lower stomatal conductance during times of limited water
availability would provide protection by limiting O3 uptake into the
plant (19). Data from irrigated fields were not included in the
analysis, so these conclusions only apply to rain-fed fields, which
describe ∼85% of maize and 90% of soybean growing regions in
the United States.
Yield loss from O3 from 1980 to 2011 was estimated to be 5%

for soybean and 10% for maize. The mean value of production
from 2009 to 2013 was $65 billion for maize and $39 billion for
soybean [National Agricultural Statistics Service (NASS) (www.
nass.usda.gov)], implying losses of roughly $7.2 billion per year for
maize and $2 billion per year for soybean, ignoring effects of supply
and demand. This significant loss of income and food should be a
strong impetus to further decrease ground-level [O3], especially
considering that the interaction between [O3] and high tempera-
tures portends that the effect of O3 is likely to be greater in the
coming decades with intensifying climate change (20).
Although losses from current [O3] are large, the damage caused

by ground-level O3 has decreased for both crops since 1980 (Fig. 1).
Concentrations of O3 and O3-producing precursors have decreased
in the United States (21), accounting for the reductions in O3
damage seen here. There is controversy over whether regulatory
policies influence air quality, with evidence that some policies have

clear effects but other policies have little or no effect (22). However,
it is noteworthy that there was an accelerated rate of improvement
seen around year 2000 (Fig. 1) following more stringent regulations
for O3 concentrations implemented by the EPA in 1997 (23), in-
dicating that those regulations have had a nationwide positive effect
on maize and soybean yield. The EPA currently sets goals for
emissions of O3 and its precursors based on protecting human
health, but this has had the fortunate side effect of improving crop
yield. However, because nearly 90% of areas have met current [O3]
goals (21), there is little impetus to further reduce ground-level
[O3]. New regulations intended to protect economic production in
addition to human health have been considered, but there are
currently no regulations in effect. Taken together, the substantial
reduction in yield loss since 1980 and the 4–7% loss of production
still occurring today indicate that regulating pollutants has had
widespread positive benefits on agricultural production, and that
further reductions in pollution would produce further benefits. For
regions of the world where crop yield loss from pollutants is larger
(13), the success in the United States indicates that regulation of air
pollutants in those countries would be an effective means of in-
creasing crop yield.
Our analysis used type III sums of squares to account for the

effect of interest after including all other terms in the model, so a
significant effect indicated that the term was able to further explain
variation in the model, even if the newly added term was correlated
with terms already included in the model. This is particularly im-
portant, because W126 is highly correlated with water availability
and temperature, and both environmental parameters strongly and
independently affect yield (24). If one were to only check for a sig-
nificant O3 effect without already accounting for temperature and
precipitation, those effects would be confounded with effects of O3,
biasing the estimate of the O3 effect and causing erroneous signifi-
cance. After including major influences on yield such as improved
cultivars and agronomy (as a year effect), differences between
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Fig. 1. Estimated percentage reduction of soybean and maize yield from O3

for 1980–2011. Each point is a weighted mean of percentage reduction for
all counties, where the value of a county was weighted by the harvested
acreage of soybean or maize in that county. Percentage reduction was es-
timated by using Eq. 4 to predict yield using historical values of W126 or a
value of 0 W126. The lines are a LOESS fit to the points. The black, dashed,
horizontal line marks 0 change for reference. The gray, vertical, dotted line
indicates when the EPA implemented more stringent standards for O3

emissions. Bars are 95% confidence intervals of yield reduction for that year.

