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Between September 2014 and February 2015, the number of Ebola
virus disease (EVD) cases reported in Sierra Leone declined in many
districts. During this period, a major international response was put
in place, with thousands of treatment beds introduced alongside
other infection control measures. However, assessing the impact of
the response is challenging, as several factors could have influenced
the decline in infections, including behavior changes and other
community interventions. We developed a mathematical model of
EVD transmission, and measured how transmission changed over
time in the 12 districts of Sierra Leone with sustained transmission
between June 2014 and February 2015. We used the model to
estimate how many cases were averted as a result of the introduc-
tion of additional treatment beds in each area. Examining epidemic
dynamics at the district level, we estimated that 56,600 (95%
credible interval: 48,300–84,500) Ebola cases (both reported and un-
reported) were averted in Sierra Leone up to February 2, 2015 as a
direct result of additional treatment beds being introduced. We also
found that if beds had been introduced 1 month earlier, a further
12,500 cases could have been averted. Our results suggest the un-
precedented local and international response led to a substantial
decline in EVD transmission during 2014–2015. In particular, the intro-
duction of beds had a direct impact on reducing EVD cases in Sierra
Leone, although the effect varied considerably between districts.
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The 2013–2015 Ebola virus disease (EVD) epidemic in West
Africa has seen more cases than all past outbreaks combined

(1), and has triggered a major international response. In Sierra
Leone, where there have been over 8,600 confirmed cases reported
as of 2015 August 1, the Sierra Leone and UK governments and
nongovernmental organizations have supported the gradual in-
troduction of over 1,500 beds in Ebola Holding Centers (EHCs)
and Community Care Centers (CCCs), as well as over 1,200 beds in
larger-scale Ebola Treatment Units (ETUs) (2, 3). As well as the
humanitarian value of providing treatment and care to sick patients,
there is a secondary benefit to expanding bed capacity that is more
difficult to quantify; by isolating the ill and removing them from the
community, further infections might be prevented.
Since the peak of the epidemic in Sierra Leone in November

2014, when there were over 500 confirmed EVD cases reported
per week, the level of infection has dropped, with fewer than 100
confirmed cases reported per week in February 2015. Although the
nationwide decline in cases coincided with an increase in the
number of beds available (4), as well as improved case detection,
tracing of contacts, and safe burials of patients who had died (3, 5),
there has been criticism of the timing and focus of the international
response in Sierra Leone (6, 7). To properly evaluate the control
efforts, and plan for future outbreaks of EVD, it is therefore
crucial to understand how many cases were likely averted as a
result of the response.
Mathematical models have been used prospectively to estimate

the potential impact of additional beds (8–11). However, evaluating
the effect of control measures retrospectively is more challenging,
because a model must disentangle the reduction in transmission due

to improved bed capacity from other factors. Behavior changes
(12), community engagement, improved case finding, and an in-
crease in safe burials (5) could all have contributed to a reduction
in transmission. Indeed, many Ebola facilities were designed to be
part of a package of interventions, combining treatment beds with
community-based infection control (3).
To estimate how EVD transmission changed as interventions

were introduced, we developed a stochastic mathematical model
of Ebola transmission in Sierra Leone. The model was stratified
by district, and incorporated available data on bed capacity in
ETUs, EHCs, and CCCs (13). As beds were not the only control
measure in place, we also included a time-varying transmission
rate in the model (4, 14) to capture any variation in transmission
which was not explained by the introduction of beds.
As not all new cases in Sierra Leone occurred among known

contacts of EVD patients (15), we accounted for potential
underreporting in our model. In our main analysis, we assumed
that 60% of infectious individuals would be ascertained (i.e.,
would be reported and seek treatment), and that it took an av-
erage of 4.5 d for these individuals to be reported (16). We also
included the possibility of variability in the accuracy of reporting,
with weekly reported cases following a negative binomial distri-
bution. In the model, stochasticity could therefore be generated by
both the transmission process and the reporting process. We as-
sumed infectious individuals who were ascertained attended
EHCs/CCCs if beds were available (16); the average time between
onset and attendance declined over time, based on reported val-
ues for Sierra Leone (SI Appendix, Fig. S1). Once test results were
received, patients were transferred to an available ETU; we
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assumed this took 2 d on average. If no beds were available at any
facility, cases remained in the community. The model structure is
shown in Fig. 1, and the full set of parameter values in SI Ap-
pendix, Table S1.
To allow for a time-varying community transmission rate, we

used a flexible sigmoid function (14, 17); depending on param-
eter values, transmission could be constant over time, or increase
or decline. Our model structure therefore made it possible to
separate the reduction in infection as a result of additional
treatment beds and variation resulting from other effects, such as
behavior changes and implementation of safe burials.
We used a Bayesian approach to fit the model to weekly EVD

confirmed and probable case data reported in each district of Sierra
Leone (18, 19), and to estimate how community transmission varied
over time. We then used the fitted model to simulate multiple
stochastic epidemic trajectories, and measured the number of cases
that could have occurred in each district had additional beds not
been introduced.

Results
We found that the temporal change in community transmission
varied considerably between different regions (Fig. 2). In Bo and
Moyamba, for example, the level of community transmission
remained relatively flat, whereas in Bombali, Kailahun, Port Loko,
and Western Area, a significant decline in community transmission
occurred alongside the reduction in transmission resulting from
additional beds. In districts where there was greater variation in
disease incidence, such as Kambia and Kenema, there was consid-
erable uncertainty in our estimates of the community transmission
rate. We found that the decline in community transmission in each
of the 12 districts was strongly associated with the initial basic re-
production number, but less so with the total number of cases (SI
Appendix, Table S2). There was also a geographical structure to the
decline, with a greater drop occurring in districts in the north and
east of the country (SI Appendix, Fig. S2).
To measure how many cases control measures may have

averted, we removed all CCC, EHC, and ETU beds introduced
during the period of observation and simulated stochastic epi-
demic trajectories using our estimates for the time-varying level

of community transmission (SI Appendix, Fig. S3). In this scenario,
transmission reductions from factors other than beds, such as re-
duced infection as a result of behavior changes, were still included.
Any difference in epidemic dynamics between this scenario and
the original model was therefore only the result of the removal of
treatment beds.
Our results suggest that the increase in beds averted a limited

number of cases in districts without ongoing transmission (e.g.,
Pujehun) but in districts with large outbreaks––such as Bombali
and Western Area––there would have been thousands more in-
fections without the introduction of beds. In Kenema, which had
highly variable incidence data, there was substantial variation in
the background transmission rate, and hence it was not possible to
detect a significant effect of interventions; the 95% credible in-
terval (CI) for cases averted includes zero in Table 1. Across all 12
districts, we estimated that 56,600 (95% CI: 48,300–84,500) cases
were averted in total between June 2014 and February 2015 as a
result of additional beds.
As a sensitivity analysis, we also estimated how many cases would

have been averted if 40% or 80% of cases were ascertained, rather
than 60% as in our main analysis (SI Appendix, Tables S3 and S4).
If 80% of cases were ascertained, we estimated that 148,000 (95%
CI: 115,000–219,000) cases were potentially averted across all dis-
tricts as a result of the introduction of beds; when ascertainment
was 40%, the additional beds averted 29,200 (95% CI: 24,500–
47,700) cases. In our main analysis, we also assumed an infectious
period of 10.9 d, based on reported time from onset-to-death, and
onset-to-hospital discharge (details in SI Appendix). As some cases
may have ceased to be infectious before discharge, as a sensitivity
analysis we refit the model with a 9-d infectious period, equal to the
average time of infectiousness for fatal cases. Our results did not
change substantially under this assumption (SI Appendix, Table S5).
In the model, we also assumed that transmission in each dis-

trict was independent of the others. In reality, however, in-
fectious individuals occasionally traveled between different areas
(20). To assess how this could affect our estimates of cases
averted, we resimulated outbreaks using the fitted model, but
with additional infectious individuals introduced at a rate of ei-
ther one per day or one per week in each district. When there
was an average of one additional infection introduced per week,
our estimates increased slightly (SI Appendix, Table S6); when
one additional infection was introduced per day, the increase was
larger, with an estimated 72,900 (95% CI: 61,700–87,900) cases
averted across the country.
As well as measuring the effect of actual control measures, we

were also able to estimate what impact the introduction of beds
would have had earlier in the epidemic. Using the fitted model, we
simulated epidemic trajectories under the assumption that the
same numbers of beds were introduced 4 wk earlier than in reality
(SI Appendix, Fig. S4). In this scenario, we estimated 69,100 (95%
CI: 59,500–122,000) cases would have been averted, which is
12,500 higher than the number we estimated were actually averted
(Table 1).