Table 3. Percentage increase in crop production estimated from
1980 to 2011 if the ozone index W126 had been 0 instead of the
measured historical values

Crop Mean, %
95% confidence limits from

bootstrapping, %

Soybean 5.5 3.3–7.7
Maize 9.8 8.0–11.6
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counties, water availability, and temperature, W126 remained highly
significant (Tables 1 and 2), suggesting that O3 has had a large and
quantifiable impact on maize and soybean yields in the United States.
In this analysis, when a term has significant interactions,

lower-order effects for that term are often not independently
interpretable. This can result in seemingly paradoxical conclusions.
For example, for both maize and soybean (P/PET)2 was significant,
but P/PET was not significant. This does not mean that P/PET had
no effect, because the significance of the (P/PET)2 term makes the
P/PET term uninterpretable on its own. This indicates that yield
responded roughly quadratically to P/PET, in that there is a P/PET
that is optimal for yield, and too little or too much precipitation
reduced yield. The results indicated that O3 interacted with both
temperature and water availability, supported by the significant
interactions between W126, Tmax, and P/PET for both maize and
soybean (Tables 1 and 2). Because of the dependence of the W126
effect on temperature and water availability, it is difficult to make
conclusions about O3 alone, and instead the effects of O3 are better
considered with respect to the environment in which the crop was
grown. To help understand these relationships, LOESS analysis
was used to determine the effect of O3 across a range of values of
P/PET and growing season temperature. O3 significantly reduced
yield in all conditions, but the effect was most severe in dry con-
ditions with high temperatures (Fig. 2). In very wet conditions, the
effect of O3 was smaller and less dependent on growing season
temperature (Fig. 2). Although many studies and reviews have
shown that low stomatal conductance under times of drought can
limit entry of O3 into leaves, the response of stomatal conductance
to elevated [O3] is not always consistent (25). There is also evi-
dence that elevated [O3] impairs abscisic acid (ABA) signaling.
ABA is a hormone produced during drought, which signals leaves
to reduce stomatal conductance. By impairing ABA signaling,
plants under drought stress have greater stomatal conductance
when exposed to elevated [O3], resulting in increased water loss
(26). Thus, the greater yield loss under dry conditions seen here
could be caused by elevated [O3] exacerbating drought stress.
Greater variability in precipitation across regions and through-

out the year is a predicted consequence of climate change. The
interaction between [O3] and water status seen here implies that
[O3] will modulate the response of precipitation on yield in future
climates. However, it is difficult to assess the relative importance
of changes in precipitation against changes in O3 concentration
without further experiments or modeling (which is beyond the
scope of this study). However, the strong interaction between
P/PET and [O3] seen here has important consequences for increased

variability in precipitation, because if [O3] is high the impact of
drought on yield may be magnified. Similarly, global temperatures
are predicted to increase, and again without further study it is dif-
ficult to assess the relative importance of O3 vs. increasing temper-
atures, especially considering that in some regions for some crops
temperatures may currently be below what is expected to produce
optimal yield. However, for regions and crops where temperatures
are currently at or above optimum, damage from increased tem-
perature would potentially be exacerbated if [O3] is high.
Surprisingly, the yield losses to O3 were greater for maize than

soybean (Fig. 1 and Table 3), even though maize has been
considered less sensitive to O3 than soybean (2, 27). This could
be because maize is more sensitive to O3 or because maize is
grown in times and places with greater [O3] or grown in climates
in which crops are more sensitive to O3. Across all counties and
years, the mean W126 index and climate variables were similar
for soybean and maize (Table 4), indicating that differences in
environment were likely not responsible for the differences in
yield loss. In contrast, when normalized to the same conditions,
maize yield seemed to be more sensitive to [O3] in optimal and
supraoptimal water-status conditions across a wide range of tem-
peratures (Fig. 2), indicating that greater O3 sensitivity of maize
compared with soybean was responsible for the greater yield loss.
To compare our results with previous studies that have esti-

mated O3 dose–response functions and crop yield losses for
maize and soybean, O3 sensitivity of both crops was calculated at
the mean maximum temperature and P/PET across all sites and
years (29 °C, 0.78 P/PET), using 1 ppm h vs. 20 ppm h W126 or
1 ppm h vs. 15 ppm h AOT40, values which are near the minimum
and mean concentrations across all sites and years. W126 values
were estimated from reported mean [O3] and duration of fumi-
gation for studies that did not report W126 or AOT40 (27–29).
For soybean we found a sensitivity to W126 of 0.45% ppm−1 h−1

compared with 0.4% ppm−1 h−1 (27) and 1.7% ppm−1 h−1 (28),
and a sensitivity to AOT40 of 0.49% ppm−1 h−1 compared with
0.5–1% ppm−1 h−1 (2, 30, 31). For maize we found a sensitivity to
W126 of 0.52% ppm−1 h−1 compared with 0.12% ppm−1 h−1 (27)
and 0.7% ppm−1 h−1 (29), and a sensitivity to AOT40 of 0.62%
ppm−1 h−1 compared with 0.4% ppm−1 h−1 (2) and 0.5% ppm−1 h−1

(32). Thus, the sensitivity estimates produced by the current study
for the two species are in line with previously reported values.
These results suggest that maize is at least as sensitive as soybean
to [O3], and that the reduced stomatal conductance character-
istic of species with C4 photosynthesis does not necessarily pro-
tect against O3 damage. This has important implications for both
the benefits that would be obtained by lowering the emissions
that give rise to elevated [O3] in rural regions as well as pro-
jections of future food and feed supply.
Elevation of ground-level [O3] caused by pollution has resulted

in very significant losses of maize and soybean yields in the United
States and, by extension, other crops. Air-quality regulation has
successfully reduced O3-induced crop damage since 2000 but losses
remain at ∼4 and 7% for soybean and maize. Thus, further reducing

Fig. 2. Sensitivity of soybean and maize yield to
[O3] across a range of values for P/PET and Tmax.
Each panel gives estimates of sensitivity at a differ-
ent P/PET, and values for P/PET are given in the top
of each panel. The mean and 95% confidence limits
are shown for estimates of percentage reduction of
yield in 1 ppm h W126 compared with 20 ppm h
W126 from a LOESS model. The black, dashed line
indicates no change for reference. Negative values
indicate that O3 decreased yield.

Table 4. Mean environmental conditions for all counties and
years included in the analysis of ozone effects on soybean and
maize production

Crop W126, ppm h Tmax, °C P/PET

Soybean 17.5 29.4 0.78
Maize 17.4 28.9 0.79
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[O3] presents an opportunity to increase crop yield at a time when
increased food production is needed to feed a growing population
(13). Additionally, the exacerbation of O3 damage by high temper-
atures indicates O3 damage could become greater under the tem-
perature increases projected for 2050 if [O3] is not decreased further.
Projections of crop production out to 2050 indicate that maize and
soybean will have reduced yield in many growing regions including
the United States (33), concluding that the loss is primarily due to
changes in climate. These projections, however, do not include in-
teraction between [O3] and climate, a complication that findings
here indicate would make projections more pessimistic in warming
regions of the world. However, there are no controlled experimental
studies to date in the peer-reviewed literature that have examined
how crop yield responds to increased temperature and [O3] simul-
taneously under realistic crop production conditions, indicating a
large and key knowledge gap in understanding the future of crop
production.

Materials and Methods
Annual yields ofmaize and soybean for each county of the United States were
obtained from the US Department of Agriculture NASS (NASS QuickStats;
quickstats.nass.usda.gov) for the years 1980–2011. The interaction between
water status and [O3] was of interest, but in irrigated fields P/PET is not an
accurate estimate of water status, so data from fields recorded as irrigated
were not used. In states where irrigation is the norm, fields are not always
recorded as irrigated, so as an additional constraint, data from states that on
average irrigate with more than 500 mm were excluded; this step removed
about 5% of the remaining observations. Approximately 85% of US maize
production and greater than 90% of soybean production is rain-fed (34), so
our analysis captured the vast majority of maize and soybean production in
the United States. Hourly [O3] at 2,700 sites across the same years were
obtained from the EPA’s Air Quality System (https://aqs.epa.gov/aqs/). To be
comparable with yield data, which are reported at the county level, [O3]
indices were calculated at each site, and then indices at sites within a county
were averaged. Counties with fewer than 16 y of data were excluded.
Hourly data from each EPA monitoring site were used to calculate the values
of three widely used cumulative indices of vegetation response to [O3]:
AOT40, SUM06, and W126 (18). AOT40 is a metric of cumulative hours ex-
ceeding 40 ppb and was calculated as

AOT40=
Xn
h=1

Ch  where  Ch =
� ½Oh −40�, Oh > 40
0, otherwise

, [1]

where Oh is the [O3] in parts per million for hour h, and n is the total number
of observed hours at the site.