Discussion
Using a district-level mathematical model of EVD transmission,
we have examined the effect of control measures on epidemic
dynamics in Sierra Leone. In particular, we estimated the effect
of the reduction in community transmission and additional
treatment beds on the number of EVD cases. We found con-
siderable geographic variation: in some districts, there was a
noticeable shift in epidemic dynamics as a result of changes in
community transmission and increased bed capacity; in other
areas, the impact of control measures was less clear.
Although we could measure the number of beds available over

time, there were some additional components of the treatment
process that were less well known. We used reported data on time
to hospital admission in Sierra Leone to parameterize our model
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Fig. 1. Model structure. Individuals start off susceptible to infection (S).
Upon infection with Ebola they enter an incubation period (E), then at
symptom onset they become infectious; these individuals either eventually
become ascertained (IA) or do not (IM). Individuals who are ascertained ini-
tially seek health care in EHCs/CCCs (or ETUs if these are full); if no beds are
available, they remain infectious in the community until the infection is
resolved (R), i.e., they have recovered, or are dead and buried. Patients in
EHC/CCCs are transferred to ETUs once they have been tested for Ebola,
which takes an average of 2 d. Patients remain in ETUs until the infection is
resolved. We assume the latent period is 9.4 d, the average time from onset
to EHC/CCC attendance declines from an initial value of 4.6 d (SI Appendix,
Fig. S1), and individuals who do not seek treatment are infectious for 10.9 d
on average (details in SI Appendix).
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(1, 16), but this may have varied between districts. We also assumed
that individual infectiousness remained constant throughout the
symptomatic period. If most transmission occurs in the later stages
of infection, as viral load data might suggest (21), treatment beds
could have had a greater impact on transmission reduction by iso-
lating cases at their most infectious. This would make our estimate
for cases averted as a result of additional beds conservative.
In the model, patients also sought treatment within their home

district. However, in the early stages of the epidemic, several cases
admitted to the ETU in Kailahun were from outside the district
(20). This may have increased the benefits of bed introduction, by
reducing transmission in locations without treatment beds; it may
also have impeded control efforts, by making contact tracing and
safe burials more difficult (20). In addition, faster turnaround time
in laboratory testing may have reduced the time spent in EHCs/
CCCs before moving to ETUs (Sierra Leone Ebola labs project –
beating the outbreak at source; https://publichealthmatters.blog.
gov.uk/2015/03/18/sierra-leone-ebola-labs-project-beating-the-
outbreak-at-source/), and led to more EHC beds becoming avail-
able per day. Although there were occasional details of the
number of patients in isolation in different districts in Ministry of
Health and Sanitation situation reports (15), overall these data
were incomplete. If more complete EHC/CCC/ETU data were

available, it would be possible to validate our model estimates for
the number of cases hospitalized over time.
Our results also emphasize the highly variable nature of Ebola

transmission. Even in retrospect, it was difficult to measure
the effect of changes in transmission and additional beds on the
number of EVD cases in some areas. It is also likely that the
introduction of Ebola facilities helped stimulate other infection
control measures, including safe burials and improved contact
tracing (3). In our simulated scenarios, we removed only treatment
beds; in practice, a lack of treatment centers would also likely have
led to fewer safe burials, and hindered investigation of cases’
contacts. With better data on the timing and role of different in-
terventions––both clinical and nonclinical––it would be possible to
obtain more accurate estimates about the precise contribution of
different factors to the dynamics of EVD in Sierra Leone. In
particular, it is important to understand how awareness of EVD
influences behavior during an outbreak (22), and how this change
in behavior might affect disease dynamics (23, 24).
In the absence of such data, we concentrated on the impact of