SUM06 is a metric of cumulative hours exceeding 60 ppb and was calcu-
lated as

SUM06=
Xn
h=1

Ch  where  Ch =
�
Oh, Oh > 60
0, otherwise

. [2]

W126 weights [O3] on a sigmoidal scale and was calculated as

W126=
Xn
h=1

�
Oh ·

1
1+ 4403 ·e−126·Oh

�
, [3]

where e is ∼2.7183.
Indices were summed over the growing season (considered to be June,

July, and August) for each year. These months were chosen because they are
months in which maize and soybean are typically growing in fields and this
definition of the growing season has been used successfully in previous
studies (15). All sites were missing some hourly observations when instruments
were being repaired or recalibrated; ∼7.6% of expected [O3] observations were
missing. Because these indices are cumulative, they were divided by the number
of observed hours (n) at each site and then multiplied by the total number of
hours in the growing season, so that sites with more missing data would not
erroneously have lower values.

Precipitation (P), potential evapotranspiration (PET), and maximum tem-
perature (Tmax) were obtained as monthly, 0.5° × 0.5° gridded datasets (CRU
TS 3.2, badc.nerc.ac.uk/data/cru/; cf. ref. 28), and P/PET was calculated as a
measure of water availability as has been done previously (16, 35). Crops
respond to soil moisture, so P/PET is a better predictor of yield than P alone,
because P alone only accounts for inputs to soil moisture, and therefore
overestimates water availability. To estimate climate values at a county level,

a 0.125° grid was created in which each grid cell was paired with both the
county and 0.5° cell that contained the 0.125° cell’s center. The mean of the
climate data for all 0.125° cells within a county was used as an estimate of
the mean climate for that county (as in ref. 13). The mean climatic values for
June, July, and August were calculated for each year. Both photosynthesis
and O3 production only occur during daylight hours, so Tmax was used as
opposed to Tmin, which occurs at night, or Tmean, which is influenced by day
and night temperature. However, the choice of the temperature variable did
not affect the results (Table S4).

[O3] is correlated with both P/PET and Tmax because both factors affect the
reaction rates of processes that form O3. This results in collinearity of predictor
variables in the model, which, although it does not affect the ability to predict
yield, can incorrectly attribute effects of one predictor to a different predictor.
This could result in attributing effects to O3 when they are actually due to Tmax

or P/PET. To examine the severity of collinearity, the standardized W126 index
was predicted using Tmax and P/PET, including squared terms and interactions.
The adjusted r2 for this model was 0.21, indicating substantial variation inW126
that is not explained by environmental variables. This is likely due to the fact
that precursors for O3 production will not always be present, even if environ-
mental conditions are favorable for O3 production. This [O3] variation that is
independent from Tmax and P/PET variation allows for estimation of the O3

effect independent of effects of those two variables.
Data were used in the following linear model to determine the effect on

yield of the above climatic variables in combination in turn with each of
AOT40, SUM06 and W126:

yieldij = β0 + βy · yeari +
Xnc

x=1

βc,x · countyx

+
Xnc

x=1

βcy,x · ðcountyx · yeariÞ+ βT ·Tmax,ij + βP ·P
�
PETij

+βTP ·
�
Tmax,ij · P

�
PETij

�
+ βT2 ·T

2
max,ij + βP2 ·

�
P
�
PETij

�2
+ βTP2 ·

�
Tmax,ij ·

	
P
�
PETij


2�+ βPT2 ·
�
P
�
PETij · T2

max,ij

�
+βo ·O3,ij + βPO ·

�
P
�
PETij ·O3,ij

�
+ βTO ·

�
Tmax,ij ·O3,ij

�
+ βP2O ·

�	
P
�
PETij


2 ·O3,ij

�
+ βT2O ·

�	
Tmax,ij


2 ·O3,ij

�
+ eij ,

[4]