additional treatment beds alone; we assumed the level of com-
munity transmission declined regardless of the number of beds.
An alternative approach would be to assume that transmission
would remain at the same level as was in the early phase of the
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Fig. 2. Community transmission and bed capacity in Sierra Leone over time. Blue lines show estimated median community transmission rate, shaded area
shows 95% CI (right-hand axis). Black dots show weekly reported confirmed and probable cases in each district up to February 2, 2015 (left-hand axis). Gray
lines show median number of cases generated from 1,000 simulations of the fitted model, with 50% CI given by dotted gray lines and 95% CI given by dashed
lines. Solid red lines, ETU bed capacity; orange lines, EHC/CCC bed capacity.
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epidemic (9, 10). As our estimate of the basic reproduction
number R0 was above 1 in most districts initially (Table 1), epi-
demic theory suggests the outbreak would have continued to
grow exponentially in these regions under the assumption of no
change in transmission, until there were insufficient susceptible
individuals for the infection to persist. The corresponding number
of cases averted would therefore have been extremely large. How-
ever, it was not clear that R0 would have remained unchanged for
such a long period. Evidence from past EVD epidemics indicates
that changes in behavior can reduce transmission independently of
external interventions (22, 25).
Even under our conservative assumption that the introduction

of EHCs/CCCs/ETUs reduced transmission only by isolating more
patients, we estimated that around 57,000 cases were averted in
Sierra Leone as a result of additional treatment beds. Given that
the case fatality rate of Ebola in Sierra Leone is near 70% (16),
this suggests that the scale-up of local and international efforts to
combat the epidemic is likely to have averted over 40,000 Ebola
deaths in the country between June 2014 and February 2015.
Moreover, the reduction in Ebola transmission will also have
halted the damaging secondary effects of the epidemic, including
the suspension of access to maternal health and vaccination pro-
grams (26, 27).

Materials and Methods
Transmission Model. To model the effect of treatment beds on Ebola trans-
mission, we used a susceptible-exposed-infectious-removed (SEIR) framework
that incorporated ETUs and EHCs/CCCs (8). We used a relatively simple
framework as we were fitting to only a single case timeseries for each dis-
trict (14). In the model, individuals started off susceptible to infection (S).
Upon infection with Ebola they entered an incubation period (E), then at
symptom onset they became infectious. As there is evidence that not all
Ebola cases have been reported (1), we assumed that only a proportion r of
newly infectious individuals would eventually be ascertained and seek
treatment. This category was denoted IA. The other proportion 1− r would
not be ascertained; this group was denoted IM. We assumed that it took an
average of 1=τr d for ascertained cases to be reported to the Ministry of
Health. After becoming symptomatic in the model, cases in IA sought health
care in EHCs/CCCs (H). They took an average of 1=τH d to attend these
centers. If no EHC/CCC beds were available, the patient would attend an
ETU. If no ETU bed were available, the patient remained infectious in the
community until the infection was resolved (R); i.e., they had recovered, or
were dead and buried. Once in an EHC/CCC, patients were tested for Ebola
(we assumed this took an average of 2 d) then progressed to an ETU if a bed
was available. Patients stayed for an average of 1=τD d in an ETU before the

disease was resolved (either through recovery or death). The probability that
Ebola-positive individuals were admitted to an EHC/CCC, pH, when they
attended the center depended on whether the center was full or not. We
assumed that some patients attending EHCs/CCCs were Ebola-negative,
which had the effect of reducing the available bed capacity by a factor α.
The probability that Ebola-positive individuals were admitted to an EHC/CCC
upon attendance was therefore

pH =
�
1 if  αBH >H
0 if  αBH =H

, [1]

where BH denotes the total capacity of the EHCs/CCCs. Likewise, the prob-
ability that individuals were admitted/transferred to an ETU was

pU =
�
1 if  BU >U
0 if  BU =U

, [2]

where BU denotes the capacity of the ETUs. We assumed that the population
was initially fully susceptible to infection. We assumed the average latent
period 1=ν was 9.4 d, and the average duration of infectiousness in the
community 1=γ to be 10.9 d in our main analysis; as a sensitivity analysis we
also considered an infectious period of 9 d. The average time from onset-to-
outcome for individuals that seek treatment was assumed to be 11.3 d (de-
tails in SI Appendix).

We obtained EHC/CCC/ETU opening dates from the Humanitarian Data
Exchange (13), and cleaned ambiguous or missing dates using reports from
the World Health Organization (WHO), Médecins Sans Frontières, UNICEF,
and other partners. If the precise date of opening or change in capacity was
not known, we used the first date for which we could find confirmation of
the center being open with a given capacity. This could have made our
analysis more conservative, as some centers may in reality have opened
earlier than we presumed. One field study in Bo estimated that 54% of EVD
cases made it into the district-level situation reports (28); in turn, the num-
bers of cases in these reports are typically slightly lower than the numbers in
the final WHO patient database (1). Therefore, we made the assumption
that 60% of symptomatic cases were ascertained in our main analysis (4),
and considered 40% and 80% ascertainment as a sensitivity analysis. We
assumed that it took an average of 4.5 d for these cases to be reported after
symptom onset (16) In the model, the time between onset and attendance
of EHCs/CCCs declined from 4.6 to 1.3 d between July 2014 and April 2015 (SI
Appendix, Fig. S1); the average duration spent in EHC/CCC before moving to
an ETU was 2 d; and the average time spent in an ETU was initially 11.3 − 4.6
− 2 = 4.7 d. We assumed that 50% of beds in EHCs/CCCs were occupied by
Ebola-negative patients (15) (i.e., α = 0.5). We also allowed community
transmission to potentially vary over time by modeling the transmission rate
at time t, βt, as a sigmoid (14, 17):

Table 1. Estimated number of cases averted up to February 2, 2015 as a result of additional
treatment beds

District Initial R0 Beds introduced Additional beds Beds 4 wk earlier

Bo 1.6 (1.4–1.7) 124 6,310 (4,150–9,040) 6,820 (4,730–9,620)
Bombali 5.2 (2.9–7.9) 506 6,480 (1,800–22,900) 7,630 (2,320–34,500)
Kailahun 8.4 (5.3–16.2) 123 3,650 (2,250–6,750) 4,580 (3,290–7,460)
Kambia 1.5 (1.4–3.6) 55 545 (2–4,430) 748 (4–15,400)
Kenema 7.4 (2.1–19.4) 75 1 (0–10,500) 3 (0–23,800)
Koinadugu 0.7 (0.3–1.1) 92 35 (11–104) 97 (48–206)
Kono 1.6 (1.4–1.9) 83 1,570 (928–2,430) 2,060 (1,490–3,060)
Moyamba 1 (0.9–1.2) 34 130 (77–197) 237 (145–366)
Port Loko 1.8 (1.6–2.2) 546 3,850 (853–13,400) 5,660 (1,180–26,900)
Pujehun 0.5 (0.2–1.2) 24 11 (2–34) 22 (6–55)
Tonkolili 3.5 (1.3–8.4) 349 568 (140–2,900) 959 (272–5,940)
Western Area 2.5 (2.2–2.8) 960 32,600 (25,500–40,200) 39,200 (32,100–47,100)
Total 2,971 56,600 (48,300–84,500) 69,100 (59,500–122,000)

For each district, we estimated the median number of additional cases that would result in the original fitted
model, with community transmission rate varying as shown in Fig. 2. We then considered two scenarios: addi-
tional EHC/CCC/ETU beds introduced as in reality, and the same additional beds introduced 4 wk earlier, and
estimated the number of cases averted in each scenario (95% CI in parentheses). The median posterior estimates
for initial R0 (95% CI in parentheses) and total numbers of additional EHC/CCC/ETU beds introduced in each
district are shown for comparison.
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βt = β̂

�
1−

a2
1+ e−a1ðt−aτ Þ

�
, [3]

where β̂, a1, a2, and aτ were parameters to be fitted. We modeled trans-
mission dynamics using a stochastic model, with environmental noise acting
on the transmission rate (29):

dSt =−βtξt
St
�
IAt + IMt

�
N

dt, [4]

dEt = βtξt
St
�
IAt + IMt

�
N

dt − νEtdt, [5]

dIAt = rνEtdt −pHτHIAt dt − ð1−pHÞð1−pUÞγIAt dt [6]