where O3 is one of the three cumulative [O3] indexes. The subscripts i and j are
indices for year and county, respectively, such that Tmax,ij is Tmax in year i in
county j. nc is the number of counties, and countyx is a vector of dummy vari-
ables (i.e., countyx is 1 when x = j, and is 0 otherwise). Over the period of study
(1980–2011), the yields of maize and soybean have increased in the United
States due to the release of higher-yielding cultivars and improved agronomic
practices. In addition, other factors such as soil type vary regionally. These
factors are independent of effects of climate and [O3], but because they affect
yield, they should be included in the model. Therefore, terms for year, county
and a year-by-county interaction were included in the model. The term for
county accounts for variation in soil type and agronomic practices in different
regions, and the year and year-by-county terms account for the increase in yield
due to continual development of cultivars and advanced management and
agronomic practices over time. Inclusion of these terms in the model accounts
for the effects of the numerous variables that alter yield, other than the ones
specifically included in the model. The two crops were treated independently
and all analyses were performed separately for each crop. Similar models have
been used in previous studies (13, 36).

Because many of these observations are recorded near each other, they will
be spatially correlated because observations close in space will share factors
unexplained by the model, such as soil type and governmental policy. This has
the effect of artificially reducing variance estimates and can overestimate sig-
nificance. To account for spatial correlation, a clustered bootstrap was used (37,
38) as has been done in previous similar studies (39). To determine confidence
limits for production loss (Table 1 and Tables S3 and S4 and Dataset S1), all
counties within a state for 1 y were treated as a group. Groups were randomly
resampled with replacement and parameters from Eq. 4 were estimated. This
was repeated 499 times, with the original sample giving 500 bootstrap repli-
cates. The parameter estimates from the original sample and the covariance of
all 500 samples were used as the mean and covariance, respectively, of an es-
timate of multivariate normal distribution of the parameters. By sampling all
counties within a state, counties are not treated as independent observations,
and this sampling scheme accounts for spatial correlation due to similar envi-
ronmental conditions in nearby places as well a common policy at the state
level. Compared with the multivariate normal distribution estimated using or-
dinary least-squares regression, this distribution has larger covariance for most
parameter pairs and results in larger confidence limits for estimates of
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production loss. Bootstrapping methods were used for multiple purposes, so
for clarity, we refer to this one as the parameter bootstrap.

To determine whether parameters accounted for significant variation, the
same clustered approach as the parameter bootstrap described above was
used, but observed values of yield were randomly reassigned to counties
within each state. By reassigning yield, the null distribution is enforced because
yield then has no relation to other observed values. Eq. 4 was used to estimate
parameters for the new sample, and the F value for each parameter was
recorded. This was repeated 499 times, with the original sample giving 500
estimates, and significance was determined by comparing the F value from the
original sample to the bootstrapped null f distribution. We refer to this as the
null bootstrap.

An estimate of production loss was determined by summing production
across all years and counties for each of the two situations, (i) with historical
[O3] or (ii) a hypothetical situation with no O3, and production loss was es-
timated as the percentage reduction in yield. To obtain confidence limits for
this estimate, the parameter distributions from the previously described
parameter bootstrap were used as input into a second round of boot-
strapping. The new parameter estimates were used to predict production

loss as described above. This was repeated 2,999 times, with the original
sample giving 3,000 estimates, to produce a distribution of production loss,
from which the 2.5th and 97.5th percentiles were used as 95% confidence
limits (37). We refer to this as the production bootstrap.

For the LOESS analysis, the model included Tmax, P/PET, and, in turn, each
of the O3 indexes, AOT40, SUM06, and W126. To understand how the effect
of O3 varies with environmental conditions, yield was estimated in dry, op-
timal, and overly wet conditions (corresponding to P/PET values of 0.5, 1, and
1.5, respectively) across a range of growing-season average monthly Tmax

values (23–35 °C). Those estimates were used to calculate the response ratio
(Y20/Y1; where Y20 is yield predicted with a W126 value of 20, and Y1 is yield
predicted with a W126 value of 1), and the natural logarithm of the re-
sponse ratio to calculate confidence limits (40), which were then converted
to percent change for ease of interpretation.
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