− ð1−pHÞpUτHIAt dt, [7]

dIMt = ð1− rÞνEtdt − γIMt dt, [8]

dHt =pHτHIAt dt −pUτUHtdt − ð1−pUÞτFHtdt, [9]

dUt = ð1−pHÞpUτHIAt dt +pUτUHtdt − τDUtdt, [10]

dRt = γIMt dt + τDUtdt + ð1−pHÞð1−pUÞγIAt dt [11]

+ ð1−pUÞτFHtdt, [12]

dXt = rντrEtdt. [13]

Here N is the total population size, Xt is the cumulative total of ascertained
Ebola cases, βt is the rate of transmission at time t, and ξt is a lognormal (and
hence positive) noise term with mean 1 and variance σ:

logðξtÞdt = σdW −
σ2

2
dt, [14]

where W is Brownian motion (29). Model structure and parameters are
shown in SI Appendix, Fig. S6. The model was simulated using the Euler–
Maruyama method with intervals of dt=1/10 d. Population size N for each
district was taken from Sierra Leone census data (30).

Model Fitting. We fitted the model to weekly incidence data (i.e., number of
new confirmed and probable cases per week) from Sierra Leone reported in
the WHO patient database (1). As described in a previous study, we also used
data from the Sierra Leone Ministry of Health (15) when more recent case
data were not available in the WHO database (4). We excluded Bonthe
district from the analysis as there were small numbers of confirmed or
probable cases, which were spaced several weeks apart. It is therefore un-
likely there was sustained transmission in this area. For each of the other
districts, we used the first reported week of sustained transmission (i.e.,

there were cases in that week and the following week) as the first data point
in the time series. The last data point for all districts was February 2, 2015, as
the number of cases had declined to minimal levels in most areas by this
point. In the model, incidence in week t, denoted xt, was given by the difference
in cumulative reported cases over the previous 7 d, i.e., xt =XðtÞ−Xðt − 7Þ. As
situation reports were only issued on w out of 7 d in some weeks, we scaled
these weeks by a factor κt =w=7. We also included the possibility of variability in
the accuracy of reporting in the situation reports. We assumed the number of
reported cases in week t followed a negative binomial distribution with mean
xtκt and variance κtxt +ϕ2κ2t x

2
t (4).

Model fitting was performed using a particle Markov chain Monte Carlo
(MCMC) algorithm (19) with an adaptive multivariate normal proposal distri-
bution (31). For each district, we fitted the initial number of infective in-
dividuals (including both ascertained and missed) at the start of the outbreak,
I0 = Ið0Þ; the volatility of the transmission rate, σ; over-dispersion of reporting,
ϕ; the initial transmission rate β̂; and the two shape parameters for the
transmission rate sigmoid, a1, a2, and aτ. We used uniform positive priors for
all parameters, with the exception of a2, which we constrained to the interval
ð−∞, 1Þ by imposing reflective boundary conditions during parameter resam-
pling. Posterior estimates for R0 = β0=γ, I0, σ, ϕ, and the 4 sigmoid parameters
(taken from 50,000 MCMC iterations, following a burn-in period of 10,000
iterations) are given in SI Appendix, Figs. S6–S17; the posterior distribution of
the sigmoid is shown in Fig. 2 (blue line and shaded region). The model was
implemented in R Version 3.1.3, and parallelized for multiple districts using the
doMC library (32, 33).

Estimating Cases Averted. To estimate the number of infections averted as a
result of control measures, we first estimated the total number of infections
(i.e., the cumulative number of individuals who leave the S compartment) up
to February 2, 2015 using the posterior parameter estimates from our fitted
model. We define this as the “baseline scenario.” Next, we assumed that the
community transmission rate varied as in the baseline scenario, but no ad-
ditional EHCs/CCCs/ETUs were introduced. This was equivalent to assuming
that changes aside from bed introductions––such as shifts in behavior, in-
creased number of safe burials, improved infection control––would have
happened regardless of whether additional beds were made available. We
ran 1,000 bootstrap simulations under this scenario, and compared the total
number of infections with the baseline scenario. In our main analysis, we
assumed that 60% of cases were ascertained (i.e., r = 0.6). To test how
sensitive our results were to this assumption, we also refitted the model to
each district with r = 0.4 and 0.8, and used these fitted models to estimate
the number of cases averted in the two different scenarios above. The re-
sults are given in SI Appendix, Tables S3 and S4.
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